Ludwig-Maximilians-Universität München Institut für Informatik Abgabe bis 24. April 2024, 10:00 Uhr

Übung 1 zur Vorlesung

Theoretische Informatik für Studierende der Medieninformatik

TIMI1-1 Operationen auf formalen Sprachen

(0 Punkte)

Beweisen oder widerlegen Sie jede der folgenden Aussagen:

- a) Seien L_1 und L_2 formale Sprachen über dem Alphabet $\Sigma = \{a, b\}$, sodass alle Wörter in L_1 eine gerade Anzahl von a's haben und alle Wörter in L_2 eine gerade Anzahl von b's haben. Dann haben alle Wörter in $L_1 \cap L_2$ eine gerade Anzahl von a's und eine gerade Anzahl von b's.
- b) Sei die formale Sprache L definiert als $L = \{w \in \{a,b\}^* \mid \#_a(w) \leq \#_b(w)\}$. Dann gilt $L \cup \{b\}^* = L$.
- c) Sei Σ ein Alphabet und $k \in \mathbb{N}$. Sei L die Sprache $\{w \in \Sigma^* \mid |w| \leq k\}$. Dann ist L eine endliche Sprache.
- d) Über dem Alphabet $\Sigma = \{a,b,c\}$ definieren wir die Sprache $L = \{w \in \Sigma^* \mid \#_a(w) + \#_b(w) = \#_c(w)\}$, also die Sprache der Wörter, die so viele a's und b's wie c's enthalten. Es gilt: $L^* \subseteq L$.

TIMI1-2 Grammatiken angeben

(2 Punkte)

Sei $\Sigma = \{a,b\}$. Geben Sie für jede der folgenden Teilaufgaben eine Grammatik G_i als 4-Tupel an, sodass $L(G_i)$ die Sprache L_i über Σ erzeugt. Verwenden Sie keine ε -Produktionen. Erläutern Sie, warum $L(G_i) = L_i$ gilt, indem Sie die "Aufgabe" der einzelnen Variablen und Produktionen erläutern. Geben Sie außerdem jeweils den Typ Ihrer Grammatik an (mit Begründung).

- a) $L_1 = \{a, b\}^+$
- b) $L_2 = \{ w \in \Sigma^+ \mid |w| \le 2 \}$
- c) $L_3 = \{a^i b^j a^j b^i \mid i, j > 0\}.$