Adding Sorts to an Isabelle
Formalization of Superposition

Balazs Toth
balazs.toth@ifi.Imu.de
LMU Miinchen
Munich, Germany

Abstract

The superposition calculus has been formalized in Isabelle/
HOL twice before but in both cases without a type system.
Nowadays, modern superposition provers support types. We
extend an existing Isabelle formalization of untyped superpo-
sition with simple monomorphic types, or sorts. This exten-
sion is straightforward on paper but surprisingly tricky to
implement formally. We also use this opportunity to refactor
the proof text to avoid quadruplicated definitions, lemmas,
and proofs about terms, atoms, literals, and clauses. The
extended formalization and its refactoring benefit from Is-
abelle’s locales, structured Isar proofs, and Sledgehammer
proof tool.

CCS Concepts: « Computing methodologies — Theo-
rem proving algorithms.

Keywords: Superposition, verification, first-order logic,
higher-order logic

ACM Reference Format:

Balazs Toth, Martin Desharnais-Schéfer, and Jasmin Blanchette.
2026. Adding Sorts to an Isabelle Formalization of Superposition. In
Proceedings of the 15th ACM SIGPLAN International Conference on
Certified Programs and Proofs (CPP °26), January 12—13, 2026, Rennes,
France. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3779031.3779099

1 Introduction

There is an undeniable self-referential thrill to formaliz-
ing (automatic) theorem provers using (interactive) theo-
rem provers. There have been many such formalization ef-
forts, especially in the past decade. Notably, Bachmair and
Ganzinger’s superposition calculus [3], which is the basis of
many modern first-order automatic provers, has been for-
malized at least twice in Isabelle/HOL, once by Peltier [19]
and once by Waldmann, Tourret, and us [12].

However, there is a mismatch between the Isabelle formal-
izations and the logics implemented by modern provers such

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

CPP 26, Rennes, France

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2341-4/2026/01
https://doi.org/10.1145/3779031.3779099

Martin Desharnais-Schéifer
desharnais-schaefer@ifi.lmu.de
LMU Minchen
Munich, Germany

Jasmin Blanchette
jasmin.blanchette@ifi.Imu.de
LMU Miinchen
Munich, Germany

as E [21], SPASS [32], Vampire [17], and Zipperposition [11].
The formalizations, just like Bachmair and Ganzinger’s orig-
inal description of superposition, are for an untyped logic,
whereas modern provers support types. A typing discipline
enables different cardinalities for different domains.

In particular, types are useful to encode predicates. For
example, the two-clause set {x = y, —p}, where ~ denotes
equality, x and y are universally quantified term variables,
and p is a nullary predicate symbol, is satisfiable in any
interpretation equipped with a single-element domain, but
its naive untyped encoding as {x =~ y, p # t}, where t
encodes truth, is unsatisfiable. With a type system, we can
assign different types to the variables and to the Boolean
symbols and interpret them differently. Then, the encoding
{x =~ y, p # t} is satisfiable, like the original clause set.
While types can be soundly and completely encoded in an
untyped logic, native types are substantially more efficient
than encodings [13, Table 9].

In the present paper, we extend our formalization [12]
to support simple monomorphic types, or sorts. The formal-
ization modularly separates the ground (i.e., variable-free)
and nonground aspects of the calculus, using the saturation
framework formulated by Waldmann et al. [29] and formal-
ized by Tourret and Blanchette [27]. The development is
closer to Bachmair and Ganzinger’s proof than Peltier’s; no-
tably, it represents clauses as finite multisets of literals, and
not as sets, a consequential difference.

Adding simple types to superposition on paper is generally
considered straightforward, but there are many intricate
details that arise when working formally. In particular, it is
difficult to figure out where to add the typing predicates and
environments, especially in conjunction with substitutions
and most general unifiers. Other difficulties are connected
to the use of the saturation framework.

In addition, we refactor the formal development to iso-
late reusable background theories about types, substitutions,
orders, entailment, and clauses. We use these theories to
lift definitions, lemmas, and proofs on terms to atoms, lit-
erals, and clauses, instead of having to quadruplicate the
definitions, lemmas, and proofs.

Like the superposition calculus itself, our formalization
takes various parameters that must fulfill specific assump-
tions. We use Isabelle’s locale mechanism to capture these
dependencies and facilitate reuse. To ensure that our defini-
tions are not vacuous, we formally prove that all assumptions

https://orcid.org/0009-0006-6438-1633
https://orcid.org/0000-0002-1830-7532
https://orcid.org/0000-0002-8367-0936
https://doi.org/10.1145/3779031.3779099
https://doi.org/10.1145/3779031.3779099
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3779031.3779099

CPP ’26, January 12-13, 2026, Rennes, France

can be fulfilled. In addition to locales, we rely on structured
Isar proofs [33] and the Sledgehammer proof tool [18], which
integrates superposition provers and satisfiability-modulo-
theories solvers. Using superposition provers to prove their
own metatheory gives our project a self-referential flavor.

Our development is part of the IsaFoL (Isabelle Formal-
ization of Logic) effort [6] and is available in the Archive of
Formal Proofs [14, 15, 25].

2 Background

Before we present our work, we first introduce a number
of concepts and notations related to clausal first-order logic
with equality, the superposition calculus, and the Isabelle/
HOL proof assistant.

2.1 Clausal First-Order Logic with Equality

We consider a first-order logic with equality. A term is de-
fined inductively as either a variable x or a function appli-
cation f(ty,...,t,) for a function symbol f and a (possibly
empty) list of terms ¢4, . . ., t,. The number of arguments n is
called the arity of f. If n = 0, we write f instead of f().

An atom is an unordered pair of terms, typically written
as an equation t ~ t’. A literal is either an atom ¢ ~ t’ or a
negated atom ¢ # t’. A clause is a finite multiset {/;, ..., [}
of literals, typically written as a disjunction [; V - - - V [,,. The
symbol L denotes the empty clause (or empty disjunction),
which is false. All variables in a clause are to be understood
as implicitly universally quantified in that clause.

A context cis a term with one designated position that is to
be filled by another term—in other words, a term with a hole.
We use the syntax c[t] to represent the term consisting of a
subterm ¢ in a context ¢. We write O for the empty context,
with O[t] = ¢.

Substitutions are total unary functions that let us replace
variables with terms. We can apply a substitution o to a
syntactic entity X (e.g., a term or literal) by writing Xo. A
substitution y is a grounding substitution, or simply a ground-
ing, for a syntactic entity X if Xy is ground (i.e., if it does not
contain variables). A substitution p is a renaming substitution,
every variable x. The composition of two substitutions o7 and
02, denoted by o o 03, is a substitution that first applies oy
and then applies o, (i.e., x(071 0 02) = x0103). A substitution
o is a unifier for a set of terms 7 if its application makes all
elements of the set equal (i.e., if V1,1, € T. tjo = 1,0). A
substitution y is an idempotent most general unifier (IMGU)
for a set of terms 7™ if y is a unifier for 7 and po o = o holds
for every unifier o for 7.

2.2 Superposition

Bachmair and Ganzinger’s superposition calculus [2, 3] be-
longs to a class of proof techniques for automatic provers
known as saturation calculi. A saturation prover takes a set

Balazs Toth, Martin Desharnais-Schiafer, and Jasmin Blanchette

of formulas, usually clauses, as input and processes it by
performing two operations: First, it derives new formulas
from the old ones and adds them to the set. Second, it deletes
superfluous formulas from the set. This process is repeated
until the prover either derives L or reaches a state in which
it is not required to add further formulas.

Abstractly, a saturation calculus can be defined by speci-
fying two components: a set of inferences that defines the
derivations of new formulas, and a redundancy criterion
that describes which inferences are unnecessary and which
formulas may be deleted from the set.

For the superposition calculus, the inferences are given by
three inference rules called superposition, equality factoring,
and equality resolution. To reduce the number of inferences
that need to be computed during saturation, the inference
rules are equipped with order restrictions. Moreover, there
is a selection function that can override the order restric-
tions. These local restrictions are supplemented by a global
redundancy criterion for inferences and clauses.

Example 1. Let N, Z be types. Consider the first-order sig-
nature consisting of the function symbols a,b : N and f :
N — Z, the order > on terms induced by the precedence
f > b > a on the function symbols, and the unsatisfiable
clause set {x = a, f(b) # f(a)}. A superposition prover
would perform the following steps:

1. A superposition inference is possible from the first
clause’s left-hand side x into the second clause’s b
subterm, by unifying x and b. The inference replaces b
by a in the second clause, resulting in the new clause

f(a) # f(a).

2. An equality resolution inference notices that both sides
of the new clause are equal and derives a contradiction

(L).

Note that the type system makes it impossible to unify x
with, e.g., f(b), since they have different types.

In their Handbook of Automated Reasoning chapter [4],
Bachmair and Ganzinger gave a general account of com-
ponents and properties of saturation calculi. Waldmann et
al. [29] extended this saturation framework in various ways.

A calculus is called dynamically refutationally complete
if for every set Ny such that Ny E L and every fair deriva-
tion Ny, Ny, ..., the formula 1 belongs to some Nj. Directly
proving the dynamic refutational completeness of a calculus
is considered difficult, but it can be shown to be equivalent
to proving static refutational completeness: A calculus is
statically refutationally complete if for every saturated set N
we have that N = L implies L € N.

To prove static (and thus dynamic) refutational complete-
ness, it is usually convenient to start by considering only
the ground level of the calculus. Ground refutational com-
pleteness can then be lifted to refutational completeness at

Adding Sorts to an Isabelle Formalization of Superposition

the nonground level. This lifting is based on two ground-
ing functions that map nonground formulas and nonground
inferences to sets of ground instances.

Tourret and Blanchette [9, 26, 27] formalized the satura-
tion framework in Isabelle and extended it. Together with
Waldmann and Tourret, we used this Isabelle framework
in our formalization [12] of the superposition calculus. The
refutational completeness proof proceeded in two steps:

1. Given any set Ng of ground clauses that is saturated
w.r.t. ground inferences and that does not contain L,
construct a model of Ng.

2. If the set N of nonground clauses is saturated w.r.t.
nonground inferences, then the set

N ={Cy | C € N and Cy is ground}

of ground instances is saturated w.r.t. ground infer-
ences. Hence, by step 1, there exists a model of Ng,
which is also a model of N.

Step 1 incrementally constructs a confluent and terminat-
ing term rewriting system to produce a model of Ng. Step 2
amounts to showing that there exist nonground inferences
corresponding to all nonredundant ground inferences of the
calculus, via a result from the saturation framework. More-
over, the saturation framework helps overcome difficulties
in relating the ground and nonground levels by allowing
us to simultaneously lift a family of ground calculi to the
nonground level.

2.3 Isabelle/HOL

In Isabelle, type variables are written with an apostrophe
(e.g., “a), and type constructors are written in postfix notation
(e.g., 'a list). We write (x1,...,x,) :: 71 X - - - X 1, for the n-
tuple with components x; :: 74, ..., X, i 7,. The empty tuple
() is the only value of type unit.

A locale consists of type variables, parameters that may
depend on them, and assumptions that may refer to the type
variables and parameters. Locales are a useful structuring
mechanism that provides modularity. They allow us to de-
clare parameters and assumptions once and reuse them in
multiple related definitions and lemmas. When we later in-
terpret a locale, we must supply concrete arguments for the
type arguments and parameters and then discharge the proof
obligations corresponding to the assumptions.

3 The Basic Definitions

Terms, atoms, literals, and clauses share many definitions,
lemmas, and proofs at both the ground and the nonground
levels. To avoid duplication, we develop background theories
of generic definitions and lemmas that we then instantiate for
our concrete use cases (e.g., ground or nonground clauses).

CPP ’26, January 12-13, 2026, Rennes, France

3.1 Typing Relations

Adding types to the formalization of superposition requires
specifying a type system. Our specification builds on a typing
relation of type ‘expr = ‘ty = bool that uniquely assigns
types to expressions, where ‘expr is the universe of expres-
sions and ’ty is the universe of types.

Definition 2 (Typing Relation). The typing locale specifies
a right-unique typing relation.

locale typing =
fixes welltyped :: ‘expr = "ty = bool
assumes
Vet 7. welltyped e 7 — welltyped e 7/ — 7 =1’

Often, the type is irrelevant, and it is enough to know
whether an expression is well typed.

Definition 3. Given the typing relation welltyped :: ‘expr =
'ty = bool, the predicate is_welltyped :: ‘expr = bool ex-
presses that there exists a type such that an expression is
well typed:

Ve. is_welltyped e «— (3. welltyped e 7)

3.2 Lifting Typing Relations

We need to reason not only about the well-typedness of terms
but also that of atoms, literals, and clauses. We introduce a
lifting mechanism that allows us to extend well-typedness
properties step by step: from terms to atoms, then to literals,
and finally to clauses. This avoids redundant definitions and
ensures consistency. Abstractly, we lift from a subexpression
of type sub to a complex expression of type ‘expr that con-
tains subexpressions of the same type. A complex expression
type is specified by a function to_set :: ‘expr = ’sub set
that returns the subexpressions contained within a complex
expression.

Definition 4 (Lifting a Typing Relation). The typing_lifting
locale lifts an interpretation of the typing locale for subex-
pressions to complex expressions. The result is an inter-
pretation of the typing locale for the complex expressions.
The locale parameters are a typing relation sub_welltyped :
'sub = 'ty = bool for the subexpressions and a function
to_set :: ‘expr = ’sub set. Then the locale defines a typing
relation welltyped :: ‘expr = unit = bool expressing that
a complex expression is well typed if all its subexpressions
have the same type:

Ve. welltyped e () «—
(3r. Vsub € to_set e. sub_welltyped sub)

Note that the second parameter of welltyped in Defini-
tion 4 has type unit, since we do not assign types to atoms,
literals, and clauses, but rather only check that the subex-
pressions are well typed.

For our use case, we first interpret the typing_lifting lo-
cale with terms as subexpressions and atoms as complex

CPP ’26, January 12-13, 2026, Rennes, France

expressions. The locale parameters are a typing relation
that assigns types to terms and a function to_set such that
Vit ty. to_set (t; = t;) = {t1, t2}. An atom is thus well typed
if its two terms are well typed and have the same type. We
then interpret the typing_lifting locale again, this time with
atoms as subexpressions and literals as complex expressions.
The locale parameters are the lifted typing relation, which
assigns the type () to all well-typed atoms, and a function
to_set such that Vi. to_set [= {atm_of [}, where the func-
tion atm_of :: ‘a literal = ’a returns the atom of a literal. A
literal is thus well typed if its atom is well typed. Finally, we
interpret the typing_lifting locale one last time, with literals
as subexpressions and clauses as complex expressions. The
locale parameters are the lifted typing relation for literals
and a function to_set that converts a multiset to a set. A
clause is thus well typed if all of its literals are well typed.

We want to perform this lifting from terms to atoms, to
literals, to clauses both at the ground and the nonground
level. To avoid proof text duplication, we define a generic
lifting for this.

Definition 5 (Lifting a Typing Relation from Terms to
Clauses). The clause_typing locale lifts an interpretation
of the typing locale for terms to atoms, then to literals, and
then to clauses. The results are interpretations of the typing
locale for atoms, literals, and clauses in the namespaces
atom, literal, and clause. The liftings are performed with
the typing_lifting locale.

Definitions and lemmas of interpretations can be accessed
using the dot notation (e.g., clause.is_welltyped).

4 The Ground Level

After establishing the type system infrastructure, we will
first use it on the ground level of the calculus. We will define
well-typedness for ground terms, lift it to atoms, literals,
and clauses, and finally prove that the ground inferences
preserve well-typedness.

On the ground level, terms are represented by the type
'f gterm, where 'f is the type of function symbols. Atoms are
represented by the type 'f gatom. Literals are represented
by the type 'f gatom literal. Clauses are represented by the
type 'f gatom clause.

A ground term consists of a function symbol applied to
a (possibly empty) argument list. We say that it is well
typed if each argument is well typed and has the type ex-
pected by the function symbol. The expected types are spec-
ified by a function-type environment of type 'f = nat =
("tylist X "ty) option, where "ty is the universe of types. Given
a function symbol and an arity, a function-type environment
returns the domain (i.e., a list of the expected type of each
argument) and the codomain of the function. Using this, we
can define a typing relation.

Balazs Toth, Martin Desharnais-Schiafer, and Jasmin Blanchette

Definition 6 (Well-Typed Ground Term). Let F be a func-
tion-type environment. The predicate welltyped F

'f gterm = 'ty = bool expresses that a term is well typed
and has the given type:

F f (length ts) = (zs,7) list_all2 (welltyped F) ts ts
welltyped F (GFun f ts) T

Above, the predicate list_all2 :: (‘a = b = bool) =
‘alist = 'blist = bool expresses that two given lists have the
same length and that their elements are positionwise related
by a given binary predicate. In Isabelle, we write GFun f ts
for the ground term f(#y, . . ., t,), where f is a function symbol
and ts = ty,..., t, is an argument list.

The relation welltyped is a family of typing relations
indexed by function-type environments. We interpret the
typing locale for the typing relation welltyped ¥ for an ar-
bitrary function-type environment ¥. Based on that, we
interpret the clause_typing locale for the family of typ-
ing relations. This gives us families of typing relations
for atoms, literals, and clauses, all of them indexed by
function-type environments. For example, we get clause.is_
welltyped, which we can use to state that the inference
rules of the ground superposition calculus preserve well-
typedness. We perform this interpretation in the context of
locale ground_superposition_calculus, which we reuse un-
changed [12, Section 4].

Theorem 7 (Ground Superposition Preserves Well-typed-
ness). Let C, D, and E be ground clauses, and let ¥ be a
function-type environment. If D and E are both well typed,
and C can be inferred by superposition, then C is also well

typed:

VC D E F. superposition D E C —
clause.is_welltyped ¥ D —
clause.is_welltyped ¥ E —
clause.is_welltyped ¥ C

The theorems for equality factoring and equality resolu-
tion are analogous. The theorems for soundness and refuta-
tional completeness remain unchanged.

5 The Nonground Level

Next, we will extend the definition of well-typedness to non-
ground terms and lift it to nonground atoms, literals, and
clauses. Moreover, we will establish type-preserving substi-
tutions and define and prove some related properties. To lift
these properties from terms to atoms, literals, and clauses,
we will create a lifting infrastructure based on monomorphic
natural functors.

On the nonground level, terms are represented by the type
('f,"v) term. In addition to the function symbols 'f, terms
are parameterized by v, the type of term variables. We write
Fun f ts for the nonground term f(ty,...,t,), where f is a
function symbol and ts = t4,.. ., t, is an argument list. We

Adding Sorts to an Isabelle Formalization of Superposition

write Var x for the nonground term x, where x is a variable.
Atoms are represented by the type ('f, ‘v) atom (synonymous
with ('f, "v) term uprod), literals are represented by the type
('f,v) atom literal, and clauses are represented by the type
('f,'v) atom clause.

The typing relation for a nonground term is similar to
Definition 6. However, it must also consider term variables.
Accordingly, we extend the predicate by a variable-type en-
vironment V :: ‘v = ’ty as parameter and a rule for term
variables.

Definition 8 (Well-Typed Term). Let ¥ be a function-type
environment and V be a variable-type environment. The
predicate welltyped & V == (’f,’v) term = ’ty = bool
expresses that a term is well typed and has the given type:

F f (length ts) = (zs,7) list_all2 (welltyped ¥ V) ts zs

welltyped & V (Fun f ts) 7
Vx=r
welltyped & V (Var x) ©

The welltyped predicate is a family of typing relations
indexed by both function-type and variable-type environ-
ments.

We interpret the typing locale for the welltyped predi-
cate and lift the predicate from terms to atoms, literals, and
clauses by interpreting the clause_typing locale.

5.1 Functional Substitutions

The original formalization of untyped superposition [12]
relies on a background theory [14] of abstract substitutions
modeled as monoid actions. Abstract substitutions are spec-
ified by the substitution locale, which has the parameters
subst :: ‘expr = ’s = ‘expr and is_ground :: ‘expr = bool,
among others. The subst function applies a substitution of
type ’s to an expression of type ‘expr. Following Section 2.1,
we write eo instead of subst e o. The is_ground predicate is
true for expressions that cannot be affected by any substitu-
tion. For example, is_ground is true for a term t if to = ¢ for
all substitutions o, which is equivalent to saying that ¢ does
not contain any variables.

We extend this background theory to substitutions that are
functions mapping variables to base expressions of type ’base.
We call such a substitution of type ‘v = ’base a functional
substitution. Accordingly, the type of subst is specialized
to ‘expr = (‘v = ’base) = ’expr. In our use case, the
base expressions are terms of type (’f, ‘v) term. Substitution
application for clauses has then for example the type subst :
('f,"v) atom clause = ("v = ('f,’v) term) = (’f,'v) atom
clause.

Definition 9 (Functional Substitution). Let vars :: ‘expr =
‘v set be a function that maps a given expression to its
variables. The functional_substitution locale extends the
substitution locale by fixing the type of the substitutions

CPP ’26, January 12-13, 2026, Rennes, France

to ‘v = ’base and by defining that an expression is ground
if it does not contain variables (i.e., the vars function returns
the empty set). It also specifies that the effect of a substi-
tution on an expression is explained by the effects of the
substitution on the expression’s variables.

locale functional_substitution =
substitution where
subst = subst and is_ground = (Ae.vars e = {})
for
subst :: ‘expr = (‘v = "base) = ’expr and
vars :: ‘expr = v set +
assumes
VYeoo'.(Vx €evarse.oc x =0’ x) — eoc = eo’

The specialization of abstract substitutions to functional
substitutions enables many new definitions and lemmas on
a generic level. It is one of the main parts of our refactoring
aimed at avoiding proof text duplication. We can reuse the
definitions and lemmas for terms, atoms, literals, clauses,
and inferences.

While specifying a type system for the superposition cal-
culus, we must bring substitutions and types together.

Definition 10 (Typed Functional Substitution). The typed_
functional_substitution locale combines the locales typing
and functional_substitution, and extends the welltyped pred-
icate by a variable-type environment as parameter.

In particular, we must specify substitutions that preserve
the well-typedness of the expressions they are applied to.
A functional substitution preserves an expression’s type if
each variable is replaced by a term of the same type.

Definition 11 (Type-Preserving Substitution). Let well-
typed ¥ V :: ‘expr = 'ty = bool be a typing relation.
The predicate type_preserving_on & V = ‘v set = (‘v =
"base) = bool expresses that a substitution preserves well-
typedness for a given set of variables:

VX o. type_preserving on ¥ V X 0 «—
(Vx € X. welltyped F V x (V x) —
welltyped & V (x0) (V x))

Based on Definitions 10 and 11, we can define properties
of our type system regarding substitutions on generic ex-
pressions and derive lemmas based on these properties. We
present here three definitions and two lemmas.

Definition 12. A type system is preserved by substitutions if
any substitution that preserves the types of the variables in
an expression also preserves the type of the entire expression:

VF Ve o 1. type_preserving_on F V (vars e) 0 —
(welltyped F V (eo) T «— welltyped F V e 1)

Definition 13. A type system is preserved by renaming if ev-
ery expression has the same type before and after renaming
w.r.t. two compatible variable-type environments:

CPP ’26, January 12-13, 2026, Rennes, France

VF VYV e (Vx evarse. V' (xp) =V x) —
(welltyped F V’ (ep) v «— welltyped F Ve 1)

Definition 14. All types have a witness if, for every type,
there exists a ground expression of that type:

VF V r. Je. is_ground e A welltyped F Ve r

Lemma 15 (Grounding Substitution Extension). Let e be
an expression, V be a variable-type environment, and y be a
grounding substitution for e. If all types have a witness and
Y is type-preserving w.r.t. V on the variables of e, then there
exists a substitution y’ such that

e v’ isequal toy on the variables of e,
o y' is a grounding substitution for any expression, and
oy is type-preserving on the set of all variables w.r.t. V.

Lemma 16 (Type-Preserving IMGU). Lete and e’ be expres-
sions, V be a variable-type environment, and p be an IMGU
fore and e’. If u is type-preserving w.r.t. V on the variables of
e andeé’, then

Vr. welltyped F V e 7 «— welltyped ¥ V e’

Using our infrastructure, we can now specify a type system
for nonground terms. We want to globally assign types to
functions, ensuring that the same function has a consistent
type across different terms. To this end, we define a locale
that fixes a function-type environment.

Definition 17 (Term Type System). Let ¥ :: 'f = nat =
("ty list X "ty) option be a function-type environment. The
nonground_term_typing locale specifies that there exists a
ground term for each type w.r.t. F:

locale nonground_term_typing =
fixes F = 'f = nat = (ty list X 'ty) option
assumes VYV 7. 3t. is_ground t A welltyped ¥ V t ¢

In the context of nonground_term_typing, we extend the
interpretation term by interpreting the typed_functional_
substitution locale for the typing relation welltyped 7. By
fixing the function-type environment in welltyped ¥, we
ensure a consistent function-type environment in the entire
specification.

Lemma 18. The type system specified by the nonground_
term_typing locale is preserved by substitutions and by re-
namings, and all its types have a witness.

5.2 Infinite Variables per Type

When variables are renamed by renaming substitutions, we
must ensure that fresh variables are available. In the context
of a type system, we must also ensure that variables can be
renamed without altering their types.

Definition 19. The predicate infinite_variables_per_type
it ("o = "ty) = bool expresses that in the image of a given
variable-type environment, there exist infinitely many vari-
ables for every type:

Balazs Toth, Martin Desharnais-Schiafer, and Jasmin Blanchette

VV. infinite_variables_per_type V «—
(V7 € range V. infinite {x. V x = 1})

Above, the function range :: ("a = ’b) = ’b set returns the
image of a function.

Example 20. Suppose "v is fixed to string and 'ty is fixed
to {N,Z}. Consider the variable-type environment V de-
fined such that Vx. V x = (if x = ”n” then N else Z).
Then V does not satisfy the infinite_variables_per_type
predicate, because we cannot rename the variable "n” to
another variable of the same type. Now consider another
variable-type environment V”’ defined such that Vx. V' x =
(if x starts with "n” then N else Z). Then V"’ does satisfy the
infinite_variables_per_type predicate, because there are in-
finitely many strings starting with "n”, which means that we
can always find a fresh variable of type N in V.

When we have multiple expressions with different vari-
able-type environments, such as the premises of the non-
ground superposition inference rule, we will need to create
a new variable-type environment that can handle all their

types.

Lemma 21 (Merging of Variable-Type Environments). Let
X and Y be disjoint finite sets of variables, and V. and V,
be variable-type environments. If the universe of variables is
infinite, then there exists a variable-type environment V5 such
that infinite_variables_per_type V3 holds, Vs is equal to V
on X, and Vs is equal toV, on Y.

Proof sketch. We define V5 as V; on X and V, on Y,
which is possible since X and Y are disjoint. Let C = {7V x |
x € X} U{V2y |y € Y} be afinite set containing the types
that V; assigns to the variables in X and V, assigns to the
variables in Y. We construct Vs such that C is its image:
From the assumption that the set of all variables is infinite,
we can partition the set of variables excluding X and Y into
finitely many infinite sets. For each type 7 in C, we create
such an infinite set that is mapped to 7 by Vs, guarantee-

ing infinitely many variables for each type in the image of
(Vg. O

We can also use the infinite_variables_per_type predicate
to reason about the existence of renaming and grounding
substitutions.

Lemma 22. Let e; and e, be expressions, Vi and V, be
variable-type environments, and y; and y, be type-preserving
grounding substitutions for e; and e; w.r.t. V1 and V5, respec-
tively. If the infinite_variables_per_type predicate holds for
V1 and the set of variables of e, is finite, then we can obtain
renaming substitutions p; and p,, and a grounding substitution
Yy such that

e p; and p, are type-preserving for e; and e; w.r.t. 'V and
V,, respectively,
e ¢1p1 and e;p; have disjoint variables,

Adding Sorts to an Isabelle Formalization of Superposition

o y is equal to y; on the variables of e1p1, and
e y is equal to y, on the variables of e;p,.

5.3 Functional Substitution Liftings

Interpreting the functional_substitution locale separately for
terms, atoms, literals, and clauses already helps reduce du-
plicated proof text, since lemmas and definitions within
functional_substitution can be shared. However, parameters
such as the functions vars and subst must still be manually
defined for each level, and their properties proved separately.
These definitions and proofs are very similar. We can elim-
inate this redundancy by introducing a lifting mechanism
similar to the approach described in Section 3.2. We lift a
subexpression of type “sub to a complex expression of type
‘expr. As before, a complex expression is specified by a func-
tion to_set :: ‘expr = ’sub set that returns the contained
subexpressions. However, we need additional structure.

Definition 23. A monomorphic natural functor is equipped
with the functions map :: ('a = ’a) = 'b = 'b and to_set ::
"b = ’a set that obey the following five laws:

1. Vb f g. map f (map g b) = map (Ax. f (g x)) b;

2. Vb. map (Ax.x) b = b;

3.Vbfg. (Vaectoseth.fa=ga) —

map f b =map g b;

4. Vb f.to_set (map f b) = image f (to_set b);

5. 3b.to_set b # {}.
Above, the function image :: (‘a = 'b) = ’a set = b set
applies a given function to all elements of a given set.

This notion of a natural functor is inspired by Traytel
et al. [28]. We specify a natural functor with the natural_
functor locale. It has a map function that obeys the typical
composition and identity functor laws (1 and 2). Mathemati-
cally, we describe a functor as a pair of the type of the functor
and an action on functions between types, called map. The
functor (’b, map) is monomorphic, meaning that it does not
allow transformations between types, since Isabelle/HOL
does not support higher-kinded types. The laws 3, 4, and 5
describe the relationship of the functions to_set and map
such that to_set is a natural transformation between the func-
tor ('b, map) and the monomorphic functor (’a set,image).
We think of a natural functor (’b, map, to_set) as a complex
structure containing elements of type ‘a.

Lemma 24. The types 'a uprod, 'a literal, and 'a multiset
together with their canonical map and to_set functions are
natural functors.

Based on natural functors, we can define a lifting for func-
tional substitutions.

Definition 25. Let sub be the interpretation of functional_
substitution with its parameters sub_vars :: ‘sub = v set
and sub_subst 'sub = (‘v = ’base) = ’sub, and
the natural functor (’expr, map ('sub = ’'sub) =

CPP ’26, January 12-13, 2026, Rennes, France

‘expr = ’expr, to_set :: ‘expr = ’sub set). The functional_
substitution_lifting locale then defines the functions vars ::
‘expr = v set and subst :: ‘expr = (‘v = 'base) = ‘expr:
o Ve.vars e = (Uy e to set e SUD_vars x)
e Ve 0. subst e o = map (As.sub_subst s o) e

For the functional_substitution_lifting locale to actually
be a lifting for functional substitutions, we need to prove that
the lifted functions can interpret functional_substitution.

Lemma 26. Let vars :: ‘expr = 'v set and subst :: "expr =
(v = ’'base) = 'expr be the functions defined by the
functional_substitution_lifting locale. Then vars and subst
can interpret the functional_substitution locale.

We can also lift many properties of functional substitu-
tions using this lifting. In particular, we can lift properties
of typed functional substitutions.

Definition 27. The typed_functional_substitution_lifting
locale combines the locales functional_substitution_lifting
and typing_lifting.

Since the typed_functional_substitution locale combines
the locales functional_substitution and typing, we can lift it
using typed_functional_substitution_lifting. The lifting pre-
serves many useful properties; we illustrate the preservation
of two properties.

Lemma 28. Let sub be an interpretation of the typed_
functional_substitution locale.

o If the type system specified by sub is preserved by
substitutions, then the type system lifted from sub by
the typed_functional_substitution_lifting locale is also
preserved by substitutions.

o If the type system specified by sub is preserved by
renamings, then the type system lifted from sub by
the typed_functional_substitution_lifting locale is also
preserved by renamings.

Finally, we extend the type system specification on non-
ground terms to nonground atoms, literals, and clauses using
our lifting infrastructure.

Definition 29 (Nonground Typing). The nonground_typing
locale extends nonground_term_typing. Using the typed_
functional_substitution_lifting locale, atom is an interpre-
tation lifted from term, literal an interpretation lifted from
atom, and clause an interpretation lifted from literal.

The proof obligations produced by the liftings in Defini-
tion 29 were discharged in Lemma 24.

5.4 The Nonground Calculus

Now, we will add a type system to the nonground superpo-
sition calculus and incrementally refine the inference rules
so that they preserve well-typedness while maintaining the
calculus’s soundness and completeness.

CPP ’26, January 12-13, 2026, Rennes, France

The original untyped formalization defined the nonground
calculus in the first_order_superposition_calculus locale [12,
Section 5]. Based on this, we define our own locale super-
position_calculus, which adds a function-type environment
as a locale parameter and the locale assumption that every
type is witnessed by a nullary function symbol. This param-
eter and this assumption are sufficient to extend the calculus
to simple monomorphic types.

We use this opportunity to refactor the background theo-
ries regarding orders and entailment using a lifting infras-
tructure to avoid duplicated proof text. Moreover, we elimi-
nate an assumption present in the original formalization—
namely, the ground critical pairs theorem. This theorem was
proved in the IsaFoR library [23]. For licensing reasons, we
could not build on it, so we simply assumed that it holds.
Later, the IsaFoR developers proved the nonground critical
pairs theorem and released it under a more liberal license
[24]. This allows us to adapt the nonground theorem to the
ground case and remove the locale assumption.

Definition 30 (Nonground Superposition Calculus). The
superposition_calculus locale specifies the parameters and
assumptions required by the superposition calculus and the
proofs of its soundness and refutational completeness. In par-
ticular, it specifies a type system using the nonground_typing
locale.

locale superposition_calculus =
nonground_equality_order <; +
nonground_selection_function select +
nonground_typing F
for
<= (’f,v) term = ('f,’v) term = bool and
select :: ('f,’v) atom clause =
('f,"v) atom clause and
F = 'f = nat = ('ty list X 'ty) option and
tiebreakers :: ’f gatom clause =
('f,'v) atom clause = ('f,’v) atom clause =
bool
assumes
infinite (UNIV :: "0 set) and
VCq. wfp (tiebreakers Ci) Atransp (tiebreakers Cg)

To define the calculus itself, we start from the untyped in-
ference rules. However, these do not preserve well-typedness
in their current form. Therefore, our objective is to revise the
rules so they preserve well-typedness without losing sound-
ness and refutational completeness. We start by recalling the
inference rules of the untyped superposition calculus.

D

hat;Vip~t, VD
(t;#ty,Vty~ty VD)

eq_factoring D C

C

Balazs Toth, Martin Desharnais-Schiafer, and Jasmin Blanchette

Side conditions:

F1 select D = {};

F2 pis an IMGU of {t1,t,};

F3 (t; = t])p is maximal in Dy;
F4 tipn £ t]p.

D
e e
t#t vD

D'u
N——
C

eq_resolution D C

Side conditions:
R1 pisan IMGU of {¢,t'};
R2 if select D = {}, then tu # t'p is maximal in Dy;
R3 if select D # {}, then ty # t'p is maximal in
(select D)p.

D E

tpxtyvD c[t] et VE
((cp)[typ2] > tipy V E'py V D' pa)p

superposition D E C

C

Side conditions:
S1 <€ {~, #};
S2 p; and p; are renamings;
S3 Ep; and Dp; are variable-disjoint;
S4 t; is not a variable;
S5 pis an IMGU of {t;p1, t2p2};
S6 Epip £c Dpaps;
ST tapap #¢ typaps;
S8 (c[ti])pip £¢ tip1ps
S9 ifea ==, then select E = {} and (c[t;]><t])p1p is strictly
maximal in Epqyi;
$10 if »« = % and select E = {}, then (c[t;] »< t])p1p is
maximal in Epq yi;
S11 if = = % and select E # {}, then (c[t;] > t])p1pt is
maximal in (select E)p;y;
S12 select D = {};
S13 (ty = t;) poyi is strictly maximal in Dpyp.

5.5 Typed Clauses

Next to the global function-type environment ¥, we intro-
duce local variable-type environments, one per clause. This
allows us to reuse variable names across different clauses,
even with different types. For example, a clause C could
contain a variable x of type N, while another clause D inde-
pendently could also contain a variable x of type Z. Using
a global variable-type environment would require a global
invariant that enforces distinct variable names across all
clauses. This would restrict the implementation of a satura-
tion prover based on the calculus, and it would conflict with
the superposition rule’s local renaming strategy.

Adding Sorts to an Isabelle Formalization of Superposition

We define a typed clause as a pair consisting of a clause
and an associated variable-type environment, represented
as ("v = "ty) X ('f, 'v) atom clause, and abbreviate this type
with ('f, v, ‘ty) typed_clause. We update the inference rules
accordingly to operate on typed clauses and keep the same
side conditions.

D

hat;Viy~t, VD
(t#tyVty~t, VD)

eq_factoring (V, D) (V,C)

C

D
——
t#t'vD

D'u
——
c

eq_resolution (V, D) (V,C)

D E

superposition
(D, V2) (E, V1)
<C’ (V3>

fpatyv D c[t]eat] VE
((cp) [t5p2] > tip1 V E'p1 vV D' pa)pu

C

An easy way to ensure that the inference rules preserve
well-typedness would be to add side conditions stating that
the premises and conclusions need to be well-typed using
the clause.is_welltyped predicate. But this approach would
not reflect actual implementations in saturation provers,
which improve runtime by performing type checking only
as needed. To stay closer to the implementations, we instead
add more fine-grained side conditions.

5.6 Type-Preserving IMGUs

All three inference rules rely on IMGUs to unify terms of
their premises. To ensure that applying an IMGU does not
alter the type of expressions, we introduce the following
side conditions to the eq_factoring and eq_resolution rules,
respectively:

F5 type_preserving_on ¥ V (clause.vars D) y;
R4 type_preserving_on ¥ V (clause.vars D) p.

The type_preserving_on predicate, as introduced in Def-
inition 11, ensures that each IMGU only replaces variables
with terms of the same type.

The superposition rule requires a similar new side condi-
tion, but we need to account for the presence of two premises:

S14 type_preserving_on & V3
(clause.vars (Epq) U clause.vars (Dp3)) p.
This condition guarantees that the IMGU preserves the

types of the variables in the premises after they are renamed
apart. Additionally, we use the variable-type environment

CPP ’26, January 12-13, 2026, Rennes, France

Vs, representing the type environment for expressions after
renaming.

With this additional side condition, we can formally estab-
lish that the eq_factoring and eq_resolution rules preserve
well-typedness.

Theorem 31. Let C and D be clauses and V be a variable-
type environment. If there exists an inference eq_resolution

(V,D) (V,C) oreq_factoring (V,D) (V,C), then

clause.is_welltyped ¥ V D —
clause.is_welltyped ¥ V C

Proof sketch. Proof automation finds a proof by exploit-
ing lifted simplification lemmas about the type system. In
particular, it uses the preservation of the type system by
substitutions, as established in Lemmas 18 and 28, and the
property of IMGUs established in Lemma 16. O

5.7 Weakly Well-Typed Literals

In Theorem 31, we establish only that the inference rules
produce well-typed conclusions when their premises are
well typed. However, when performing rule elimination in
proofs, for example in the soundness proof, we also need
information about the well-typedness of the premises. Since
we do not want to impose well-typedness of the premises
as an explicit side condition on every inference rule, we
instead introduce more selective side conditions that enforce
well-typedness only where it is required.

Our initial approach was to strengthen the rules so
that Theorem 31 would hold bidirectionally. Inspired by
Lemma 16, we later identified a weaker property that is
sufficient for our purposes and that requires only a single
additional side condition. We refer to this property as weak
well-typedness.

Definition 32. The predicate weakly_welltyped F :: ('v =
‘ty) = (’f,’v) atom clause = bool expresses that every
literal in a clause consists of two terms with the same type
or both are not well typed:

VYV C. weakly_welltyped F V C «—
(Vteat’ € C. V7. welltyped F V t «—
welltyped 7V t')

where b« € {~, #}.

We can prove that weakly well-typed conclusions can only
originate from weakly well-typed premises.

Lemma 33. Let D and C be clauses and V be a variable-

type environment. If there exists an inference eq_resolution
(V,D) (V,C) oreq_factoring (V,D) (V,C), then

weakly_welltyped F V D «— weakly_welltyped F V C

Proof sketch. Similar to the proof of Theorem 31. The im-
plication from right to left relies on Lemma 16. O

CPP ’26, January 12-13, 2026, Rennes, France

5.8 Type-Preserving Renamings

The superposition rule relies both on IMGUs and on renam-
ing substitutions. Specifically, there is one renaming sub-
stitution for each of the inference’s two premises. Having
two renamings instead of just one gives more flexibility in
refinements, since we could use a heuristic to decide which
of the two clauses should be renamed. To ensure that these
substitutions preserve well-typedness, we add two side con-
ditions:

S15 type_preserving_on & V1 (clause.vars E) p1;
S16 type_preserving_on ¥ V; (clause.vars D) ps.

These conditions guarantee that each renaming substitu-
tion p; consistently replaces variables with other variables
of the same type according to the type environment V; as-
sociated with its corresponding premise.

Until now, the type environments V; and V; of the
premises have been independent of type environment Vs
of the conclusion. To ensure consistency between them, we
add two more side conditions to the superposition rule:

S17 Vx € clause.vars E. Vi x = V3 (xp1);
S18 Vx € clause.vars D. V, x = V3 (xp2).

These conditions guarantee that, after applying the re-
naming p, the variables of E have the same types in V3 as
they had in V; without renaming. Similarly, after applying
p2, the variables of D retain the same types in V3 as they
had in V; without renaming.

With these additional side conditions in place, the super-
position rule derives well-typed conclusions from well-typed
premises.

Theorem 34. Let C, D, and E be clauses and V1,V,, and
V3 be variable-type environments. If there exists an inference
superposition (V,, D) (V1,E) (V3,C), then

(clause.is_welltyped ¥ V, D A
clause.is_welltyped F V; E) —
clause.is_welltyped F V5 C

Proof sketch. We exploit, among other properties, the
preservation of the type system specification by substitu-
tions and renamings as shown in Lemmas 18 and 28 and the
property of IMGUs established in Lemma 16. O

However, as with the other two inference rules (Lemma
33), we also want to guarantee that weakly well-typed con-
clusions only originate from weakly well-typed premises. To
achieve this, we introduce a side condition expressing that
the terms in the literal t, ~ ¢, have the same type:

S19 Vr. welltyped ¥ V; to 7 «— welltyped & V; ¢, 7.

Now, we can formally establish well-typedness preserva-
tion of the superposition rule, ensuring that only weakly
well-typed clauses are involved in the derivation process.

Balazs Toth, Martin Desharnais-Schiafer, and Jasmin Blanchette

Lemma 35. Let C, D, and E be clauses and V1,V,, and
V3 be variable-type environments. If there exists an inference
superposition (Vy, D) (V1,E) (V3,C), then

(weakly_welltyped ¥ V5 D A
weakly_welltyped ¥ V1 E) «—
weakly_welltyped ¥ V5 C

Proof sketch. Similar to the proof of Theorem 34. O

5.9 Regaining Completeness

The calculus now preserves well-typedness, but it is no
longer complete because we cannot always guarantee the
availability of fresh variables for every type. In the super-
position rule, renaming variables apart is necessary to en-
sure that premises have distinct variable sets. In the untyped
calculus, this was achieved by assuming that the set of vari-
ables is infinite. We retain this global assumption but must
also guarantee that fresh variables are available for all types.
The infinite_variables_per_type predicate (Definition 19) ex-
presses this requirement.

When initially defining infinite_variables_per_type, we
did not realize that it is sufficient to require infinitely many
variables for each type in the image of the variable-type envi-
ronment, rather than for every type. The original definition
led to an additional assumption for the calculus, which stated
that the cardinality of the set of all types must be bounded
by the cardinality of the set of all variables. With our current
definition, this assumption is no longer necessary.

Finally, we make the calculus complete again by adding
two side conditions to the superposition rule, ensuring that
we can create fresh variables for any type that appears in
the premises:

S20 infinite_variables_per_type V1;
S21 infinite_variables_per_type V.

We can now present the final inferences rules with all of
their side conditions:

D

h~tVi~t, VD
(ty £tV ~tyvD)y

eq_factoring (V, D) (V,C)

C

Side conditions:

F1 select D = {};

F2 pis an IMGU of {#1,t,};

F3 (t; ~ t])p is maximal in Dy;

F4 tip £t

F5 type_preserving_on ¥ V (clause.vars D) p.

Adding Sorts to an Isabelle Formalization of Superposition

D
—_——
t#t'vD

D'u
N——
C

eq_resolution (V, D) (V,C)

Side conditions:
R1 pis an IMGU of {z,t'};
R2 if select D = {}, then tu # t’'p is maximal in Dy;
R3 if select D # {}, then ty # 'y is maximal in
(select D)y;
R4 type_preserving_on ¥ V (clause.vars D) p.

D E

superposition
(D, V2) (E, V1)
<Cs (‘V3>

LrtyvVD c[t]>at] VE
((cp) [t5p2] > tip1 V E'p1 vV D' pa)p

C

Side conditions:
S1 e {~, #};
S2 p; and p; are renamings;
S3 Ep; and Dp, are variable-disjoint;
S4 t; is not a variable;
S5 pis an IMGU of {t;p1, t2p2};
S6 Epipt £ Dpay;
ST tapap £ typaps;
S8 (c[ti)pip £¢ tip1pss
S9 ifpa ==, then select E = {} and (c[t;]><t]) pyp is strictly
maximal in Ep; y;
S10 if = = # and select E = {}, then (c[t;] > t])p1p is
maximal in Ep; y;
S11 if »« = % and select E # {}, then (c[t;] >« t])pyp is
maximal in (select E)p;y;
S12 select D = {};
S13 (t; = t;)papt is strictly maximal in Dp,p;
S14 type_preserving_on & V3
(clause.vars (Ep;) U clause.vars (Dp3)) p;
S15 type_preserving_on & V1 (clause.vars E) p1;
S16 type_preserving_on ¥ V, (clause.vars D) p;
S17 Vx € clause.vars E. Vi x = V3 (xp1);
S18 Vx € clause.vars D. V; x = V3 (xp2);
S19 V. welltyped F V; tp 7 «— welltyped ¥ V, t;
S20 infinite_variables_per_type Vi;
S21 infinite_variables_per_type V,.

5.10 Lifting the Calculus

Before proving that the typed calculus is sound and com-
plete, we must adapt the lifting of the ground calculus to the
nonground level to accommodate the specified type system.
The saturation framework’s lifting_intersection locale [27,
Section 3.3] allows us to lift a family of ground calculi. Before
we can establish the lifting in the superposition_calculus lo-
cale, we must adapt the definitions of ground instances of

CPP ’26, January 12-13, 2026, Rennes, France

clauses and inferences, and the nonground bottom elements,
which are parameters of the lifting.

Definition 36. The function ground_instances :: ('f, s,
‘ty) typed_clause = 'f gatom clause set maps a given weakly
well-typed clause to the set of its weakly well-typed ground
instances:

VYV C. ground_instances (V,C) =
{Cy | clause.is_ground (Cy) A
type_preserving_on & V (clause.vars C) y A
infinite_variables_per_type V A
weakly_welltyped F V C}

Analogously, the ground_instances,,¢ function maps well-
typed inferences to the set of its well-typed ground instances.
For inferences with multiple premises, ground_instances,
also renames the variables of the premises apart.

Definition 37. The set Lr = ('f,’v,’ty) typed_clause set
contains all empty typed clauses whose variable-type envi-
ronment maps infinitely many variables to each type in its
range:

1p = {(V, 1) | infinite_variables_per_type V}

We consider empty typed clauses as bottom elements
only if their variable-type environment satisfies the infinite_
variables_per_type predicate. This maintains consistency
with the definition of ground_instances, since otherwise,
some bottom elements would have no ground instances. The
saturation framework conveniently allows us to specify, in-
stead of a single bottom element, a family of bottom elements.
Without this, we would need to choose a single representa-
tive (¥, L) and use it systematically in the inferences.

Lemma 38. The superposition_calculus locale lifts a family
of ground calculi [12, Section 5] to the nonground level using
the lifting_intersection locale.

Proof sketch. We demonstrate two proof obligations that
differ from the untyped calculus:

e The set of bottom elements is nonempty. We show
that the set L is nonempty by proving that there
exists a variable-type environment that satisfies the
infinite_variables_per_type predicate. This follows di-
rectly from Lemma 21.

e Every bottom element has a ground instance. Every
bottom element in L is the empty clause, which is
ground and well typed. Additionally, every bottom el-
ement has a variable-type environment that satisfies
the infinite_variables_per_type predicate. m]

The lifting_intersection locale provides, among many
other definitions and lemmas, a lifted definition of the entail-
ment relation for nonground clause sets [27, Section 3.1]. We
can use this definition to prove the soundness of the typed
calculus.

CPP ’26, January 12-13, 2026, Rennes, France

Theorem 39 (Soundness). Let 1 be a nonground inference.
The premises of 1 entail the conclusion of 1.

Proof sketch. Consider the case where | = eq_resolution
(V,D) (V,C), where C and D are nonground clauses
and YV is a variable-type environment. Then we must
show that (V,D) entails (V,C). After unfolding multi-
ple definitions, we arrive at a point where we have a
valid interpretation 7 [12, Definition 4] and a ground
clause Cs € ground_instances C. Furthermore, 7 | Dg
for all D € ground_instances D. From the definition
of ground_instances (Definition 36), we observe that C is
weakly well typed and that there exists a type-preserving
grounding substitution y such that Cg = Cy. From Lemma 33,
we also know that D is weakly well typed. Applying
Lemma 15, we obtain a type-preserving grounding substi-
tution y’ for D such that C¢ = Cy = Cy’. We then prove
Dy’ € ground_instances D, from which I | Dy’ follows.
Thus, we can prove 7 | Cy in the same way as in the
untyped calculus [12, Section 5].

The proofs for the eq_factoring and superposition cases
are analogous. However, for the superposition rule, we must
also apply its additional side conditions S20 and S21, since
they are required for the ground instances of the premises
to be valid. O

We conclude our endeavor by proving the refutational
completeness of the nonground calculus.

Theorem 40 (Refutational Completeness). Let N be a set of
typed clauses that is saturated w.r.t. the typed superposition
calculus. If N entails Lp, then Lp € N.

Proof sketch. The lifting_intersection locale reduces our
proof of static refutational completeness of the nonground
calculus to two easier proof obligations:

1. Every member of the ground calculus family is stati-
cally refutationally complete. Since we did not alter
the ground inferences, we can keep the proof un-
changed [12, Theorem 14].

2. The nonground inferences overapproximate all ground
inferences of a member of the lifted ground calculus fam-
ily. We need to adapt the proof for the untyped calculus
[12, Lemmas 23-25 and 27] to account for the type sys-
tem. For example, the adapted inference lifting proofs
require as additional assumptions that the premises
are weakly well typed and exploit Lemmas 33 and 35
to show that the inferences preserve well-typedness.
In the case of the superposition rule, we also require
Lemma 15 to obtain type-preserving renaming and
grounding substitutions for its two premises. More-
over, we use Lemma 21 to obtain the variable-type
environment for the rule’s conclusion. o

Balazs Toth, Martin Desharnais-Schiafer, and Jasmin Blanchette

As a final sanity check, we instantiate the typed calculus
with unit as the only type in the type system and show that
it is equivalent to the original untyped calculus.

Our formalization, especially the refactoring, benefited
from Isabelle’s locale mechanism to capture dependencies
and facilitate reuse. However, we identified two pain points
related to locales. First, in most cases, we must explicitly
provide the parameters for locale interpretations and cannot
reuse those of dependent interpretations. This results in
boilerplate code. Second, a deep hierarchy of locales can
cause slow dependency resolution and increase verification
times.

6 Related Work

Until the early 2010s, the superposition provers E [21], SPASS
[32], and Vampire [20] supported only untyped first-order
logic. Sorts were added to all three during that decade. With
a typing discipline, it is possible to combine finite and infinite
domains of discourse in a single problem, without resorting
to encodings [7, 10]. In particular, sorts are especially useful
for supporting infinite-domain theories such as arithmetic
[16].

Going beyond monomorphic sorts, the Zipperposition
[11] prover and recent versions of Vampire [5] support
rank-1 polymorphism, and the experimental Pirate [30] sup-
ports rank-1 polymorphism extended with Isabelle-style type
classes. Moreover, Leo-III [22], whose proof calculus is a vari-
ant of superposition, is another rank-1-polymorphic prover.

On the metatheory side, the most noteworthy results are
probably the development of “soft sorts” (i.e., unary predi-
cates treated specially by the calculus) by Weidenbach [31]
and the extension of superposition with rank-1 polymor-
phism and type classes by Wand [30].

On the formalization side, Ahmed and Toth [1] formalized
the ordered resolution calculus with simple monomorphic
types based on our work. Moreover, during the development
of our formalization, Yamada and Thiemann [34] indepen-
dently produced a formalization of many-sorted first-order
terms. Because our calculus is parameterized by a type sys-
tem, we can instantiate it with their type system. Establishing
the required assumptions (i.e., proving Lemma 18) for their
type system requires only about 150 lines of proof text.

7 Conclusion

We extended an Isabelle/HOL formalization of the superpo-
sition calculus with simple monomorphic types, or sorts. We
parameterized the calculus with a type system. Extending
the ground calculus was straightforward, because the un-
typed inferences preserve well-typedness. At the nonground
level, this is no longer the case. Inferences must compare
some terms’ types, ensure that variable renaming preserves
sorts, and ensure that unification yields type-preserving sub-
stitutions.

Adding Sorts to an Isabelle Formalization of Superposition

As future work, we plan to extend the formalization to
support rank-1 polymorphism in the style of TPTP TF1 [8].
Another avenue would be to refine the calculus to obtain a
verified executable superposition prover.

Acknowledgments

We thank David Schrank for contributing proofs about the
existence of type-preserving renamings. We thank Xavier
Généreux, Massin Guerdi, Mark Summerfield, and the anony-
mous reviewers for suggesting textual improvements.

This research was cofunded by the European Union (ERC,
Nekoka, 101083038). Views and opinions expressed are how-
ever those of the authors only and do not necessarily reflect
those of the European Union or the European Research Coun-
cil. Neither the European Union nor the granting authority
can be held responsible for them.

References

[1] Adnan Mohammed Ahmed and Balazs Toth. 2025. Typed ordered
resolution. Archive of Formal Proofs (2025). https://isa-afp.org/entries/
Typed_Ordered_Resolution.html.

[2] Leo Bachmair and Harald Ganzinger. 1990. On restrictions of or-
dered paramodulation with simplification. In CADE-10 (LNCS, Vol. 449),
Mark E. Stickel (Ed.). Springer, 427-441. https://doi.org/10.1007/3-
540-52885-7_105

[3] Leo Bachmair and Harald Ganzinger. 1994. Rewrite-based equational
theorem proving with selection and simplification. J. Log. Comput. 4,
3 (1994), 217-247. https://doi.org/10.1093/logcom/4.3.217

[4] Leo Bachmair and Harald Ganzinger. 2001. Resolution theorem prov-

ing. In Handbook of Automated Reasoning, Alan Robinson and An-

drei Voronkov (Eds.). Vol. I. Elsevier and MIT Press, 19-99. https:

//doi.org/10.1016/b978-044450813-3/50004-7

Ahmed Bhayat and Giles Reger. 2020. A polymorphic Vampire (short

paper). In IJCAR 2020, Part I (LNCS, Vol. 12167), Nicolas Peltier and

Viorica Sofronie-Stokkermans (Eds.). Springer, 361-368. https://doi.

org/10.1007/978-3-030-51054-1_21

[6] Jasmin Christian Blanchette. 2019. Formalizing the metatheory of
logical calculi and automatic provers in Isabelle/HOL (invited talk). In
CPP 2019, Assia Mahboubi and Magnus O. Myreen (Eds.). ACM, 1-13.
https://doi.org/10.1145/3293880.3294087

[7] Jasmin Christian Blanchette, Sascha Bohme, Andrei Popescu, and
Nicholas Smallbone. 2016. Encoding monomorphic and polymorphic
types. Logical Methods in Computer Science 12, 4 (2016). https://doi.
org/10.2168/Imcs-12(4:13)2016

[8] Jasmin Christian Blanchette and Andrei Paskevich. 2013. TFF1: The
TPTP typed first-order form with rank-1 polymorphism. In CADE-
24 (LNCS, Vol. 7898), Maria Paola Bonacina (Ed.). Springer, 414-420.
https://doi.org/10.1007/978-3-642-38574-2_29

[9] Jasmin Christian Blanchette and Sophie Tourret. 2020. Extensions
to the comprehensive framework for saturation theorem proving.
Archive of Formal Proofs (2020). https://isa-afp.org/entries/Saturation_
Framework_Extensions.html.

[10] Koen Claessen, Ann Lilliestrom, and Nicholas Smallbone. 2011. Sort
it out with monotonicity: Translating between many-sorted and un-
sorted first-order logic. In CADE-23 (LNCS, Vol. 6803), Nikolaj Bjerner
and Viorica Sofronie-Stokkermans (Eds.). Springer, 207-221. https:
//doi.org/10.1007/978-3-642-22438-6_17

[11] Simon Cruanes. 2015. Extending Superposition with Integer Arithmetic,
Structural Induction, and Beyond. PhD thesis. Ecole Polytechnique.

—
w
—

CPP ’26, January 12-13, 2026, Rennes, France

[12] Martin Desharnais, Balazs Toth, Uwe Waldmann, Jasmin Blanchette,
and Sophie Tourret. 2024. A modular formalization of superposition
in Isabelle/HOL. In ITP 2024, Yves Bertot, Temur Kutsia, and Michael
Norrish (Eds.), Vol. 309. Schloss Dagstuhl — Leibniz-Zentrum fiir Infor-
matik, 12:1-12:20. https://doi.org/10.4230/LIPICS.ITP.2024.12

[13] Martin Desharnais, Petar Vukmirovi¢, Jasmin Blanchette, and Makar-
ius Wenzel. 2022. Seventeen provers under the hammer. In ITP 2022,
June Andronick and Leonardo de Moura (Eds.), Vol. 237. Schloss
Dagstuhl — Leibniz-Zentrum fir Informatik, 8:1-8:18. https://doi.
org/10.4230/LIPICS.ITP.2022.8

[14] Martin Desharnais-Schifer and Balazs Toth. 2024. Abstract substi-
tution. Archive of Formal Proofs (2024). https://isa-afp.org/entries/
Abstract_Substitution.html.

[15] Martin Desharnais-Schéafer and Balazs Toth. 2024. A modular formal-
ization of superposition. Archive of Formal Proofs (2024). https://isa-
afp.org/entries/Superposition_Calculus.html.

[16] Konstantin Korovin and Andrei Voronkov. 2007. Integrating linear
arithmetic into superposition calculus. In CSL 2007 (LNCS, Vol. 4646),
Jacques Duparc and Thomas A. Henzinger (Eds.). Springer, 223-237.
https://doi.org/10.1007/978-3-540-74915-8_19

[17] Laura Kovécs and Andrei Voronkov. 2013. First-order theorem proving
and Vampire. In CAV 2013 (LNCS, Vol. 8044), Natasha Sharygina and
Helmut Veith (Eds.). Springer, 1-35. https://doi.org/10.1007/978-3-
642-39799-8_1

[18] Lawrence C. Paulson and Jasmin Christian Blanchette. 2012. Three
years of experience with Sledgehammer, a practical link between
automatic and interactive theorem provers. In IWIL-2010 (EPiC Series
in Computing, Vol. 2), Geoff Sutcliffe, Stephan Schulz, and Eugenia
Ternovska (Eds.). EasyChair, 1-11. https://doi.org/10.29007/36dt

[19] Nicolas Peltier. 2016. A variant of the superposition calculus. Archive of
Formal Proofs (2016). https://www.isa-afp.org/entries/SuperCalc.html.

[20] Alexandre Riazanov and Andrei Voronkov. 2002. The design and
implementation of VAMPIRE. AI Communications 15, 2-3 (2002), 91—
110.

[21] Stephan Schulz. 2002. E—a brainiac theorem prover. AI Communica-
tions 15, 2-3 (2002), 111-126.

[22] Alexander Steen and Christoph Benzmiiller. 2018. The higher-order
prover Leo-III. In IJCAR 2018 (LNCS, Vol. 10900), Didier Galmiche,
Stephan Schulz, and Roberto Sebastiani (Eds.). Springer, 108-116. https:
//doi.org/10.1007/978-3-319-94205-6_8

[23] René Thiemann and Christian Sternagel. 2009. Certification of termi-
nation proofs using CeTA. In TPHOLs 2009 (LNCS, Vol. 5674), Stefan
Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel
(Eds.). Springer, 452-468. https://doi.org/10.1007/978-3-642-03359-
9 31

[24] René Thiemann, Christian Sternagel, Christina Kirk, Martin Avanzini,
Bertram Felgenhauer, Julian Nagele, Thomas Sternagel, Sarah Winkler,
and Akihisa Yamada. 2025. First-order rewriting. Archive of Formal
Proofs (2025). https://isa-afp.org/entries/First_Order_Rewriting.html.

[25] Balazs Toth. 2025. First order clause. Archive of Formal Proofs (2025).
https://isa-afp.org/entries/First_Order_Clause.html.

[26] Sophie Tourret. 2020. A comprehensive framework for saturation
theorem proving. Archive of Formal Proofs (2020). https://www.isa-
afp.org/entries/Saturation_Framework.html.

[27] Sophie Tourret and Jasmin Blanchette. 2021. A modular Isabelle frame-
work for verifying saturation provers. In CPP 2021, Catalin Hritcu
and Andrei Popescu (Eds.). ACM, 224-237. https://doi.org/10.1145/
3437992.3439912

[28] Dmitry Traytel, Andrei Popescu, and Jasmin Christian Blanchette.
2012. Foundational, compositional (co)datatypes for higher-order
logic: Category theory applied to theorem proving. In LICS 2012. IEEE
Computer Society, 596-605. https://doi.org/10.1109/LICS.2012.75

https://isa-afp.org/entries/Typed_Ordered_Resolution.html
https://isa-afp.org/entries/Typed_Ordered_Resolution.html
https://doi.org/10.1007/3-540-52885-7_105
https://doi.org/10.1007/3-540-52885-7_105
https://doi.org/10.1093/logcom/4.3.217
https://doi.org/10.1016/b978-044450813-3/50004-7
https://doi.org/10.1016/b978-044450813-3/50004-7
https://doi.org/10.1007/978-3-030-51054-1_21
https://doi.org/10.1007/978-3-030-51054-1_21
https://doi.org/10.1145/3293880.3294087
https://doi.org/10.2168/lmcs-12(4:13)2016
https://doi.org/10.2168/lmcs-12(4:13)2016
https://doi.org/10.1007/978-3-642-38574-2_29
https://isa-afp.org/entries/Saturation_Framework_Extensions.html
https://isa-afp.org/entries/Saturation_Framework_Extensions.html
https://doi.org/10.1007/978-3-642-22438-6_17
https://doi.org/10.1007/978-3-642-22438-6_17
https://doi.org/10.4230/LIPICS.ITP.2024.12
https://doi.org/10.4230/LIPICS.ITP.2022.8
https://doi.org/10.4230/LIPICS.ITP.2022.8
https://isa-afp.org/entries/Abstract_Substitution.html
https://isa-afp.org/entries/Abstract_Substitution.html
https://isa-afp.org/entries/Superposition_Calculus.html
https://isa-afp.org/entries/Superposition_Calculus.html
https://doi.org/10.1007/978-3-540-74915-8_19
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.29007/36dt
https://www.isa-afp.org/entries/SuperCalc.html
https://doi.org/10.1007/978-3-319-94205-6_8
https://doi.org/10.1007/978-3-319-94205-6_8
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1007/978-3-642-03359-9_31
https://isa-afp.org/entries/First_Order_Rewriting.html
https://isa-afp.org/entries/First_Order_Clause.html
https://www.isa-afp.org/entries/Saturation_Framework.html
https://www.isa-afp.org/entries/Saturation_Framework.html
https://doi.org/10.1145/3437992.3439912
https://doi.org/10.1145/3437992.3439912
https://doi.org/10.1109/LICS.2012.75

—

—

CPP ’26, January 12-13, 2026, Rennes, France

[29] Uwe Waldmann, Sophie Tourret, Simon Robillard, and Jasmin

Blanchette. 2022. A comprehensive framework for saturation the-
orem proving. Journal of Automated Reasoning 66, 4 (2022), 499-539.
https://doi.org/10.1007/S10817-022-09621-7

Daniel Wand. 2014. Polymorphic+typeclass superposition. In PAAR-
2014 (EPiC Series in Computing, Vol. 31), Stephan Schulz, Leonardo
de Moura, and Boris Konev (Eds.). EasyChair, 105-119. https://doi.
org/10.29007/8v2f

Christoph Weidenbach. 2001. Combining superposition, sorts and
splitting. In Handbook of Automated Reasoning, Alan Robinson and
Andrei Voronkov (Eds.). Vol. II. Elsevier and MIT Press, 1965-2013.
https://doi.org/10.1016/B978-044450813-3/50029- 1

Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar,
Martin Suda, and Patrick Wischnewski. 2009. SPASS version 3.5. In

Balazs Toth, Martin Desharnais-Schiafer, and Jasmin Blanchette

CADE-22 (LNCS, Vol. 5663), Renate A. Schmidt (Ed.). Springer, 140-145.
https://doi.org/10.1007/978-3-642-02959-2_10

Makarius Wenzel. 2007. Isabelle/Isar—a generic framework for human-
readable proof documents. In From Insight to Proof: Festschrift in
Honour of Andrzej Trybulec, Roman Matuszewski and Anna Zalewska
(Eds.). Studies in Logic, Grammar, and Rhetoric, Vol. 10(23). University
of Bialystok.

[34] Akihisa Yamada and René Thiemann. 2024. Sorted terms. Archive of

Formal Proofs (2024). https://isa-afp.org/entries/Sorted_Terms.html.

Received 2025-09-09; accepted 2025-11-13

https://doi.org/10.1007/S10817-022-09621-7
https://doi.org/10.29007/8v2f
https://doi.org/10.29007/8v2f
https://doi.org/10.1016/B978-044450813-3/50029-1
https://doi.org/10.1007/978-3-642-02959-2_10
https://isa-afp.org/entries/Sorted_Terms.html

	Abstract
	1 Introduction
	2 Background
	2.1 Clausal First-Order Logic with Equality
	2.2 Superposition
	2.3 Isabelle/HOL

	3 The Basic Definitions
	3.1 Typing Relations
	3.2 Lifting Typing Relations

	4 The Ground Level
	5 The Nonground Level
	5.1 Functional Substitutions
	5.2 Infinite Variables per Type
	5.3 Functional Substitution Liftings
	5.4 The Nonground Calculus
	5.5 Typed Clauses
	5.6 Type-Preserving IMGUs
	5.7 Weakly Well-Typed Literals
	5.8 Type-Preserving Renamings
	5.9 Regaining Completeness
	5.10 Lifting the Calculus

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

