Adding Sorts to an Isabelle Formalization of Superposition

Balazs Toth Martin Desharnais-Schifer Jasmin Blanchette

CPP 2026, Rennes, France

LMU

LUDWIG-
MAXIMILIANS-

UNIVERSITAT
MUNCHEN

Superposition

Saturation Calculi

Saturation calculi automatically prove theorems.

Saturation Calculi

Saturation calculi automatically prove theorems.

They start from a set of formulas and repeatedly
e derive new formulas,

Saturation Calculi

Saturation calculi automatically prove theorems.

They start from a set of formulas and repeatedly

e derive new formulas,
e remove redundant ones,

Saturation Calculi

Saturation calculi automatically prove theorems.

They start from a set of formulas and repeatedly

e derive new formulas,
e remove redundant ones,

until a contradiction is found or saturation is reached.

Formulas of Superposition

Terms: xorf(ty,...,t,)

Formulas of Superposition

Terms: xorf(ty,...,t,)

Atoms: t~

Formulas of Superposition

Terms: xorf(ty,...,t,)
Atoms: t =~ t/

Literals: + ~t ort % t'

Formulas of Superposition

Terms: xorf(ty,...,t,)
Atoms: t =~ t/
Literals: + ~t ort % t'

Clauses: 1V --- VI,

Superposition is a saturation calculus by Bachmair and Ganzinger (1994).

Superposition is a saturation calculus by Bachmair and Ganzinger (1994).

The calculus consists of three inference rules.

Superposition is a saturation calculus by Bachmair and Ganzinger (1994).
The calculus consists of three inference rules.

Superposition corresponds to ordered resolution extended with equality.

Superposition is a saturation calculus by Bachmair and Ganzinger (1994).
The calculus consists of three inference rules.
Superposition corresponds to ordered resolution extended with equality.

E, SPASS, Vampire, and Zipperposition implement superposition.

Example: Inverse of

Assume 1 # 0.

Assume for every x (# 0) that the inverse of x is 1/x.
Then the absolute value of the inverse of n is the absolute value of 1/7.

Example: Inverse of

Assume 7 # 0.
Assume for every x (# 0) that the inverse of x is 1/x.
Then the absolute value of the inverse of n is the absolute value of 1/7.

|

pi % zero A (Vx. x % zero = inv(x) ~ div(one, x))

= abs(inv(pi)) ~ abs(div(one, pi))

Example: Inverse of

pi % zero A (Vx. x % zero = inv(x) ~ div(one, x))

= abs(inv(pi)) ~ abs(div(one, pi))

Example: Inverse of

pi % zero A (Vx. x % zero = inv(x) = div(one, x))

= abs(inv(pi)) ~ abs(div(one, pi))

|

pi % zero x ~ zero V div(one,x) & inv(x)

abs(div(one, pi)) % abs(inv(pi))

Example: Inverse of

pi % zero x ~ zero V |div(one,x) ~ inv(x)

abs(/div(one, pi)) % abs(inv(pi))

Example: Inverse of

pi % zero x ~ zero V |div(one,x) ~ inv(x)

abs(/div(one, pi)) % abs(inv(pi))

pi A= zero V abs(inv(pi)) 5 abs(inv(pi))

Example: Inverse of

pi % zero x ~ zero V div(one,x) & inv(x)

abs(div(one, pi)) % abs(inv(pi))
pi ~ zero V |abs(inv(pi)) = abs(inv(pi))

Example: Inverse of

pi % zero x ~ zero V div(one,x) & inv(x)

abs(div(one, pi)) % abs(inv(pi))
pi ~ zero V |abs(inv(pi)) = abs(inv(pi))

pi ~ zero

Example: Inverse of

pi| 5 zero x =~ zero V div(one,x) ~ inv(x)

abs(div(one, pi)) % abs(inv(pi))

pi A= zero V abs(inv(pi)) 5 abs(inv(pi))

pil ~ zero

Example: Inverse of

pi| 5 zero x =~ zero V div(one,x) ~ inv(x)

abs(div(one, pi)) % abs(inv(pi))

pi A= zero V abs(inv(pi)) 5 abs(inv(pi))

pil ~ zero

zero % zero

Example: Inverse of

pi % zero x ~ zero V div(one,x) & inv(x)

abs(div(one, pi)) % abs(inv(pi))

pi A= zero V abs(inv(pi)) 5 abs(inv(pi))

pi ~ zero

zero # |zero

Example: Inverse of

pi % zero x ~ zero V div(one,x) & inv(x)

abs(div(one, pi)) % abs(inv(pi))

pi A= zero V abs(inv(pi)) 5 abs(inv(pi))

pi ~ zero
zero # |zero

1L

Formalization

We formalized untyped superposition in Isabelle (Desharnais et al. 2024).

Formalization

We formalized untyped superposition in Isabelle (Desharnais et al. 2024).

We formalized soundness and completeness using the saturation framework
(Waldmann et al. 2022; Tourret and Blanchette 2021).

Untyped Superposition Locale

locale superposition_calculus =

Untyped Superposition Locale

locale superposition_calculus =
nonground_order <; +

. . assumptions
nonground_selection_function select + ... } P

Untyped Superposition Locale

locale superposition_calculus =
nonground_order <; +
nonground_selection_function select + ...
for
=<ttt = 't = bool and
select :: 't clause = 't clause and ...

} assumptions

Untyped Superposition Locale

locale superposition_calculus =
nonground_order <; +
nonground_selection_function select + ...
for
<"t = 't = bool and
select :: 't clause = 't clause and ...
begin

} assumptions

inductive superposition :: 't clause = 't clause = 't clause = bool where ...
inductive eq_resolution :: 't clause = 't clause = bool where ...
inductive eq_factoring :: 't clause = 't clause = bool where ...

end

Adding Types

Why Do We Want Types?

xX=y P

The clause set is satisfiable in any interpretation with a single-element domain.

Why Do We Want Types?

The constant t encodes truth.

Why Do We Want Types?

The constant t encodes truth.

The clause set is unsatisfiable.

Why Do We Want Types?

X~y p#t

The symbols p and t have the Boolean type.

Why Do We Want Types?

X~y p#t

The symbols p and t have the Boolean type.

The clause set is satisfiable if the types of x and y are not Boolean.

Why Do We Want Types?

X~y p#t

The symbols p and t have the Boolean type.
The clause set is satisfiable if the types of x and y are not Boolean.

Modern provers support types natively.

Simple Monomorphic Types - Example

F,V I replicate x five : String

Simple Monomorphic Types - Example

F replicate 2 = ([Char, Nat]|, String)
F,V I replicate x five : String

Simple Monomorphic Types - Example

F replicate 2 = ([Char, Nat|, String) ~ V x = Char
F,V I replicate x five : String

Simple Monomorphic Types - Example

F replicate 2 = ([Char, Nat|, String) ~ Vx = Char F five 0 = ([|, Nat)
F,V I replicate x five : String

Liftings
p 3 Well-typedness for terms

p 3 Well-typedness for terms

p 4 Well-typedness for atoms

II

Liftings

Well-typedness for terms

Well-typedness for atoms

Well-typedness for literals

Well-typedness for clauses

Liftings

p 3 Well-typedness for terms

Natural func’rorl

- Well-typedness for atoms

Natural functor

Vi
A}

- Well-typedness for literals

Natural functor

- Well-typedness for clauses

Vi
A}

p 4 Substitutions, orders, entailment, and well-typedness for terms

Natural func’rorl

- Jll Substitutions, orders, entailment, and well-typedness for atoms

Natural functor
~

Substitutions, orders, entailment, and well-typedness for literals

Natural functor
~

U: -l Substitutions, orders, entailment, and well-typedness for clauses

10

Typed Superposition Locale

locale superposition_calculus =
nonground_order <; +
nonground_selection_function select +
type_system welltyped + ...

11

Typed Superposition Locale

locale superposition_calculus =
nonground_order <; +
nonground_selection_function select +
type_system welltyped + ...
for
<t 't = 't = bool and
select :: 't clause = 't clause and
welltyped :: ('v = 'ty) = 't = 'ty = bool and ...

11

Typed Superposition Locale

locale superposition_calculus =
nonground_order <; +
nonground_selection_function select +
type_system welltyped + ...
for
<t 't = 't = bool and
select :: 't clause = 't clause and
welltyped :: ('v = 'ty) = 't = 'ty = bool and ...
begin

inductive eq_resolution :: ('t,'v, ty) typed_clause = ('t,'v,’ty) typed_clause = bool where

end
1

Completeness Proof

For every set N that is saturated, if N entails |, then 1. € N.

Completeness Proof

For every set N that is saturated, if N entails |, then 1. € N.

Completeness Proof

For every set N that is saturated, if N entails |, then 1. € N.

ground clauses

Completeness Proof

For every set N that is saturated, if N entails |, then 1. € N.

ground clauses

o
construct model

Completeness Proof

For every set N that is saturated, if N entails |, then 1. € N.

ground clauses overapproximate

I
construct model

Completeness Proof

For every set N that is saturated, if N entails L, then 1. € N.

ground clauses overapproximate

2
construct model

We add types to the nonground level.

Completeness Proof

For every set N that is saturated, if N entails L, then 1. € N.

ground welltyped clauses v/ overapproximate

2
construct model

We add types to the nonground level.

Adapting the Inference Rules

1. The unifiers in the inference rules are type preserving.

13

Adapting the Inference Rules

1. The unifiers in the inference rules are type preserving.

2. The renaming substitutions in the superposition rule are type preserving.

13

Adapting the Inference Rules

1. The unifiers in the inference rules are type preserving.
2. The renaming substitutions in the superposition rule are type preserving.

3. For each type, sufficiently many variables exist.

13

Adapting the Inference Rules

1. The unifiers in the inference rules are type preserving.
2. The renaming substitutions in the superposition rule are type preserving.
3. For each type, sufficiently many variables exist.

4. The variable-type environments in the superposition rule are compatible.

13

Adapting the Inference Rules

1. The unifiers in the inference rules are type preserving.
The renaming substitutions in the superposition rule are type preserving.
For each type, sufficiently many variables exist.

The variable-type environments in the superposition rule are compatible.

o> @ N

One additional side condition for the superposition rule.

13

Well-typedness Preservation

Let C, D, and E be clauses and V1, Vo, and V53 be variable-type environments. If there exists an
inference superposition (V1,D) (V2,E) (V3,C), then

Well-typedness Preservation

Theorem

Let C, D, and E be clauses and V1, Vo, and V53 be variable-type environments. If there exists an
inference superposition (V1,D) (V2,E) (V3,C), then

(clause.is_welltyped F V1 D A clause.is_welltyped F Vo E) — clause.is_welltyped F V3 C

Completeness Proof with Types

For every set N that is saturated, if N entails |, then | € N.

ground welltyped clauses v/ overapproximate v/

construct model

Why Are Modular Proofs Useful?

Ahmed and | (2025) derived a formalization of typed ordered resolution.

16

Why Are Modular Proofs Useful?

Ahmed and | (2025) derived a formalization of typed ordered resolution.

The formalization is compatible with Yamada and Thiemann (2024) by adding only about
150 lines of proof text.

16

Why Are Modular Proofs Useful?

Ahmed and | (2025) derived a formalization of typed ordered resolution.

The formalization is compatible with Yamada and Thiemann (2024) by adding only about
150 lines of proof text.

We are extending the approach to rank-1 polymorphism.

16

Conclusion

We parameterized our formalization of superposition with a monomorphic type system.

17

Conclusion

We parameterized our formalization of superposition with a monomorphic type system.

We work on rank-1 polymorphism.

17

Conclusion

We parameterized our formalization of superposition with a monomorphic type system.
We work on rank-1 polymorphism.

Our goal is to obfain a verified executable superposition prover.

17

