Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

1b

Grammatiken und die Chomsky-Hierarchie

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 8. April 2025 Basierend auf Folien von PD Dr. David Sabel und Dr. Jan Johannsen

- ightharpoonup Sei Σ ein Alphabet.
- ightharpoonup Eine Sprache über Σ ist eine Teilmenge von Σ*.

- ightharpoonup Sei Σ ein Alphabet.
- ightharpoonup Eine Sprache über Σ ist eine Teilmenge von Σ^* .
- Für $\Sigma = \{(,),+,-,*,/,a\}$ sei L_{ArEx} die Sprache aller korrekt geklammerten Ausdrücke.
 - Z.B. $((a+a)-a)*a \in L_{ArEx}$ aber $(a-)+a) \notin L_{ArEx}$.
- Unsere bisherigen Operationen auf Sprachen (Mengen) können das nicht darstellen.

- ► Sei Σ ein Alphabet.
- ightharpoonup Eine Sprache über Σ ist eine Teilmenge von Σ^* .
- Für Σ = {(,), +, -, *, /, a} sei L_{ArEx} die Sprache aller korrekt geklammerten Ausdrücke.
 Z.B. ((a + a) a) * a ∈ L_{ArEx} aber (a-) + a) ∉ L_{ArEx}.
- ► Unsere bisherigen Operationen auf Sprachen (Mengen) können das nicht darstellen.

Benötigt: Formalismus, um L_{ArEx} zu beschreiben

Anforderungen:

- ▶ Beschreibung muss endlich sein.
- Sprache selbst muss aber auch unendlich viele Objekte erlauben.

Zwei wesentliche solchen Formalismen sind

- Grammatiken
- Automaten.

Grammatiken

Grammatik für einen sehr kleinen Teil der deutschen Sprache:

```
<Satz>
          → <Subjekt><Prädikat><Objekt>
<Subjekt> → <Artikel><Attribut><Nomen>
<Objekt> → <Artikel><Attribut><Nomen>
<Artikel> \rightarrow \varepsilon
<Artikel> → der
\langle Artikel \rangle \rightarrow das
<Attribut> → <Adjektiv>
<Attribut> → <Adjektiv><Attribut>
<Adiektiv> → kleine
<Adiektiv> → große
<Adjektiv> → nette
<Adiektiv> → blaue
<Nomen> → Frau
<Nomen> → Mann
<Nomen> → Auto
<Prädikat> → fährt
<Prädikat> → liebt
```

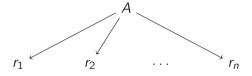
Grammatiken

- ▶ Grammatik = endliche Menge von Regeln "linke Seite → rechte Seite"
- ➤ Symbole in spitzen Klammern wie <Artikel> sind Variablen, d.h. sie sind Platzhalter, die weiter ersetzt werden müssen.
- Z.B. kann

der kleine nette Mann fährt das große blaue Auto durch die vorige Grammatik abgeleitet werden.

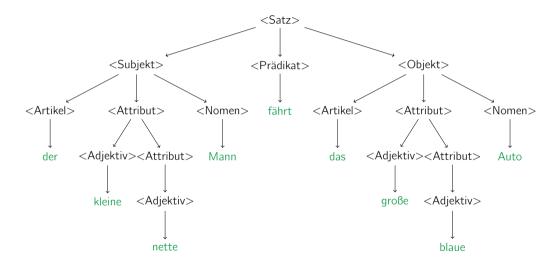
Syntaxbäume

- ► Ein Syntaxbaum stellt dar, wie ein Satz entsteht.
- ▶ Die Anwendung von $A \rightarrow r_1 r_2 \dots r_n$ wird durch den Teilbaum



dargestellt.

Syntaxbaum zum Beispiel



Definition einer Grammatik

Definition

Eine Grammatik ist ein 4-Tupel $G = (V, \Sigma, P, S)$ wobei:

- ▶ V ist eine endliche Menge von Variablen
- ▶ Σ (mit $V \cap \Sigma = \emptyset$) ist ein Alphabet von Zeichen
- ▶ P ist eine endliche Menge von Produktionen von der Form $\ell \to r$ wobei $\ell \in (V \cup \Sigma)^+$ und $r \in (V \cup \Sigma)^*$
- $ightharpoonup S \in V$ ist das Startsymbol.

Definition einer Grammatik

Definition

Eine Grammatik ist ein 4-Tupel $G = (V, \Sigma, P, S)$ wobei:

- ▶ V ist eine endliche Menge von Variablen (alternativ Nichtterminalen)
- $ightharpoonup \Sigma$ (mit $V \cap \Sigma = \emptyset$) ist ein Alphabet von Zeichen (alternativ Terminalen)
- ▶ P ist eine endliche Menge von Produktionen (alternativ Regeln) von der Form $\ell \to r$ wobei $\ell \in (V \cup \Sigma)^+$ und $r \in (V \cup \Sigma)^*$
- \triangleright $S \in V$ ist das Startsymbol (alternativ Startvariable).

Definition einer Grammatik

Definition

Eine Grammatik ist ein 4-Tupel $G = (V, \Sigma, P, S)$ wobei:

- ▶ V ist eine endliche Menge von Variablen (alternativ Nichtterminalen)
- $ightharpoonup \Sigma$ (mit $V \cap \Sigma = \emptyset$) ist ein Alphabet von Zeichen (alternativ Terminalen)
- ▶ P ist eine endliche Menge von Produktionen (alternativ Regeln) von der Form $\ell \to r$ wobei $\ell \in (V \cup \Sigma)^+$ und $r \in (V \cup \Sigma)^*$
- \triangleright $S \in V$ ist das Startsymbol (alternativ Startvariable).

Produktionen mit ε auf der rechten Seite heißen ε -Produktionen.

Manchmal genügt es, die Produktionen P alleine zu notieren (wenn klar ist, was V, Σ und S sind).

Beispiel für eine Grammatik

$$G = (V, \Sigma, P, E)$$
 mit
 $V = \{E, M, Z\},$
 $\Sigma = \{+, *, 1, 2, (,)\}$ und
 $P = \{E \rightarrow M,$
 $E \rightarrow E + M,$
 $M \rightarrow Z,$
 $M \rightarrow M * Z,$
 $Z \rightarrow 1,$
 $Z \rightarrow 2,$
 $Z \rightarrow (E)\}$

Ableitungsschritte

Definition

Sei $G = (V, \Sigma, P, S)$ eine Grammatik.

Eine Satzform ist ein Wort aus $(V \cup \Sigma)^*$.

Satzform u geht unter Grammatik G unmittelbar in Satzform v über, $u \Rightarrow_G v$, wenn

$$u = w_1 \ell w_2$$
 und $v = w_1 r w_2$ mit $\ell \to r \in P$

- ▶ Wenn G klar ist, schreiben wir $u \Rightarrow v$ statt $u \Rightarrow_G v$.
- →* ist die reflexiv-transitive Hülle von ⇒. Sie ist definiert durch folgende Regeln (und nur diese):
 - ▶ falls $u \Rightarrow v$, dann ist $u \Rightarrow^* v$
 - $\triangleright u \Rightarrow^* u$
 - ▶ falls $u \Rightarrow^* v$ und $v \Rightarrow^* w$, dann ist $u \Rightarrow^* w$.

Ableitungen

Definition

Sei $G = (V, \Sigma, P, S)$ eine Grammatik.

Eine Folge (w_0, w_1, \ldots, w_n) mit $w_0 = S$, $w_n \in \Sigma^*$ und $w_{i-1} \Rightarrow w_i$ für $i = 1, \ldots, n$ heißt Ableitung von w_n .

Statt (w_0, \ldots, w_n) schreiben wir auch $w_0 \Rightarrow \cdots \Rightarrow w_n$.

$$G = (V, \Sigma, P, E)$$
 mit $V = \{E, M, Z\}$ und $\Sigma = \{+, *, 1, 2, (,)\}$ und $P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E)\}$ Eine Ableitung von $(2 + 1) * (2 + 2)$:

$$G = (V, \Sigma, P, E)$$
 mit $V = \{E, M, Z\}$ und $\Sigma = \{+, *, 1, 2, (,)\}$ und $P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E)\}$
Eine Ableitung von $(2+1)*(2+2)$:
 $E \Rightarrow M \Rightarrow M * Z$

$$G = (V, \Sigma, P, E)$$
 mit $V = \{E, M, Z\}$ und $\Sigma = \{+, *, 1, 2, (,)\}$ und $P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E)\}$
Eine Ableitung von $(2 + 1) * (2 + 2)$:
 $E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z$

$$G = (V, \Sigma, P, E)$$
 mit $V = \{E, M, Z\}$ und $\Sigma = \{+, *, 1, 2, (,)\}$ und $P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E)\}$ Eine Ableitung von $(2 + 1) * (2 + 2)$: $E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E)$

$$G = (V, \Sigma, P, E)$$
 mit $V = \{E, M, Z\}$ und $\Sigma = \{+, *, 1, 2, (,)\}$ und $P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E)\}$ Eine Ableitung von $(2+1)*(2+2)$: $E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E+M)$

$$G = (V, \Sigma, P, E)$$
 mit $V = \{E, M, Z\}$ und $\Sigma = \{+, *, 1, 2, (,)\}$ und $P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E)\}$ Eine Ableitung von $(2+1)*(2+2)$: $E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E+M)$ $\Rightarrow (E) * (E+M)$

$$G = (V, \Sigma, P, E)$$
 mit $V = \{E, M, Z\}$ und $\Sigma = \{+, *, 1, 2, (,)\}$ und $P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E)\}$ Eine Ableitung von $(2+1)*(2+2)$: $E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E+M)$ $\Rightarrow (E) * (E+M) \Rightarrow (E) * (E+Z)$

$$G = (V, \Sigma, P, E) \text{ mit } V = \{E, M, Z\} \text{ und } \Sigma = \{+, *, 1, 2, (,)\} \text{ und } P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E)\}$$
 Eine Ableitung von $(2+1)*(2+2)$:
$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E+M)$$

$$\Rightarrow (E) * (E+M) \Rightarrow (E) * (E+Z) \Rightarrow (E+M) * (E+Z)$$

$$G = (V, \Sigma, P, E)$$
 mit $V = \{E, M, Z\}$ und $\Sigma = \{+, *, 1, 2, (,)\}$ und $P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E)\}$ Eine Ableitung von $(2 + 1) * (2 + 2)$: $E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E + M)$ $\Rightarrow (E) * (E + M) \Rightarrow (E) * (E + Z) \Rightarrow (E + M) * (E + Z)$ $\Rightarrow (M + M) * (E + Z)$

$$G = (V, \Sigma, P, E)$$
 mit $V = \{E, M, Z\}$ und $\Sigma = \{+, *, 1, 2, (,)\}$ und $P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E)\}$ Eine Ableitung von $(2 + 1) * (2 + 2)$:
$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E + M)$$

$$\Rightarrow (E) * (E + M) \Rightarrow (E) * (E + Z) \Rightarrow (E + M) * (E + Z)$$

$$\Rightarrow (M + M) * (E + Z) \Rightarrow (M + M) * (M + Z)$$

$$G = (V, \Sigma, P, E) \text{ mit } V = \{E, M, Z\} \text{ und } \Sigma = \{+, *, 1, 2, (,)\} \text{ und } P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E)\}$$
Eine Ableitung von $(2+1)*(2+2)$:
$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E+M)$$

$$\Rightarrow (E)*(E+M) \Rightarrow (E)*(E+Z) \Rightarrow (E+M)*(E+Z)$$

$$\Rightarrow (M+M)*(E+Z) \Rightarrow (M+M)*(M+Z)$$

$$\Rightarrow (M+M)*(Z+Z)$$

$$G = (V, \Sigma, P, E) \text{ mit } V = \{E, M, Z\} \text{ und } \Sigma = \{+, *, 1, 2, (,)\} \text{ und } P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E)\}$$
Eine Ableitung von $(2+1)*(2+2)$:
$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E+M)$$

$$\Rightarrow (E)*(E+M) \Rightarrow (E)*(E+Z) \Rightarrow (E+M)*(E+Z)$$

$$\Rightarrow (M+M)*(E+Z) \Rightarrow (M+M)*(M+Z)$$

$$\Rightarrow (M+M)*(Z+Z) \Rightarrow (M+M)*(Z+2)$$

$$G = (V, \Sigma, P, E) \text{ mit } V = \{E, M, Z\} \text{ und } \Sigma = \{+, *, 1, 2, (,)\} \text{ und } P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E)\}$$
Eine Ableitung von $(2+1)*(2+2)$:
$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E+M)$$

$$\Rightarrow (E)*(E+M) \Rightarrow (E)*(E+Z) \Rightarrow (E+M)*(E+Z)$$

$$\Rightarrow (M+M)*(E+Z) \Rightarrow (M+M)*(M+Z)$$

$$\Rightarrow (M+M)*(Z+Z) \Rightarrow (M+M)*(Z+Z)$$

$$\Rightarrow (M+Z)*(Z+2)$$

$$G = (V, \Sigma, P, E) \text{ mit } V = \{E, M, Z\} \text{ und } \Sigma = \{+, *, 1, 2, (,)\} \text{ und } P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E)\}$$
Eine Ableitung von $(2+1)*(2+2)$:
$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E+M)$$

$$\Rightarrow (E)*(E+M) \Rightarrow (E)*(E+Z) \Rightarrow (E+M)*(E+Z)$$

$$\Rightarrow (M+M)*(E+Z) \Rightarrow (M+M)*(M+Z)$$

$$\Rightarrow (M+M)*(Z+Z) \Rightarrow (M+M)*(Z+2)$$

$$\Rightarrow (M+Z)*(Z+2) \Rightarrow (M+Z)*(Z+2)$$

$$G = (V, \Sigma, P, E) \text{ mit } V = \{E, M, Z\} \text{ und } \Sigma = \{+, *, 1, 2, (,)\} \text{ und } P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E)\}$$
Eine Ableitung von $(2+1)*(2+2)$:
$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E+M)$$

$$\Rightarrow (E)*(E+M) \Rightarrow (E)*(E+Z) \Rightarrow (E+M)*(E+Z)$$

$$\Rightarrow (M+M)*(E+Z) \Rightarrow (M+M)*(M+Z)$$

$$\Rightarrow (M+M)*(Z+Z) \Rightarrow (M+M)*(Z+2)$$

$$\Rightarrow (M+Z)*(Z+2) \Rightarrow (M+Z)*(2+2)$$

$$\Rightarrow (Z+Z)*(2+2)$$

$$G = (V, \Sigma, P, E) \text{ mit } V = \{E, M, Z\} \text{ und } \Sigma = \{+, *, 1, 2, (,)\} \text{ und } P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E)\}$$
Eine Ableitung von $(2+1)*(2+2)$:
$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E+M)$$

$$\Rightarrow (E)*(E+M) \Rightarrow (E)*(E+Z) \Rightarrow (E+M)*(E+Z)$$

$$\Rightarrow (M+M)*(E+Z) \Rightarrow (M+M)*(M+Z)$$

$$\Rightarrow (M+M)*(Z+Z) \Rightarrow (M+M)*(Z+2)$$

$$\Rightarrow (M+Z)*(Z+2) \Rightarrow (M+Z)*(2+2)$$

$$\Rightarrow (Z+Z)*(2+2) \Rightarrow (2+Z)*(2+2)$$

$$G = (V, \Sigma, P, E) \text{ mit } V = \{E, M, Z\} \text{ und } \Sigma = \{+, *, 1, 2, (,)\} \text{ und } P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E)\}$$
Eine Ableitung von $(2+1)*(2+2)$:
$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E+M)$$

$$\Rightarrow (E)*(E+M) \Rightarrow (E)*(E+Z) \Rightarrow (E+M)*(E+Z)$$

$$\Rightarrow (M+M)*(E+Z) \Rightarrow (M+M)*(M+Z)$$

$$\Rightarrow (M+M)*(Z+Z) \Rightarrow (M+M)*(Z+2)$$

$$\Rightarrow (M+Z)*(Z+2) \Rightarrow (M+Z)*(2+2)$$

$$\Rightarrow (Z+Z)*(2+2) \Rightarrow (Z+Z) \Rightarrow$$

Ableitungen sind nicht eindeutig

Ableitung von letzter Folie:

$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E+M)$$

$$\Rightarrow (E) * (E+M) \Rightarrow (E) * (E+Z) \Rightarrow (E+M) * (E+Z)$$

$$\Rightarrow (M+M) * (E+Z) \Rightarrow (M+M) * (M+Z)$$

$$\Rightarrow (M+M) * (Z+Z) \Rightarrow (M+M) * (Z+2)$$

$$\Rightarrow (M+Z) * (Z+2) \Rightarrow (M+Z) * (2+2)$$

$$\Rightarrow (Z+Z) * (2+2) \Rightarrow (2+Z) * (2+2) \Rightarrow (2+1) * (2+2)$$

Ableitungen sind nicht eindeutig

Ableitung von letzter Folie:

$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow Z * (E) \Rightarrow Z * (E+M)$$

$$\Rightarrow (E) * (E+M) \Rightarrow (E) * (E+Z) \Rightarrow (E+M) * (E+Z)$$

$$\Rightarrow (M+M) * (E+Z) \Rightarrow (M+M) * (M+Z)$$

$$\Rightarrow (M+M) * (Z+Z) \Rightarrow (M+M) * (Z+2)$$

$$\Rightarrow (M+Z) * (Z+2) \Rightarrow (M+Z) * (2+2)$$

$$\Rightarrow (Z+Z) * (2+2) \Rightarrow (2+Z) * (2+2) \Rightarrow (2+1) * (2+2)$$

Linksableitung (ersetzt immer die linkeste Variable):

$$E \Rightarrow M \Rightarrow M * Z \Rightarrow Z * Z \Rightarrow (E) * Z$$

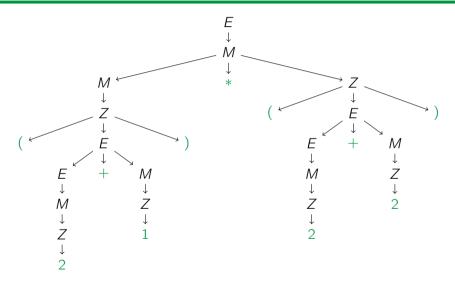
$$\Rightarrow (E+M) * Z \Rightarrow (M+M) * Z \Rightarrow (Z+M) * Z$$

$$\Rightarrow (2+M) * Z \Rightarrow (2+Z) * Z \Rightarrow (2+1) * Z \Rightarrow (2+1) * (E)$$

$$\Rightarrow (2+1) * (E+M) \Rightarrow (2+1) * (M+M) \Rightarrow (2+1) * (Z+M)$$

$$\Rightarrow (2+1) * (2+M) \Rightarrow (2+1) * (2+Z) \Rightarrow (2+1) * (2+2)$$

Syntaxbaum zu beiden Ableitungen



Nichtdeterminismus beim Ableiten

Für eine Satzform u kann es verschiedene Satzformen v geben mit $u \Rightarrow_G v$.

Quellen des Nichtdeterminismus:

- ▶ Wähle welche Produktion $\ell \to r$ aus P angewendet wird.
- \blacktriangleright Wähle die Position des Teilworts ℓ in u, das durch r ersetzt wird.

Aber: Es gibt nur endlich viele Satzformen v für jeden Schritt.

Erzeugte Sprache

Definition

Die von einer Grammatik $G = (V, \Sigma, P, S)$ erzeugte Sprache L(G) ist

$$L(G) := \{ w \in \Sigma^* \mid S \Rightarrow_G^* w \}$$

$$G_1 = (\{S\}, \{a\}, \{S \to aS\}, S)$$

 $L(G_1) = ?$

$$G_2 = (\{S\}, \{a, b\}, \{S \rightarrow aS, S \rightarrow b\}, S)$$

 $L(G_2) = ?$

$$G_1 = (\{S\}, \{a\}, \{S \to aS\}, S)$$

 $L(G_1) = ?$

- \triangleright $S \Rightarrow aS \Rightarrow aaS \Rightarrow \cdots$ endet nie.
- ► Andere Ableitungen gibt es nicht.
- ▶ Daher sind keine Wörter aus $\{a\}^*$ ableitbar.

$$G_2 = (\{S\}, \{a, b\}, \{S \rightarrow aS, S \rightarrow b\}, S)$$

 $L(G_2) = ?$

$$G_1 = (\{S\}, \{a\}, \{S \to aS\}, S)$$

 $L(G_1) = \emptyset$

- \triangleright $S \Rightarrow aS \Rightarrow aaS \Rightarrow \cdots$ endet nie.
- ► Andere Ableitungen gibt es nicht.
- ▶ Daher sind keine Wörter aus {a}* ableitbar.

$$G_2 = (\{S\}, \{a, b\}, \{S \rightarrow aS, S \rightarrow b\}, S)$$

 $L(G_2) = ?$

$$G_1 = (\{S\}, \{a\}, \{S \to aS\}, S)$$

 $L(G_1) = \emptyset$

- \triangleright $S \Rightarrow aS \Rightarrow aaS \Rightarrow \cdots$ endet nie.
- ► Andere Ableitungen gibt es nicht.
- ▶ Daher sind keine Wörter aus $\{a\}^*$ ableitbar.

$$G_2 = (\{S\}, \{a, b\}, \{S \rightarrow aS, S \rightarrow b\}, S)$$

 $L(G_2) = ?$

▶ Für alle $i \in \mathbb{N}$ gilt $S \Rightarrow^i a^i S \Rightarrow a^i b$.

$$G_1 = (\{S\}, \{a\}, \{S \to aS\}, S)$$

 $L(G_1) = \emptyset$

- \triangleright $S \Rightarrow aS \Rightarrow aaS \Rightarrow \cdots$ endet nie.
- ► Andere Ableitungen gibt es nicht.
- ▶ Daher sind keine Wörter aus $\{a\}^*$ ableitbar.

$$G_2 = (\{S\}, \{a, b\}, \{S \to aS, S \to b\}, S)$$

 $L(G_2) = \{a^n b \mid n \in \mathbb{N}\}$

- ▶ Für alle $i \in \mathbb{N}$ gilt $S \Rightarrow^i a^i S \Rightarrow a^i b$.

Noam Chomsky teilte die Grammatiken in Typen 0 bis 3 nach Art der erlaubten Regeln.

Definition

Noam Chomsky teilte die Grammatiken in Typen 0 bis 3 nach Art der erlaubten Regeln.

Definition

Sei $G = (V, \Sigma, P, S)$ eine Grammatik.

ightharpoonup G ist automatisch vom Typ 0.

Noam Chomsky teilte die Grammatiken in Typen 0 bis 3 nach Art der erlaubten Regeln.

Definition

- ightharpoonup G ist automatisch vom Typ 0.
- ▶ *G* ist vom Typ 1 (alternativ kontextsensitiv), wenn: für alle $\ell \to r \in P$ gilt $|\ell| \le |r|$.

Noam Chomsky teilte die Grammatiken in Typen 0 bis 3 nach Art der erlaubten Regeln.

Definition

- ► *G* ist automatisch vom Typ 0.
- ▶ *G* ist vom Typ 1 (alternativ kontextsensitiv), wenn: für alle $\ell \to r \in P$ gilt $|\ell| \le |r|$.
- ▶ G ist vom Typ 2 (alternativ kontextfrei), wenn: G ist vom Typ 1 und für alle $\ell \to r \in P$ gilt $\ell \in V$.

Noam Chomsky teilte die Grammatiken in Typen 0 bis 3 nach Art der erlaubten Regeln.

Definition

- ► *G* ist automatisch vom Typ 0.
- ▶ *G* ist vom Typ 1 (alternativ kontextsensitiv), wenn: für alle $\ell \to r \in P$ gilt $|\ell| \le |r|$.
- ▶ *G* ist vom Typ 2 (alternativ kontextfrei), wenn: *G* ist vom Typ 1 und für alle $\ell \to r \in P$ gilt $\ell \in V$.
- ▶ *G* ist vom Typ 3 (alternativ regulär), wenn: *G* ist vom Typ 2 und für alle $A \to r \in P$ gilt r = a oder r = aA' für $a \in \Sigma$, $A' \in V$ (d.h. die rechten Seiten sind Satzformen aus $\Sigma \cup \Sigma V$).

Typ *i*-Sprachen

Definition

Für $i \in \{0, 1, 2, 3\}$ nennt man eine formale Sprache $L \subseteq \Sigma^*$ vom Typ i, falls es eine Typ i-Grammatik G gibt, sodass L(G) = L gilt.

Spricht man von dem Typ einer formalen Sprache, so ist meistens der größtmögliche Typ gemeint.

$$G_1 = (\{S\}, \{a, b\}, \{S \to aS, S \to b\}, S) \text{ ist vom Typ 3 (regulär)}.$$

$$G_1 = (\{S\}, \{a, b\}, \{S \to aS, S \to b\}, S)$$
 ist vom Typ 3 (regulär).
 $G_2 = (\{E, M, Z\}, \{+, *, 1, 2, (,)\}, P, E)$ mit
 $P = \{E \to M, E \to E + M, M \to Z, M \to M * Z, Z \to 1, Z \to 2, Z \to (E)\}$ ist vom Typ 2 (kontextfrei).

$$G_1 = (\{S\}, \{a, b\}, \{S \rightarrow aS, S \rightarrow b\}, S)$$
 ist vom Typ 3 (regulär).
 $G_2 = (\{E, M, Z\}, \{+, *, 1, 2, (,)\}, P, E)$ mit
 $P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E)\}$ ist vom Typ 2 (kontextfrei).
 $G_3 = (\{S, B, C\}, \{a, b, c\}, P, S)$ mit
 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$ ist vom Typ 1 (kontextsensitiv).

$$G_{1} = (\{S\}, \{a, b\}, \{S \rightarrow aS, S \rightarrow b\}, S) \text{ ist vom Typ 3 (regulär)}.$$

$$G_{2} = (\{E, M, Z\}, \{+, *, 1, 2, (,)\}, P, E) \text{ mit}$$

$$P = \{E \rightarrow M, E \rightarrow E + M, M \rightarrow Z, M \rightarrow M * Z, Z \rightarrow 1, Z \rightarrow 2, Z \rightarrow (E)\} \text{ ist vom Typ 2 (kontextfrei)}.$$

$$G_{3} = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

$$P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\} \text{ ist vom Typ 1 (kontextsensitiv)}.$$

$$G_{4} = (\{S, T, A, B, \$\}, \{a, b\}, P, S) \text{ mit}$$

$$P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA, Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\} \text{ ist vom Typ 0}.$$

Sonderregeln für ε -Produktionen

▶ Das leere Wort ε kann bisher nicht für Typ 1, 2, 3-Grammatiken erzeugt werden. Die Produktion $S \to \varepsilon$ erfüllt die Typ 1-Bedingung $|S| \le |\varepsilon|$ nicht.

Sonderregeln für ε -Produktionen

▶ Das leere Wort ε kann bisher nicht für Typ 1, 2, 3-Grammatiken erzeugt werden. Die Produktion $S \to \varepsilon$ erfüllt die Typ 1-Bedingung $|S| \le |\varepsilon|$ nicht.

Daher:

1. Sonderregel: ε -Produktion in Typ 1, 2, 3-Grammatiken

Eine Grammatik $G = (V, \Sigma, P, S)$ vom Typ 1, 2 oder 3 darf eine Produktion $S \to \varepsilon \in P$ enthalten, vorausgesetzt, dass S auf keiner rechten Seite einer Produktion in P vorkommt.

Sonderregeln für ε -Produktionen

 \triangleright Das leere Wort ε kann bisher nicht für Typ 1, 2, 3-Grammatiken erzeugt werden. Die Produktion $S \to \varepsilon$ erfüllt die Typ 1-Bedingung $|S| < |\varepsilon|$ nicht.

Daher:

1. Sonderregel: ε -Produktion in Typ 1, 2, 3-Grammatiken

Eine Grammatik $G = (V, \Sigma, P, S)$ vom Typ 1, 2 oder 3 darf eine Produktion $S \to \varepsilon \in P$ enthalten, vorausgesetzt, dass S auf keiner rechten Seite einer Produktion in P vorkommt.

Zudem:

2. Sonderregel: ε -Produktionen in Typ 2, 3-Grammatiken

Eine Grammatik $G = (V, \Sigma, P, S)$ vom Typ 2 oder 3 darf Produktionen von der Form $A \to \varepsilon \in P$ enthalten, wo $A \in V \setminus \{S\}$.

Begründung in der nächsten Vorlesung (nur FSK).