Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

1a

Begrüßung, Organisatorisches, Inhaltsübersicht und Grundlagen

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 29. April 2025 Basierend auf Folien von PD Dr. David Sabel

Dozent

Prof. Dr. Jasmin Blanchette jasmin.blanchette@ifi.lmu.de

Übungsleitung

- Elisabeth Lempa elisabeth.lempa@ifi.lmu.de
- Luca Maio
 luca.maio@ifi.lmu.de

Tutorinnen und Tutoren

 Hannah Coenen, Luis Gambarte, Valentin Haury, Sonja Matsuka, Sara Nerinje, Leon Schulz, Mathis Weber

Korrektorinnen und Korrektor

 Luis Gambarte, Magdalena Mansfeld, Sara Nerinje

Zielgruppe der Veranstaltung

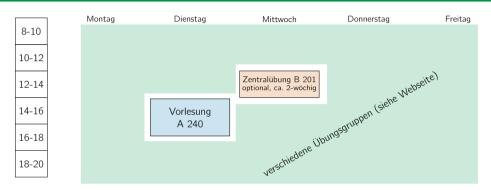
Formale Sprachen und Komplexität (FSK)

- Studierende der Informatik
- Studierende der Bioinformatik
- Studierende im Lehramt
- ► Studierende im Nebenfach Informatik

Theoretische Informatik für Studierende der Medieninformatik (TIMI)

Studierende der Medieninformatik

Struktur der Veranstaltung



- ▶ Vorlesung: FSK: 3V, TIMI: 2V (integriert, Plan auf Webseite)
- ▶ **Zentralübung:** Zusatzangebot, Fragestunde und Beispiele (Plan auf Webseite)
- ▶ Übungen: in Präsenz; Besprechung der Aufgabenblätter; FSK: 2Ü, TIMI: 1Ü

Internetauftritt

Webseiten

```
www.tcs.ifi.lmu.de/lehre/ss-2025/fsk_de.html (FSK) www.tcs.ifi.lmu.de/lehre/ss-2025/timi_de.html (TIMI)
```

Moodle

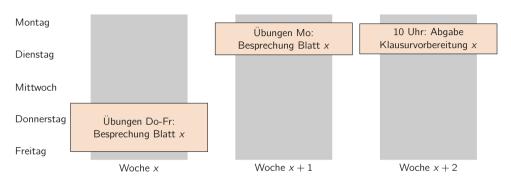
```
moodle.lmu.de/course/view.php?id=38486 (FSK) moodle.lmu.de/course/view.php?id=38487 (TIMI) Anmeldung ist notwendig für Abgabe und Korrektur der Übungsblätter.
```

Zulip-Chat

Server-Adresse: chat.ifi.lmu.de Stream: TCS-25S-FSK-TIMI

Fragen und Kommentare am besten dort stellen.

Klausurvorbereitung



- ▶ Die erste Übung war zum Kennenlernen und zur Besprechung von Übungsblatt 0 (ohne Abgabe) da.
- ► Sie wählen Ihre Übungsgruppe selbst.

Korrektur

- Ausgewählte Aufgaben werden als Klausurvorbereitung gekennzeichnet.
- Diese werden eingereicht und korrigiert.
- Die Korrektur dient als Feedback.
- ► Abgabe und Korrektur der Klausurvorbereitungsaufgaben erfolgt über Moodle.

Klausuren

- Die Bearbeitungszeit der Präsenzklausur beträgt 120 Minuten.
- Anmeldung zur Prüfung wird noch freigeschaltet.
- ▶ Teilnahme an der Wiederholungsklausur ist auch ohne Teilnahme an der regulären Klausur möglich.
- ▶ Die reguläre Klausur wird am 31.07.2025 ab 16:00 Uhr stattfinden.
- Das Datum der Wiederholungsklausur ist noch nicht bekannt.
- Entwertung ist nicht möglich.

Material

Auf der Webseite verfügbar

- Vorlesungsfolien
- Vorlesungsskript
 - ▶ Die nicht TIMI-relevanten Teile sind mit * markiert.
 - ► Kapitel 2 (Grundlagen) ist zum Teil dem Selbststudium überlassen.
- Übungsblätter

Lehrbücher

Wesentliche Quelle

 Uwe Schöning: Theoretische Informatik – kurz gefasst, 5. Auflage, Spektrum Akademischer Verlag, 2008
 Zum Teil zu kurz gefasst

Weitere Literatur

- ► Alexander Asteroth und Christel Baier: Theoretische Informatik, Pearson, 2002. Aufbau in anderer Reihenfolge, Zugriff über UB
- ▶ John E. Hopcroft, Rajeev Motwani und Jeffrey D. Ullman: Introduction to Automata Theory, Languages, and Computation, 3. Auflage, Pearson, 2006 Der Klassiker, umfangreich, Erstauflage 1979
- ▶ Ingo Wegener: Theoretische Informatik eine algorithmenorientierte Einführung,
 3. Auflage, Teubner Verlag, 2005.
 Algorithmen stehen im Vordergrund, Zugriff über UB

Ziel der Veranstaltung

Ziel ist die Vermittlung von:

Theorie

- Die Theorie sagt uns, was Computer (wie schnell) können und was nicht.
- Viele Konzepte haben praktische Anwendungen.
- ▶ Die Theorie an sich ist zum Teil sehr schön.

Fähigkeiten

- ► Sie werden lernen, mit abstrakten Konzepten umzugehen.
- Sie werden lernen, sorgfältig und präzise zu arbeiten.
- ► Sie werden Fähigkeiten zur Beweisführung entwickeln.

Inhalte der Veranstaltung

Drei große Themen der Theoretischen Informatik:

1. Formale Sprachen und Automatentheorie Wie stellt man Entscheidungsprobleme formal dar? Insbesondere: Wie kann man Programmiersprachen u.Ä. erkennen?

2. Berechenbarkeitstheorie Welche Probleme kann man algorithmisch (bzw. mit dem Computer) überhaupt lösen?

3. Komplexitätstheorie Welche Probleme kann man in annehmbarer Zeit lösen?

Thema: Formale Sprachen und Automatentheorie

1. Formale Sprachen und Automatentheorie Wie stellt man Entscheidungsprobleme formal dar? Insbesondere: Wie kann man Programmiersprachen u.Ä. erkennen?

Schlüsselkonzepte:

- Formale Sprachen und Entscheidungsprobleme
- Reguläre Ausdrücke (z.B. für Lexer)
- Grammatiken (z.B. für Parser)
- Automaten

Thema: Berechenbarkeitstheorie

2. Berechenbarkeitstheorie Welche Probleme kann man algorithmisch (bzw. mit dem Computer) überhaupt lösen?

Schlüsselkonzepte:

- Intuitive Berechenbarkeit
- ► Turingberechenbarkeit
- Rekursive Funktionen
- Unentscheidbarkeit

Thema: Komplexitätstheorie

3. Komplexitätstheorie Welche Probleme kann man in annehmbarer Zeit lösen?

Schlüsselkonzepte:

- ightharpoonup Die Klassen \mathcal{P} und \mathcal{NP}
- \triangleright \mathcal{NP} -Schwere, \mathcal{NP} -Vollständigkeit
- ightharpoonup Konkrete \mathcal{NP} -vollständige Probleme

Grundlagen: Wörter

Definition

Ein Alphabet Σ ist eine endliche nicht leere Menge von Zeichen (oder Symbolen).

Z.B.
$$\Sigma = \{a, b, c, d, e\}.$$

Grundlagen: Wörter

Definition

Ein Alphabet Σ ist eine endliche nicht leere Menge von Zeichen (oder Symbolen).

Z.B.
$$\Sigma = \{a, b, c, d, e\}$$
.

Definition

Ein Wort w über Σ ist eine endliche Folge von Zeichen aus Σ .

Beispiele:

- ▶ bade ist ein Wort über $\{a, b, c, d, e\}$.
- ▶ baden ist kein Wort über $\{a, b, c, d, e\}$.

Weitere Notationen zu Wörtern

- ightharpoonup Das leere Wort wird als ε notiert.
- Für $w = a_1 \cdots a_n$ ist |w| = n die Länge des Wortes.
- Für $1 \le i \le |w|$ ist w[i] das Zeichen an der *i*-ten Position in w.
- Für $a \in \Sigma$ und w ein Wort über Σ sei $\#_a(w) \in \mathbb{N}$ die Anzahl an Vorkommen des Zeichens a im Wort w.

Weitere Notationen zu Wörtern

- \triangleright Das leere Wort wird als ε notiert.
- Für $w = a_1 \cdots a_n$ ist |w| = n die Länge des Wortes.
- Für $1 \le i \le |w|$ ist w[i] das Zeichen an der *i*-ten Position in w.
- Für $a \in \Sigma$ und w ein Wort über Σ sei $\#_a(w) \in \mathbb{N}$ die Anzahl an Vorkommen des Zeichens a im Wort w.

Beispiele:

- ► Es gilt |ε| = 0 und $#_a(ε) = 0$ für alle a ∈ Σ.
- Für $\Sigma = \{a, b, c\}$ ist
 - ightharpoonup |abbccc| = 6
 - ightharpoonup | aabbbccc| = 8
 - \blacktriangleright #_a(abbccc) = 1
 - \blacktriangleright #_c(aabbbccc) = 3.
- Für w = abbbcd ist w[1] = a, w[5] = c und w[7] undefiniert.

Konkatenation und Kleene-Stern

Definition

Das Wort $u \cdot v$ (alternativ uv) entsteht, indem Wort v hinten an Wort u angehängt wird.

Konkatenation und Kleene-Stern

Definition

Das Wort $u \cdot v$ (alternativ uv) entsteht, indem Wort v hinten an Wort u angehängt wird.

Die Konkatenation hilft folgende Mengen von Wörtern über Σ zu definieren:

Definition

Sei Σ ein Alphabet, dann definieren wir:

$$\Sigma^{0} := \{\varepsilon\}$$

$$\Sigma^{i} := \{aw \mid a \in \Sigma, w \in \Sigma^{i-1}\} \text{ für } i > 0$$

$$\Sigma^{*} := \bigcup_{i \in \mathbb{N}} \Sigma^{i}$$

$$\Sigma^{+} := \bigcup_{i \in \mathbb{N}_{>0}} \Sigma^{i}$$

Beachte: $\mathbb{N} = \{0, 1, 2, ...\}$ und $\mathbb{N}_{>0} = \{1, 2, ...\}$.

Sei
$$\Sigma = \{a, b\}$$
.

Dann ist

Sei
$$\Sigma = \{a, b\}$$
.

Dann ist

$$\Sigma^0=\{arepsilon\}$$
 ,

Sei
$$\Sigma = \{a, b\}$$
.
Dann ist
 $\Sigma^0 = \{\varepsilon\}$,
 $\Sigma^1 = \Sigma = \{a, b\}$,

Sei
$$\Sigma = \{a, b\}$$
.
Dann ist
 $\Sigma^0 = \{\varepsilon\}$,
 $\Sigma^1 = \Sigma = \{a, b\}$,
 $\Sigma^2 = \{aa, ab, ba, bb\}$,

```
Sei \Sigma=\{a,b\}. Dann ist \Sigma^0=\{\varepsilon\}, \Sigma^1=\Sigma=\{a,b\}, \Sigma^2=\{aa,ab,ba,bb\}, \Sigma^3=\{xw\mid x\in\{a,b\},w\in\Sigma^2\}=\{aaa,aab,aba,abb,baa,bab,bba,bbb\}
```

```
Sei \Sigma = \{a, b\}.
Dann ist
\Sigma^0 = \{\varepsilon\},\
\Sigma^1 = \Sigma = \{a, b\},\
\Sigma^2 = \{aa, ab, ba, bb\},\
\Sigma^3 = \{xw \mid x \in \{a, b\}, w \in \Sigma^2\} = \{aaa, aab, aba, abb, baa, bab, bba, bbb\}
und
\Sigma^* = \{ \varepsilon. \ a. \ b. \ aa, \ ab, \ ba, \ bb, \ aaa, \ aab, \ aba, \ abb, \ baa, \ bba, \ bbb, \ aaaa, \dots \}.
```

Weitere Notationen und Begriffe

Sei w ein Wort über Σ .

 \blacktriangleright w^m entsteht aus m-maligen Konkatenieren von w, d.h.

$$w^0 = \varepsilon$$
 und $w^m = ww^{m-1}$ für $m > 0$

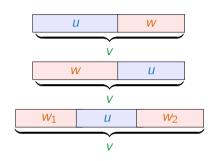
ightharpoonup ist das rückwärts gelesene Wort w, d.h.

$$\overline{\varepsilon} = \varepsilon$$
 und für $w = a_1 \cdots a_n$ ist $\overline{w} = a_n \cdots a_1$

ightharpoonup w ist ein Palindrom g.d.w. $w = \overline{w}$. Beispiele für Palindrome: anna, reliefpfeiler, lagerregal, annasusanna.

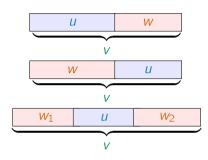
Seien u, v Wörter über einem Alphabet Σ .

- ▶ u ist ein Präfix von v, wenn es ein Wort w gibt mit uw = v.
- ▶ u ist ein Suffix von v, wenn es ein Wort w gibt mit wu = v.
- ▶ u ist ein Teilwort von v, wenn es Wörter w_1 , w_2 gibt mit $w_1uw_2 = v$.



Seien u, v Wörter über einem Alphabet Σ .

- ▶ u ist ein Präfix von v, wenn es ein Wort w gibt mit uw = v.
- ▶ u ist ein Suffix von v, wenn es ein Wort w gibt mit wu = v.
- ▶ u ist ein Teilwort von v, wenn es Wörter w_1 , w_2 gibt mit $w_1uw_2 = v$.

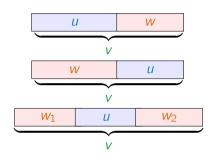


Seien u, v Wörter über einem Alphabet Σ .

- ▶ u ist ein Präfix von v, wenn es ein Wort w gibt mit uw = v.
- ▶ u ist ein Suffix von v, wenn es ein Wort w gibt mit wu = v.
- ▶ u ist ein Teilwort von v, wenn es Wörter w_1 , w_2 gibt mit $w_1uw_2 = v$.

Beispiel: Sei w = ababbaba.

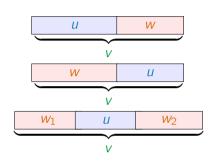
w ist ein Präfix, Suffix und Teilwort von w.



Seien u, v Wörter über einem Alphabet Σ .

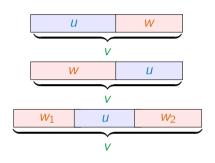
- ▶ u ist ein Präfix von v, wenn es ein Wort w gibt mit uw = v.
- ▶ u ist ein Suffix von v, wenn es ein Wort w gibt mit wu = v.
- ▶ u ist ein Teilwort von v, wenn es Wörter w_1 , w_2 gibt mit $w_1uw_2 = v$.

- w ist ein Präfix, Suffix und Teilwort von w.
- ▶ aba ist ein Präfix, Suffix und Teilwort von w.



Seien u, v Wörter über einem Alphabet Σ .

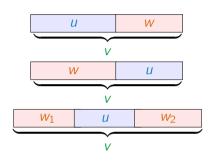
- ▶ u ist ein Präfix von v, wenn es ein Wort w gibt mit uw = v.
- ▶ u ist ein Suffix von v, wenn es ein Wort w gibt mit wu = v.
- ▶ u ist ein Teilwort von v, wenn es Wörter w_1 , w_2 gibt mit $w_1uw_2 = v$.



- w ist ein Präfix, Suffix und Teilwort von w.
- ▶ *aba* ist ein Präfix, Suffix und Teilwort von *w*.
- ▶ ababb ist ein Präfix und Teilwort von w, aber kein Suffix von w.

Seien u, v Wörter über einem Alphabet Σ .

- ▶ u ist ein Präfix von v. wenn es ein Wort w aibt mit uw = v.
- \triangleright u ist ein Suffix von v, wenn es ein Wort w gibt mit wu = v.
- ▶ *u* ist ein Teilwort von *v*. wenn es Wörter w_1 , w_2 gibt mit $w_1 u w_2 = v$.



- w ist ein Präfix. Suffix und Teilwort von w.
- ▶ aba ist ein Präfix. Suffix und Teilwort von w.
- ababb ist ein Präfix und Teilwort von w. aber kein Suffix von w.
- bab ist ein Teilwort von w. aber weder ein Präfix noch ein Suffix.

Grundlagen: Formale Sprache

Definition

Eine (formale) Sprache L über dem Alphabet Σ ist eine Teilmenge von Σ^* , d.h. $L \subseteq \Sigma^*$.

Beachte: L steht für "language".

Grundlagen: Formale Sprache

Definition

Eine (formale) Sprache L über dem Alphabet Σ ist eine Teilmenge von Σ^* , d.h. $L \subseteq \Sigma^*$.

Beachte: L steht für "language".

Definition

Seien L, L_1 , L_2 formale Sprachen über Σ .

- ▶ Vereinigung: $L_1 \cup L_2 := \{w \mid w \in L_1 \text{ oder } w \in L_2\}$
- ► Schnitt: $L_1 \cap L_2 := \{ w \mid w \in L_1 \text{ und } w \in L_2 \}$
- ► Komplement zu $L: \overline{L} := \Sigma^* \setminus L$
- ▶ Produkt: $L_1 \cdot L_2 = L_1 L_2 = \{uv \mid u \in L_1 \text{ und } v \in L_2\}$

Seien
$$\Sigma = \{a,b\}$$
, $L_1 = \{a^i \mid i \in \mathbb{N}\}$ und $L_2 = \{b^i \mid i \in \mathbb{N}\}$.
$$L_1 \cup L_2 = ?$$

$$L_1 \cap L_2 = ?$$

$$\overline{L_1} = ?$$

$$L_1 L_2 = ?$$

$$L_2 L_1 = ?$$

$$L_1 L_1 = ?$$

Seien
$$\Sigma=\{a,b\},\ L_1=\{a^i\mid i\in\mathbb{N}\}$$
 und $L_2=\{b^i\mid i\in\mathbb{N}\}.$
$$L_1\cup L_2=\text{Sprache der W\"{o}rter, die nur aus }a\text{'s oder nur aus }b\text{'s bestehen}$$

$$L_1\cap L_2=\text{?}$$

$$\overline{L_1}=\text{?}$$

$$L_1L_2=\text{?}$$

$$L_2L_1=\text{?}$$

$$L_1L_1=\text{?}$$

Seien
$$\Sigma=\{a,b\},\ L_1=\{a^i\mid i\in\mathbb{N}\}$$
 und $L_2=\{b^i\mid i\in\mathbb{N}\}.$
$$L_1\cup L_2=\text{Sprache der W\"{o}rter, die nur aus }a\text{'s oder nur aus }b\text{'s bestehen}$$

$$L_1\cap L_2=\{\varepsilon\}\neq\emptyset$$

$$\overline{L_1}=?$$

$$L_1L_2=?$$

$$L_2L_1=?$$

$$L_1L_1=?$$

Seien
$$\Sigma=\{a,b\},\ L_1=\{a^i\mid i\in\mathbb{N}\}\$$
und $L_2=\{b^i\mid i\in\mathbb{N}\}.$
$$L_1\cup L_2=\text{Sprache der W\"{o}rter, die nur aus }a\text{'s oder nur aus }b\text{'s bestehen}$$

$$L_1\cap L_2=\{\varepsilon\}\neq\emptyset$$

$$\overline{L_1}=\text{Sprache der W\"{o}rter, die mindestens ein }b\text{ enthalten}$$

$$L_1L_2=\text{?}$$

$$L_2L_1=\text{?}$$

$$L_1L_1=\text{?}$$

Seien
$$\Sigma=\{a,b\},\ L_1=\{a^i\mid i\in\mathbb{N}\}\$$
und $L_2=\{b^i\mid i\in\mathbb{N}\}.$
$$L_1\cup L_2=\text{Sprache der W\"{o}rter, die nur aus }a\text{'s oder nur aus }b\text{'s bestehen}$$

$$L_1\cap L_2=\{\varepsilon\}\neq\emptyset$$

$$\overline{L_1}=\text{Sprache der W\"{o}rter, die mindestens ein }b\text{ enthalten}$$

$$L_1L_2=\{a^ib^j\mid i,j\in\mathbb{N}\}$$

$$L_2L_1=?$$

$$L_1L_1=?$$

Seien
$$\Sigma = \{a,b\},\ L_1 = \{a^i \mid i \in \mathbb{N}\}\$$
und $L_2 = \{b^i \mid i \in \mathbb{N}\}.$

$$L_1 \cup L_2 = \text{Sprache der W\"{o}rter, die nur aus } a\text{'s oder nur aus } b\text{'s bestehen}$$

$$L_1 \cap L_2 = \{\epsilon\} \neq \emptyset$$

$$\overline{L_1} = \text{Sprache der W\"{o}rter, die mindestens ein } b\text{ enthalten}$$

$$L_1 L_2 = \{a^i b^j \mid i,j \in \mathbb{N}\}$$

$$L_2 L_1 = \{b^i a^j \mid i,j \in \mathbb{N}\}$$

$$L_1 L_1 = ?$$

Seien
$$\Sigma = \{a,b\},\ L_1 = \{a^i \mid i \in \mathbb{N}\}$$
 und $L_2 = \{b^i \mid i \in \mathbb{N}\}.$
$$L_1 \cup L_2 = \text{Sprache der W\"{o}rter, die nur aus } a\text{'s oder nur aus } b\text{'s bestehen}$$

$$L_1 \cap L_2 = \{\epsilon\} \neq \emptyset$$

$$\overline{L_1} = \text{Sprache der W\"{o}rter, die mindestens ein } b\text{ enthalten}$$

$$L_1 L_2 = \{a^i b^j \mid i,j \in \mathbb{N}\}$$

$$L_2 L_1 = \{b^i a^j \mid i,j \in \mathbb{N}\}$$

$$L_1 L_1 = L_1$$

Sei L eine Sprache. Dann ist:

$$L^{0} := \{\varepsilon\}$$

$$L^{i} := L \cdot L^{i-1} \text{ für } i > 0$$

$$L^{*} := \bigcup_{i \in \mathbb{N}} L^{i}$$

$$L^{+} := \bigcup_{i \in \mathbb{N} > 0} L^{i}$$

Die Sprache L^* nennt man auch den Kleeneschen Abschluss von L, benannt nach Stephen Cole Kleene.

Sei L eine Sprache. Dann ist:

$$L^{0} := \{\varepsilon\}$$

$$L^{i} := L \cdot L^{i-1} \text{ für } i > 0$$

$$L^{*} := \bigcup_{i \in \mathbb{N}} L^{i}$$

$$L^{+} := \bigcup_{i \in \mathbb{N} > 0} L^{i}$$

Die Sprache L^* nennt man auch den Kleeneschen Abschluss von L, benannt nach Stephen Cole Kleene.

$$L^0 = ?$$

$$L^1 = ?$$

$$L^2 = ?$$

$$L^3 = ?$$

Sei L eine Sprache. Dann ist:

$$L^{0} := \{\varepsilon\}$$

$$L^{i} := L \cdot L^{i-1} \text{ für } i > 0$$

$$L^{*} := \bigcup_{i \in \mathbb{N}} L^{i}$$

$$L^{+} := \bigcup_{i \in \mathbb{N} > 0} L^{i}$$

Die Sprache L^* nennt man auch den Kleeneschen Abschluss von L, benannt nach Stephen Cole Kleene.

$$L^{0} = \{\varepsilon\}$$

$$L^{1} = ?$$

$$L^{2} = ?$$

$$L^{3} = ?$$

Sei L eine Sprache. Dann ist:

$$L^{0} := \{\varepsilon\}$$

$$L^{i} := L \cdot L^{i-1} \text{ für } i > 0$$

$$L^{*} := \bigcup_{i \in \mathbb{N}} L^{i}$$

$$L^{+} := \bigcup_{i \in \mathbb{N}_{>0}} L^{i}$$

Die Sprache L^* nennt man auch den Kleeneschen Abschluss von L, benannt nach Stephen Cole Kleene.

$$L^{0} = \{\varepsilon\}$$

 $L^{1} = L \cdot L^{0} = L = \{ab, ac\}$
 $L^{2} = ?$

Sei *L* eine Sprache. Dann ist:

$$L^{0} := \{\varepsilon\}$$

$$L^{i} := L \cdot L^{i-1} \text{ für } i > 0$$

$$L^{*} := \bigcup_{i \in \mathbb{N}} L^{i}$$

$$L^{+} := \bigcup_{i \in \mathbb{N}_{>0}} L^{i}$$

Die Sprache L^* nennt man auch den Kleeneschen Abschluss von L, benannt nach Stephen Cole Kleene.

$$L^{0} = \{\varepsilon\}$$

$$L^{1} = L \cdot L^{0} = L = \{ab, ac\}$$

$$L^{2} = L \cdot L^{1} = \{abab, abac, acab, acac\}$$

$$L^{3} = ?$$

Sei *L* eine Sprache. Dann ist:

$$L^{0} := \{\varepsilon\}$$

$$L^{i} := L \cdot L^{i-1} \text{ für } i > 0$$

$$L^{*} := \bigcup_{i \in \mathbb{N}} L^{i}$$

$$L^{+} := \bigcup_{i \in \mathbb{N}_{>0}} L^{i}$$

Die Sprache L^* nennt man auch den Kleeneschen Abschluss von L, benannt nach Stephen Cole Kleene.

$$\begin{split} L^0 &= \{\varepsilon\} \\ L^1 &= L \cdot L^0 = L = \{ab, ac\} \\ L^2 &= L \cdot L^1 = \{abab, abac, acab, acac\} \\ L^3 &= L \cdot L^2 = \{ababab, ababac, abacab, abacac, acabab, acabac, acacab, acacac\} \end{split}$$

$$((\{\varepsilon,1\}\cdot\{0,\ldots,9\})\cup(\{2\}\cdot\{0,1,2,3\}))\cdot\{:\}\cdot\{0,1,2,3,4,5\}\cdot\{0,\ldots,9\}$$

Beschriebene Sprache = ?

$$\{0\} \cup (\{1,\ldots,9\} \cdot \{0,\ldots,9\}^*)$$

Beschriebene Sprache = ?

$$((\{\varepsilon,1\}\cdot\{0,\ldots,9\})\cup(\{2\}\cdot\{0,1,2,3\}))\cdot\{:\}\cdot\{0,1,2,3,4,5\}\cdot\{0,\ldots,9\}$$

Beschriebene Sprache = Sprache aller gültigen Uhrzeiten

$$\{0\} \cup (\{1,\ldots,9\} \cdot \{0,\ldots,9\}^*)$$

Beschriebene Sprache = ?

$$((\{\varepsilon,1\}\cdot\{0,\ldots,9\})\cup(\{2\}\cdot\{0,1,2,3\}))\cdot\{:\}\cdot\{0,1,2,3,4,5\}\cdot\{0,\ldots,9\}$$

Beschriebene Sprache = Sprache aller gültigen Uhrzeiten

$$\{0\} \cup (\{1,\ldots,9\} \cdot \{0,\ldots,9\}^*)$$

Beschriebene Sprache = Sprache aller natürlichen Zahlen