Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

1c

Weitere Grammatikbegriffe sowie Eigenschaften von Sprachen

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 8. April 2025 Basierend auf Folien von PD Dr. David Sabel und Dr. Jan Johannsen

Wiederholung: Definition einer Grammatik

Definition

Eine Grammatik ist ein 4-Tupel $G = (V, \Sigma, P, S)$ wobei:

- ▶ V ist eine endliche Menge von Variablen (alternativ Nichtterminalen)
- $ightharpoonup \Sigma$ (mit $V \cap \Sigma = \emptyset$) ist ein Alphabet von Zeichen (alternativ Terminalen)
- ▶ P ist eine endliche Menge von Produktionen (alternativ Regeln) von der Form $\ell \to r$ wobei $\ell \in (V \cup \Sigma)^+$ und $r \in (V \cup \Sigma)^*$
- \triangleright $S \in V$ ist das Startsymbol (alternativ Startvariable).

Wiederholung: Die Chomsky-Hierarchie

Definition

Sei $G = (V, \Sigma, P, S)$ eine Grammatik.

- \triangleright G ist automatisch vom Typ 0.
- ▶ *G* ist vom Typ 1 (alternativ kontextsensitiv), wenn: für alle $\ell \to r \in P$ ist $|\ell| \le |r|$.
- ▶ *G* ist vom Typ 2 (alternativ kontextfrei), wenn: *G* ist vom Typ 1 und für alle $\ell \to r \in P$ ist $\ell \in V$.
- ▶ *G* ist vom Typ 3 (alternativ regulär), wenn: *G* ist vom Typ 2 und für alle $A \rightarrow r \in P$ gilt r = a oder r = aA' für $a \in \Sigma$, $A' \in V$ (d.h. die rechten Seiten sind Wörter aus $\Sigma \cup \Sigma V$).

Typ 3 (regulär) vs. Typ 2 (kontextfrei)

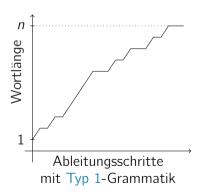
- ▶ Typ 3- und Typ 2-Produktionen sind immer von der Form $A \to r$, wobei $r \neq \varepsilon$.
- ▶ Bei Typ 3 muss zusätzlich r von der Form $a \in \Sigma$ oder $aA' \in \Sigma V$ sein.

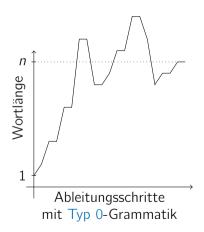
Typ 2 (kontextfrei) vs. Typ 1 (kontextsensitiv)

- ▶ Typ 2-Produktionen $A \rightarrow r$ sind immer auf ein Vorkommen von A anwendbar.
- ▶ Typ 1-Produktionen können solche Ersetzungen auf einen Kontext einschränken. Sie erlauben Regeln von der Form $uAv \rightarrow urv$, die die Ersetzung von A durch r nur erlauben, wenn A durch u und v umrahmt ist.

Typ 1 (kontextsensitiv) vs. Typ 0

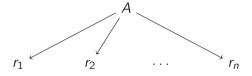
Ableitung eines Wortes der Länge n





Wiederholung: Syntaxbäume

- ► Ein Syntaxbaum stellt dar, wie ein Wort entsteht.
- ▶ Die Anwendung von $A \rightarrow r_1 r_2 \dots r_n$ wird durch den Teilbaum



dargestellt.

Definition eines Syntaxbaums

Definition

Sei $G = (V, \Sigma, P, S)$ eine Typ 2-Grammatik und $S = w_0 \Rightarrow_G \cdots \Rightarrow_G w_n$ eine Ableitung von $w_n \in \Sigma^*$.

Der Syntaxbaum zur Ableitung wird wie folgt erstellt:

- ► Markiere die Wurzel des Baums mit S.
- ▶ Wenn $w_i \Rightarrow w_{i+1}$, $w_i = uAv$ und $w_{i+1} = urv$ (Produktion $A \to r$ verwendet), dann erzeuge im Syntaxbaum |r| viele Knoten als Kinder des mit A markierten Knotens. Markiere die Kinder mit den Symbolen aus r (von links nach rechts).

Das Ergebnis des Syntaxbaums ist das Wort w_n an den Blättern, von links nach rechts gelesen.

Beispiel für ein Syntaxbaum

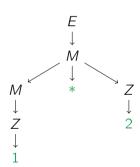
$$G = (\{E, M, Z\}, \{+, *, 1, 2, (,)\}, P, E) \text{ mit } P = \{E \to M, E \to E + M, M \to Z, M \to M * Z, Z \to 1, Z \to 2, Z \to (E)\}$$

Beachte: Beide Ableitungen

$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow 1 * Z \Rightarrow 1 * 2$$

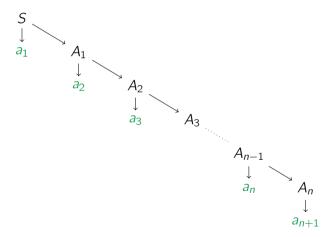
$$E \Rightarrow M \Rightarrow M * Z \Rightarrow M * 2 \Rightarrow Z * 2 \Rightarrow 1 * 2$$

haben denselben Syntaxbaum (rechts).



Syntaxbäume bei Typ 3-Grammatiken

Syntaxbäume bei Typ 3-Grammatiken sind immer listenartig:



Links- und Rechtsableitungen

- Linksableitung: Ersetze immer die linkeste Variable der Satzform.
- ▶ Rechtsableitung: Ersetze immer die rechteste Variable der Satzform.

Beispiele:

$$E \Rightarrow E + M$$

$$\Rightarrow M + M$$

$$\Rightarrow M * Z + M$$

$$\Rightarrow Z * Z + M$$

$$\Rightarrow 1 * Z + M$$

$$\Rightarrow 1 * 2 + M$$

$$\Rightarrow 1 * 2 + Z$$

$$\Rightarrow 1 * 2 + 3$$

$$E \Rightarrow E + M$$

$$\Rightarrow E + Z$$

$$\Rightarrow E + 3$$

$$\Rightarrow M + 3$$

$$\Rightarrow M * Z + 3$$

$$\Rightarrow M * 2 + 3$$

$$\Rightarrow Z * 2 + 3$$

$$\Rightarrow 1 * 2 + 3$$

Links- und Rechtsableitungen

Satz

Sei G eine Typ 2-Grammatik und $w \in L(G)$.

Dann gibt es eine Linksableitung und eine Rechtsableitung von w.

Links- und Rechtsableitungen

Satz

Sei G eine Typ 2-Grammatik und $w \in L(G)$.

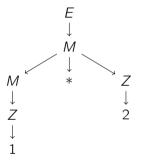
Dann gibt es eine Linksableitung und eine Rechtsableitung von w.

Beweis Da $w \in L(G)$, gibt es irgendeine Ableitung von w.

Konstruiere den Syntaxbaum zu dieser Ableitung.

Lies eine Links- bzw. Rechtsableitung am Syntaxbaum ab.

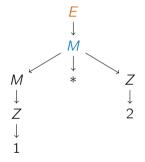
Syntaxbaum:



Linksableitung:

Ε

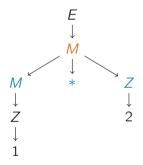
Syntaxbaum:



Linksableitung:

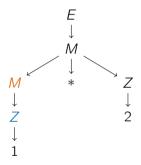
 $E \Rightarrow M$

Syntaxbaum:



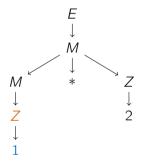
$$E \Rightarrow M \Rightarrow M * Z$$

Syntaxbaum:



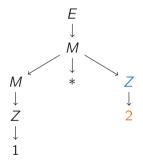
$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z$$

Syntaxbaum:



$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow 1 * Z$$

Syntaxbaum:



$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow 1 * Z \Rightarrow 1 * 2$$

Erweiterte Backus-Naur-Form

Definition

Für Typ 2-Grammatiken erlauben wir abkürzende Schreibweise für die Menge der Produktionen P:

- 1. $A \rightarrow w_1 \mid w_2 \mid \cdots \mid w_n$ steht für $A \rightarrow w_1, A \rightarrow w_2, \ldots, A \rightarrow w_n$.
- 2. $A \rightarrow u[v]w$ steht für die beiden Produktionen $A \rightarrow uvw$ und $A \rightarrow uw$ (d.h. [v] meint, dass v optional ist).
- 3. $A \rightarrow u\{v\}w$ steht für $A \rightarrow uw$ oder $A \rightarrow uBw$ mit $B \rightarrow v \mid vB$ (d.h. $\{v\}$ meint, dass v beliebig oft wiederholt werden kann).

Grammatiken, die diese Notation verwenden, nennen wir Grammatiken in erweiterter Backus-Naur-Form (EBNF).

Anwendungen von kontextfreien Grammatiken

- ► Kontextfreie Grammatiken werden zur syntaktischen Analyse von Programmiersprachen und Domain Specific Languages verwendet.
- ► Tools wie yacc (für C/C++), ANTLR (für Java) und PLY (für Python) generieren syntaktische Analyser ("Parser") aus Grammatiken. Beispiel für eine ANTLR-Grammatik (Quelle: www.antlr.org):

Anwendungen von kontextfreien Grammatiken

- ► Kontextfreie Grammatiken werden zur syntaktischen Analyse von Programmiersprachen und Domain Specific Languages verwendet.
- ► Tools wie yacc (für C/C++), ANTLR (für Java) und PLY (für Python) generieren syntaktische Analyser ("Parser") aus Grammatiken. Beispiel für eine ANTLR-Grammatik (Quelle: www.antlr.org):

▶ Viele Fragestellungen sind jedoch kontextsensitiv oder Typ 0. Praktisches Vorgehen: Nutze Typ 2-Sprache und Nebenbedingungen (z.B. Syntax als kontextfreie Grammatik und Nebenbedingungen, die prüfen, dass alle Variablen deklariert wurden).

Chomsky-Hierarchie: Teilmengenbeziehungen

Aus der Definition der Typ *i*-Sprachen folgt:

Typ 3-Sprachen \subseteq Typ 2-Sprachen \subseteq Typ 1-Sprachen \subseteq Typ 0-Sprachen

Chomsky-Hierarchie: Teilmengenbeziehungen

Aus der Definition der Typ i-Sprachen folgt:

Typ 3-Sprachen \subseteq Typ 2-Sprachen \subseteq Typ 1-Sprachen \subseteq Typ 0-Sprachen

Es gilt sogar:

Typ 3-Sprachen \subset Typ 2-Sprachen \subset Typ 1-Sprachen \subset Typ 0-Sprachen

Chomsky-Hierarchie: Teilmengenbeziehungen

Aus der Definition der Typ i-Sprachen folgt:

Typ 3-Sprachen \subseteq Typ 2-Sprachen \subseteq Typ 1-Sprachen \subseteq Typ 0-Sprachen

Es gilt sogar:

Typ 3-Sprachen \subset Typ 2-Sprachen \subset Typ 1-Sprachen \subset Typ 0-Sprachen

Trennende Beispiele sind:

- ▶ $\{a^nb^n \mid n \in \mathbb{N}_{>0}\}$ ist von Typ 2, aber nicht von Typ 3.
- ▶ $\{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\}$ ist von Typ 1, aber nicht von Typ 2.
- ▶ Das sogenannte Halteproblem ist von Typ 0, aber nicht von Typ 1.

(Beweise folgen im Laufe der Veranstaltung.)

Beachte: Es gibt auch Sprachen, die nicht Typ 0 sind.

Das Komplement vom Halteproblem ist eine solche Sprache.

Abgeschlossenheit von Sprachen

Eine Klasse K von Sprachen (d.h. eine Menge von Mengen) ist abgeschlossen bezüglich

- ▶ Vereinigung g.d.w. aus $L_1, L_2 \in \mathcal{K}$ folgt stets $L_1 \cup L_2 \in \mathcal{K}$
- ▶ Schnittbildung g.d.w. aus $L_1, L_2 \in \mathcal{K}$ folgt stets $L_1 \cap L_2 \in \mathcal{K}$
- ▶ Komplementbildung g.d.w. aus $L \in \mathcal{K}$ folgt stets $\overline{L} \in \mathcal{K}$
- ▶ Produktbildung g.d.w. aus $L_1, L_2 \in \mathcal{K}$ folgt stets $L_1L_2 \in \mathcal{K}$.

Wir werden im Laufe der Veranstaltung untersuchen, ob die Typ *i*-Sprachen abgeschlossen bezüglich obiger Operationen sind.

Abgeschlossenheit: Eigenschaften

Satz

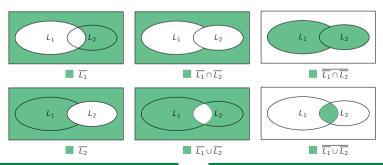
Sei die Klasse von Sprachen $\mathcal K$ abgeschlossen bezüglich Komplementbildung. Dann ist $\mathcal K$ abgeschlossen bezüglich Schnittbildung g.d.w. $\mathcal K$ abgeschlossen bezüglich Vereinigung ist.

Abgeschlossenheit: Eigenschaften

Satz

Sei die Klasse von Sprachen $\mathcal K$ abgeschlossen bezüglich Komplementbildung. Dann ist $\mathcal K$ abgeschlossen bezüglich Schnittbildung g.d.w. $\mathcal K$ abgeschlossen bezüglich Vereinigung ist.

Beweis Das gilt, da $L_1 \cup L_2 = \overline{\overline{L_1} \cap \overline{L_2}}$ und $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$.



Entscheidbarkeit

Definition

Eine Sprache L ist entscheidbar, wenn es einen Algorithmus gibt, der bei Eingabe eines Wortes w in endlicher Zeit feststellt, ob $w \in L$ gilt oder nicht.

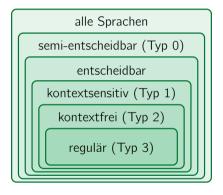
Eigenschaften der Typ i-Sprachen

- ► Alle Typ 1, 2, 3-Sprachen sind entscheidbar.
- ► Es gibt Typ 0-Sprachen, die nicht entscheidbar sind.
- ▶ Alle Typ 0-Sprachen sind semi-entscheidbar (alternativ rekursiv aufzählbar): Für jede Typ 0-Sprache L gibt es einen Algorithmus, der bei Eingabe eines Wortes $w \in L$ in endlicher Zeit feststellt, dass $w \in L$ gilt, und bei einem Wort $w \not\in L$ entweder feststellt, dass $w \not\in L$ gilt, **oder nicht terminiert.**

Eigenschaften der Typ i-Sprachen

- ► Alle Typ 1, 2, 3-Sprachen sind entscheidbar.
- Es gibt Typ 0-Sprachen, die nicht entscheidbar sind.
- Alle Typ 0-Sprachen sind semi-entscheidbar (alternativ rekursiv aufzählbar): Für jede Typ 0-Sprache L gibt es einen Algorithmus, der bei Eingabe eines Wortes $w \in L$ in endlicher Zeit feststellt, dass $w \in L$ gilt, und bei einem Wort $w \notin L$ entweder feststellt, dass $w \notin L$ gilt, **oder nicht terminiert.**
- Es gibt auch Sprachen, die nicht semi-entscheidbar sind:
 - ▶ Die Menge der Typ 0-Grammatiken ist abzählbar (jede Grammatik hat eine endliche Beschreibung, d.h. Grammatiken können der Größe nach aufgezählt werden).
 - ▶ Die Menge aller Sprachen = $\mathcal{P}(\Sigma^*)$ ist überabzählbar.
 - ▶ Wir betrachten mit den Typ *i*-Grammatiken einen sehr kleinen Teil aller Sprachen.

Übersicht über die Sprachen



Entscheidungsprobleme

- ▶ Das Wortproblem für Typ *i*-Grammatiken ist die Frage, ob für eine gegebene Typ *i*-Grammatik $G = (V, \Sigma, P, S)$ und ein Wort $w \in \Sigma^*$ $w \in L(G)$ gilt oder nicht.
- ▶ Das Leerheitsproblem für Typ *i*-Grammatiken ist die Frage, ob für eine gegebene Typ *i*-Grammatik G die Gleichheit $L(G) = \emptyset$ gilt.
- ▶ Das Endlichkeitsproblem für Typ *i*-Grammatiken ist die Frage, ob für eine gegebene Typ *i*-Grammatik G die Ungleichheit $|L(G)| < \infty$ gilt.
- ▶ Das Schnittproblem für Typ *i*-Grammatiken ist die Frage, ob für gegebene Typ *i*-Grammatiken G_1 , G_2 gilt: $L(G_1) \cap L(G_2) = \emptyset$.
- ▶ Das Äquivalenzproblem für Typ *i*-Grammatiken ist, die Frage, ob für gegebene Typ *i*-Grammatiken G_1 , G_2 gilt: $L(G_1) = L(G_2)$.

Probleme vs. Sprachen

- ▶ (Entscheidungs-)Problem: Funktion von Σ^* nach {ja, nein}
- ▶ (Formale) Sprache: Menge $\subseteq \Sigma^*$
- Die beiden Begriffe werden synonym verwendet.
 - ▶ ja (als Antwort auf ein Problem) = Element (einer Sprache)
 - ▶ nein (als Antwort auf ein Problem) = nicht Element (einer Sprache)

Probleme vs. Sprachen

- ▶ (Entscheidungs-)Problem: Funktion von Σ^* nach {ja, nein}
- ▶ (Formale) Sprache: Menge $\subseteq \Sigma^*$
- Die beiden Begriffe werden synonym verwendet.
 - ▶ ja (als Antwort auf ein Problem) = Element (einer Sprache)
 - ▶ nein (als Antwort auf ein Problem) = nicht Element (einer Sprache)
- Beispiele:
 - Das Primzahlproblem ist die Sprache L, die alle (in Dezimalnotation kodierten) Primzahlen enthält. D.h. L = {2, 3, 5, 7, 11, ...}.

Probleme vs. Sprachen

- ▶ (Entscheidungs-)Problem: Funktion von Σ^* nach {ja, nein}
- ▶ (Formale) Sprache: Menge $\subseteq \Sigma^*$
- ▶ Die beiden Begriffe werden synonym verwendet.
 - ▶ ja (als Antwort auf ein Problem) = Element (einer Sprache)
 - ▶ nein (als Antwort auf ein Problem) = nicht Element (einer Sprache)
- Beispiele:
 - Das Primzahlproblem ist die Sprache L, die alle (in Dezimalnotation kodierten) Primzahlen enthält. D.h. L = {2, 3, 5, 7, 11, ...}.
 - Das Leerheitsproblem für Typ *i*-Grammatiken ist die Sprache, die alle (als Wörter kodierten) Typ *i*-Grammatiken G enthält, für die $L(G) = \emptyset$ gilt.