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Superposition



Saturation Calculi

Saturation calculi automatically prove theorems.

They start from a set of formulas and repeatedly

derive new formulas,

remove redundant ones,

until a contradiction is found or saturation is reached.
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Formulas of Superposition

Terms: x or f(t1, . . . , tn)

Atoms: t ≈ t′

Literals: t ≈ t′ or t 6≈ t′

Clauses: l1 ∨ · · · ∨ ln
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Superposition

Superposition is a saturation calculus by Bachmair and Ganzinger (1994).

The calculus consists of three inference rules.

Superposition corresponds to ordered resolution extended with equality.

E, SPASS, Vampire, and Zipperposition implement superposition.
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Example: Inverse of π

Assume π ≠ 0.

Assume for every x (≠ 0) that the inverse of x is 1/x.

Then the absolute value of the inverse of π is the absolute value of 1/π.

pi 6≈ zero ∧ (∀x. x 6≈ zero ⇒ inv(x) ≈ div(one, x))

⇒ abs(inv(pi)) ≈ abs(div(one, pi))

pi 6≈ zero x ≈ zero ∨ div(one, x) ≈ inv(x)

abs( div(one, pi) ) 6≈ abs(inv(pi))

pi ≈ zero ∨ abs( inv(pi) ) 6≈ abs(inv(pi))

pi ≈ zero

zero 6≈ zero

⊥
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Formalization

We formalized untyped superposition in Isabelle (Desharnais et al. 2024).

We formalized soundness and completeness using the saturation framework

(Waldmann et al. 2022; Tourret and Blanchette 2021).
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Untyped Superposition Locale

locale superposition_calculus =

nonground_order ≺t +

nonground_selection_function select + ...

}
assumptions

for

≺t ::
′t ⇒ ′t ⇒ bool and

select :: ′t clause ⇒ ′t clause and ...

begin

inductive superposition :: ′t clause ⇒ ′t clause ⇒ ′t clause ⇒ bool where ...

inductive eq_resolution :: ′t clause ⇒ ′t clause ⇒ bool where ...

inductive eq_factoring :: ′t clause ⇒ ′t clause ⇒ bool where ...

end
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Adding Types



Why Do We Want Types?

x ≈ y ¬px ≈ y p 6≈ t

The clause set is satisfiable in any interpretation with a single-element domain.
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The clause set is satisfiable if the types of x and y are not Boolean.

Modern provers support types natively.
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Simple Monomorphic Types – Example

F replicate 2 = ([Char,Nat], String) V x = Char F five 0 = ([],Nat)

F ,V ` replicate x five : String
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Liftings

Well-typedness for termsPENCIL-RULER

Well-typedness for atomsPENCIL-RULER

Well-typedness for literalsPENCIL-RULER

Well-typedness for clausesPENCIL-RULER
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Liftings

Well-typedness for termsPENCIL-RULER

Well-typedness for atomsROBOT

Natural functor

Well-typedness for literalsROBOT

Natural functor

Well-typedness for clausesROBOT

Natural functor
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Liftings

Substitutions, orders, entailment, and well-typedness for termsPENCIL-RULER

Substitutions, orders, entailment, and well-typedness for atomsROBOT

Natural functor

Substitutions, orders, entailment, and well-typedness for literalsROBOT

Natural functor

Substitutions, orders, entailment, and well-typedness for clausesROBOT

Natural functor
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Typed Superposition Locale

locale superposition_calculus =
nonground_order ≺t +

nonground_selection_function select +

type_system welltyped + ...

for

≺t ::
′t ⇒ ′t ⇒ bool and

select :: ′t clause ⇒ ′t clause and
welltyped :: (′v ⇒ ′ty) ⇒ ′t ⇒ ′ty ⇒ bool and ...

begin

...

inductive eq_resolution :: (′t, ′v, ′ty) typed_clause ⇒ (′t, ′v, ′ty) typed_clause ⇒ bool where

...

end
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Completeness Proof

Theorem

For every set N that is saturated, if N entails⊥, then⊥ ∈ N.

N

NG

M

MG

ground clausesground welltyped clauses 3

construct model

overapproximate

We add types to the nonground level.
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Adapting the Inference Rules

1. The unifiers in the inference rules are type preserving.

2. The renaming substitutions in the superposition rule are type preserving.

3. For each type, sufficiently many variables exist.

4. The variable-type environments in the superposition rule are compatible.

5. One additional side condition for the superposition rule.
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Well-typedness Preservation

Theorem

Let C, D, and E be clauses and V1, V2, and V3 be variable-type environments. If there exists an

inference superposition 〈V1,D〉 〈V2, E〉 〈V3,C〉, then

(clause.is_welltyped F V1 D ∧ clause.is_welltyped F V2 E) −�→ clause.is_welltyped F V3 C
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Completeness Proof with Types

Theorem

For every set N that is saturated, if N entails⊥, then⊥ ∈ N.

N

NG

M

MG

ground welltyped clauses 3

construct model

overapproximate 3
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Why Are Modular Proofs Useful?

Ahmed and I (2025) derived a formalization of typed ordered resolution.

The formalization is compatible with Yamada and Thiemann (2024) by adding only about

150 lines of proof text.

We are extending the approach to rank-1 polymorphism.
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Conclusion

We parameterized our formalization of superposition with a monomorphic type system.

We work on rank-1 polymorphism.

Our goal is to obtain a verified executable superposition prover.
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