

Adding Sorts to an Isabelle Formalization of Superposition

Balazs Toth Martin Desharnais-Schäfer Jasmin Blanchette

CPP 2026, Rennes, France

Superposition

Saturation Calculi

Saturation calculi automatically prove theorems.

Saturation Calculi

Saturation calculi automatically prove theorems.

They start from a set of formulas and repeatedly

- derive new formulas,

Saturation calculi automatically prove theorems.

They start from a set of formulas and repeatedly

- derive new formulas,
- remove redundant ones,

Saturation calculi automatically prove theorems.

They start from a set of formulas and repeatedly

- derive new formulas,
- remove redundant ones,

until a contradiction is found or saturation is reached.

Formulas of Superposition

Terms: x or $f(t_1, \dots, t_n)$

Formulas of Superposition

Terms: x or $f(t_1, \dots, t_n)$

Atoms: $t \approx t'$

Formulas of Superposition

Terms: x or $f(t_1, \dots, t_n)$

Atoms: $t \approx t'$

Literals: $t \approx t'$ or $t \not\approx t'$

Formulas of Superposition

Terms: x or $f(t_1, \dots, t_n)$

Atoms: $t \approx t'$

Literals: $t \approx t'$ or $t \not\approx t'$

Clauses: $I_1 \vee \dots \vee I_n$

Superposition

Superposition is a saturation calculus by Bachmair and Ganzinger (1994).

Superposition

Superposition is a saturation calculus by Bachmair and Ganzinger (1994).

The calculus consists of three inference rules.

Superposition

Superposition is a saturation calculus by Bachmair and Ganzinger (1994).

The calculus consists of three inference rules.

Superposition corresponds to ordered resolution extended with equality.

Superposition

Superposition is a saturation calculus by Bachmair and Ganzinger (1994).

The calculus consists of three inference rules.

Superposition corresponds to ordered resolution extended with equality.

E, SPASS, Vampire, and Zipperposition implement superposition.

Example: Inverse of π

Assume $\pi \neq 0$.

Assume for every x ($\neq 0$) that the inverse of x is $1/x$.

Then the absolute value of the inverse of π is the absolute value of $1/\pi$.

Example: Inverse of π

Assume $\pi \neq 0$.

Assume for every x ($\neq 0$) that the inverse of x is $1/x$.

Then the absolute value of the inverse of π is the absolute value of $1/\pi$.

$$\text{pi} \not\approx \text{zero} \wedge (\forall x. x \not\approx \text{zero} \Rightarrow \text{inv}(x) \approx \text{div}(\text{one}, x))$$
$$\Rightarrow \text{abs}(\text{inv}(\text{pi})) \approx \text{abs}(\text{div}(\text{one}, \text{pi}))$$

Example: Inverse of π

$$\mathbf{pi} \not\approx \mathbf{zero} \wedge (\forall x. x \not\approx \mathbf{zero} \Rightarrow \mathbf{inv}(x) \approx \mathbf{div}(\mathbf{one}, x))$$
$$\Rightarrow \mathbf{abs}(\mathbf{inv}(\mathbf{pi})) \approx \mathbf{abs}(\mathbf{div}(\mathbf{one}, \mathbf{pi}))$$

Example: Inverse of π

$$\text{pi} \not\approx \text{zero} \wedge (\forall x. x \not\approx \text{zero} \Rightarrow \text{inv}(x) \approx \text{div}(\text{one}, x))$$
$$\Rightarrow \text{abs}(\text{inv}(\text{pi})) \approx \text{abs}(\text{div}(\text{one}, \text{pi}))$$

$$\text{pi} \not\approx \text{zero} \quad x \approx \text{zero} \vee \text{div}(\text{one}, x) \approx \text{inv}(x)$$
$$\text{abs}(\text{div}(\text{one}, \text{pi})) \not\approx \text{abs}(\text{inv}(\text{pi}))$$

Example: Inverse of π

$$\begin{aligned} \text{pi} \not\approx \text{zero} \quad & \quad x \approx \text{zero} \vee \text{div}(\text{one}, x) \approx \text{inv}(x) \\ \text{abs}(\text{div}(\text{one}, \text{pi})) \not\approx \text{abs}(\text{inv}(\text{pi})) \end{aligned}$$

Example: Inverse of π

$$\text{pi} \not\approx \text{zero} \quad x \approx \text{zero} \vee \text{div}(\text{one}, x) \approx \text{inv}(x)$$

$$\text{abs}(\text{div}(\text{one}, \text{pi})) \not\approx \text{abs}(\text{inv}(\text{pi}))$$

$$\text{pi} \approx \text{zero} \vee \text{abs}(\text{inv}(\text{pi})) \not\approx \text{abs}(\text{inv}(\text{pi}))$$

Example: Inverse of π

$$\text{pi} \not\approx \text{zero} \quad x \approx \text{zero} \vee \text{div}(\text{one}, x) \approx \text{inv}(x)$$

$$\text{abs}(\text{div}(\text{one}, \text{pi})) \not\approx \text{abs}(\text{inv}(\text{pi}))$$

$$\text{pi} \approx \text{zero} \vee \text{abs}(\text{inv}(\text{pi})) \not\approx \text{abs}(\text{inv}(\text{pi}))$$

Example: Inverse of π

$$\text{pi} \not\approx \text{zero} \quad x \approx \text{zero} \vee \text{div}(\text{one}, x) \approx \text{inv}(x)$$

$$\text{abs}(\text{div}(\text{one}, \text{pi})) \not\approx \text{abs}(\text{inv}(\text{pi}))$$

$$\text{pi} \approx \text{zero} \vee \text{abs}(\text{inv}(\text{pi})) \not\approx \text{abs}(\text{inv}(\text{pi}))$$

$$\text{pi} \approx \text{zero}$$

Example: Inverse of π

$\text{pi} \not\approx \text{zero} \quad x \approx \text{zero} \vee \text{div}(\text{one}, x) \approx \text{inv}(x)$

$\text{abs}(\text{div}(\text{one}, \text{pi})) \not\approx \text{abs}(\text{inv}(\text{pi}))$

$\text{pi} \approx \text{zero} \vee \text{abs}(\text{inv}(\text{pi})) \not\approx \text{abs}(\text{inv}(\text{pi}))$

$\text{pi} \approx \text{zero}$

Example: Inverse of π

$\text{pi} \not\approx \text{zero} \quad x \approx \text{zero} \vee \text{div}(\text{one}, x) \approx \text{inv}(x)$

$\text{abs}(\text{div}(\text{one}, \text{pi})) \not\approx \text{abs}(\text{inv}(\text{pi}))$

$\text{pi} \approx \text{zero} \vee \text{abs}(\text{inv}(\text{pi})) \not\approx \text{abs}(\text{inv}(\text{pi}))$

$\text{pi} \approx \text{zero}$

$\text{zero} \not\approx \text{zero}$

Example: Inverse of π

$\text{pi} \not\approx \text{zero} \quad x \approx \text{zero} \vee \text{div}(\text{one}, x) \approx \text{inv}(x)$

$\text{abs}(\text{div}(\text{one}, \text{pi})) \not\approx \text{abs}(\text{inv}(\text{pi}))$

$\text{pi} \approx \text{zero} \vee \text{abs}(\text{inv}(\text{pi})) \not\approx \text{abs}(\text{inv}(\text{pi}))$

$\text{pi} \approx \text{zero}$

zero $\not\approx$ **zero**

Example: Inverse of π

$\text{pi} \not\approx \text{zero} \quad x \approx \text{zero} \vee \text{div}(\text{one}, x) \approx \text{inv}(x)$

$\text{abs}(\text{div}(\text{one}, \text{pi})) \not\approx \text{abs}(\text{inv}(\text{pi}))$

$\text{pi} \approx \text{zero} \vee \text{abs}(\text{inv}(\text{pi})) \not\approx \text{abs}(\text{inv}(\text{pi}))$

$\text{pi} \approx \text{zero}$

$\text{zero} \not\approx \text{zero}$

\perp

Formalization

We formalized untyped superposition in Isabelle (Desharnais et al. 2024).

We formalized untyped superposition in Isabelle (Desharnais et al. 2024).

We formalized soundness and completeness using the saturation framework (Waldmann et al. 2022; Tourret and Blanchette 2021).

Untyped Superposition Locale

```
locale superposition_calculus =
```

Untyped Superposition Locale

```
locale superposition_calculus =  
  nonground_order ≺t +  
  nonground_selection_function select + ... } assumptions
```

Untyped Superposition Locale

```
locale superposition_calculus =  
  nonground_order ≺t +  
  nonground_selection_function select + ... } assumptions  
for  
  ≺t :: 't ⇒ 't ⇒ bool and  
  select :: 't clause ⇒ 't clause and ...
```

Untyped Superposition Locale

```
locale superposition_calculus =  
  nonground_order ≲t +  
  nonground_selection_function select + ... } assumptions  
  for  
    ≲t :: 't ⇒ 't ⇒ bool and  
    select :: 't clause ⇒ 't clause and ...  
begin  
  
  inductive superposition :: 't clause ⇒ 't clause ⇒ 't clause ⇒ bool where ...  
  
  inductive eq_resolution :: 't clause ⇒ 't clause ⇒ bool where ...  
  
  inductive eq_factoring :: 't clause ⇒ 't clause ⇒ bool where ...  
  
end
```

Adding Types

Why Do We Want Types?

$$x \approx y \quad \neg p$$

The clause set is satisfiable in any interpretation with a single-element domain.

Why Do We Want Types?

$$x \approx y \quad p \not\approx t$$

The constant t encodes truth.

Why Do We Want Types?

$$x \approx y \quad p \not\approx t$$

The constant t encodes truth.

The clause set is unsatisfiable.

Why Do We Want Types?

$$x \approx y \quad p \not\approx t$$

The symbols p and t have the Boolean type.

Why Do We Want Types?

$$x \approx y \quad p \not\approx t$$

The symbols p and t have the Boolean type.

The clause set is satisfiable if the types of x and y are not Boolean.

Why Do We Want Types?

$$x \approx y \quad p \not\approx t$$

The symbols p and t have the Boolean type.

The clause set is satisfiable if the types of x and y are not Boolean.

Modern provers support types natively.

Simple Monomorphic Types – Example

$$\mathcal{F}, \mathcal{V} \vdash \text{replicate } x \text{ five} : \text{String}$$

Simple Monomorphic Types – Example

$$\mathcal{F} \text{ replicate } 2 = ([\text{Char}, \text{Nat}], \text{String})$$

$$\mathcal{F}, \mathcal{V} \vdash \text{replicate } x \text{ five} : \text{String}$$

Simple Monomorphic Types – Example

$$\frac{\mathcal{F} \text{ replicate } 2 = ([\mathit{Char}, \mathit{Nat}], \mathit{String}) \quad \mathcal{V} x = \mathit{Char}}{\mathcal{F}, \mathcal{V} \vdash \text{replicate } x \text{ five} : \mathit{String}}$$

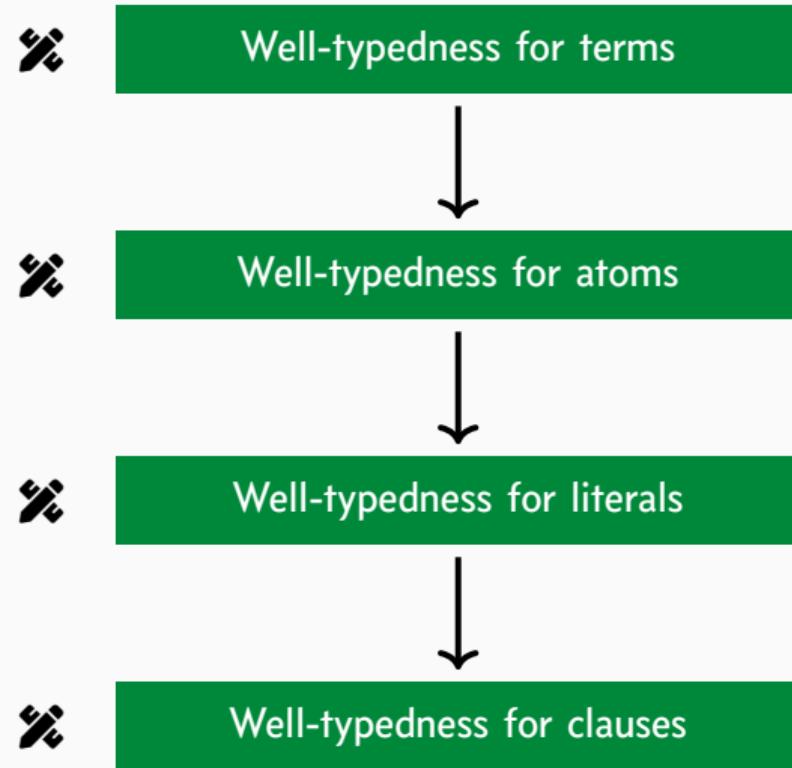
Simple Monomorphic Types – Example

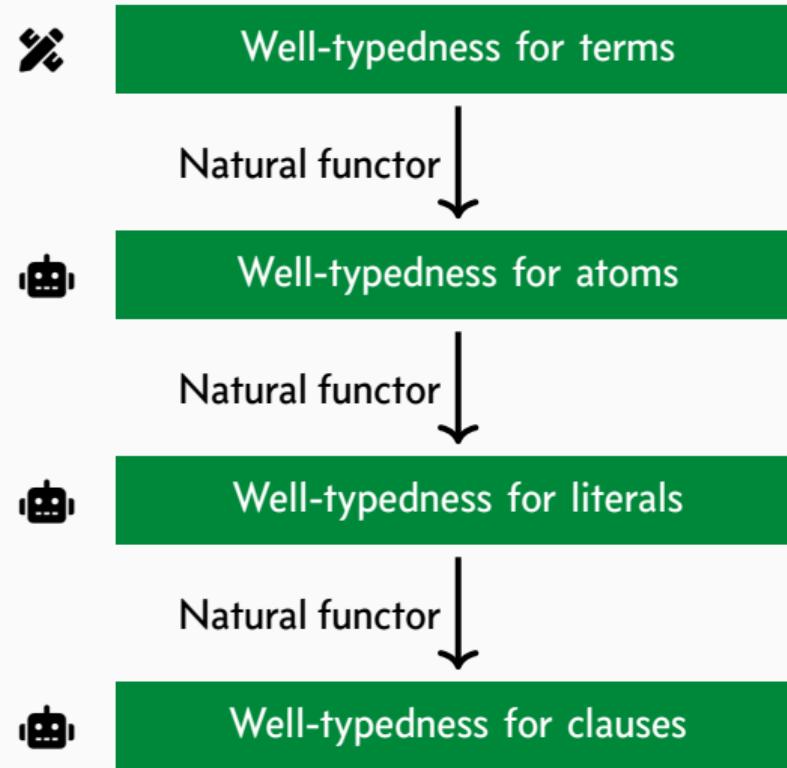
$$\frac{\mathcal{F} \text{ replicate } 2 = ([\mathit{Char}, \mathit{Nat}], \mathit{String}) \quad \mathcal{V} x = \mathit{Char} \quad \mathcal{F} \text{ five } 0 = ([], \mathit{Nat})}{\mathcal{F}, \mathcal{V} \vdash \text{replicate } x \text{ five} : \mathit{String}}$$

Well-typedness for terms

Well-typedness for terms

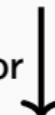
Well-typedness for atoms





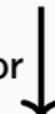
Substitutions, orders, entailment, and well-typedness for terms

Natural functor



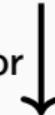
Substitutions, orders, entailment, and well-typedness for atoms

Natural functor



Substitutions, orders, entailment, and well-typedness for literals

Natural functor



Substitutions, orders, entailment, and well-typedness for clauses

Typed Superposition Locale

```
locale superposition_calculus =  
  nonground_order ⪻t +  
  nonground_selection_function select +  
  type_system welltyped + ...
```

Typed Superposition Locale

```
locale superposition_calculus =  
  nonground_order ⪻t +  
  nonground_selection_function select +  
  type_system welltyped + ...  
  for  
    ⪻t :: 't ⇒ 't ⇒ bool and  
    select :: 't clause ⇒ 't clause and  
    welltyped :: ('v ⇒ 'ty) ⇒ 't ⇒ 'ty ⇒ bool and ...
```

Typed Superposition Locale

```
locale superposition_calculus =
  nonground_order ≺t +
  nonground_selection_function select +
  type_system welltyped +
  ...
  for
    ≺t :: 't ⇒ 't ⇒ bool and
    select :: 't clause ⇒ 't clause and
    welltyped :: ('v ⇒ 'ty) ⇒ 't ⇒ 'ty ⇒ bool and ...
begin
  ...
inductive eq_resolution :: ('t, 'v, 'ty) typed_clause ⇒ ('t, 'v, 'ty) typed_clause ⇒ bool where
  ...
end
```

Theorem

For every set N that is saturated, if N entails \perp , then $\perp \in N$.

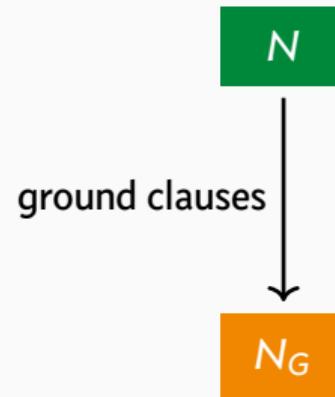
Theorem

For every set N that is saturated, if N entails \perp , then $\perp \in N$.

N

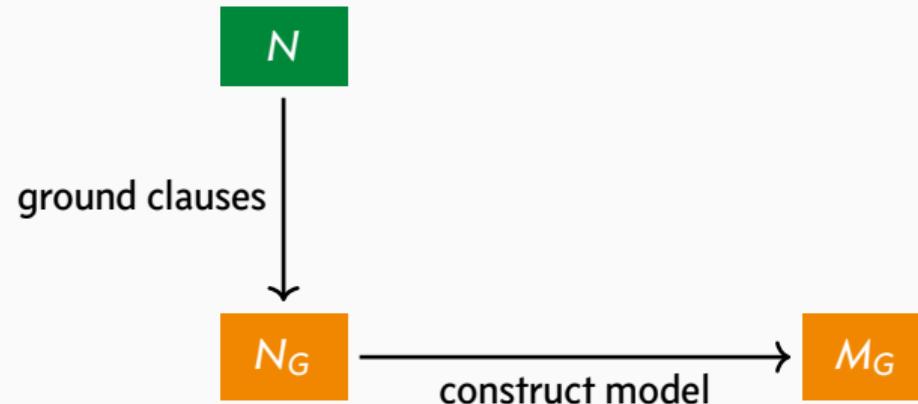
Theorem

For every set N that is saturated, if N entails \perp , then $\perp \in N$.



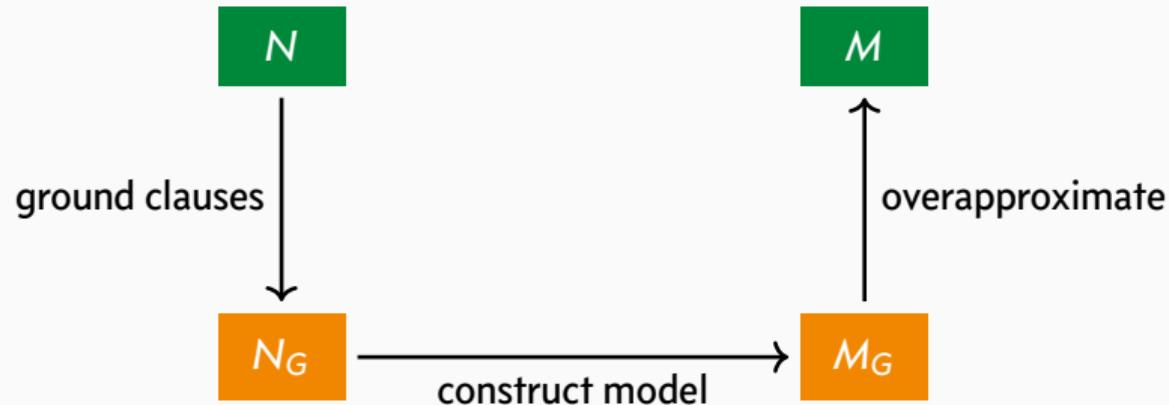
Theorem

For every set N that is saturated, if N entails \perp , then $\perp \in N$.



Theorem

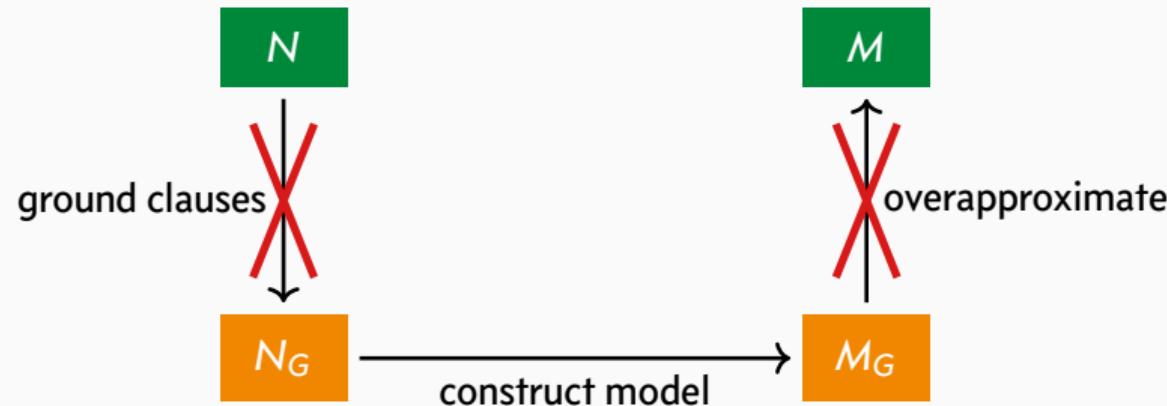
For every set N that is saturated, if N entails \perp , then $\perp \in N$.



Completeness Proof

Goal

For every set N that is saturated, if N entails \perp , then $\perp \in N$.

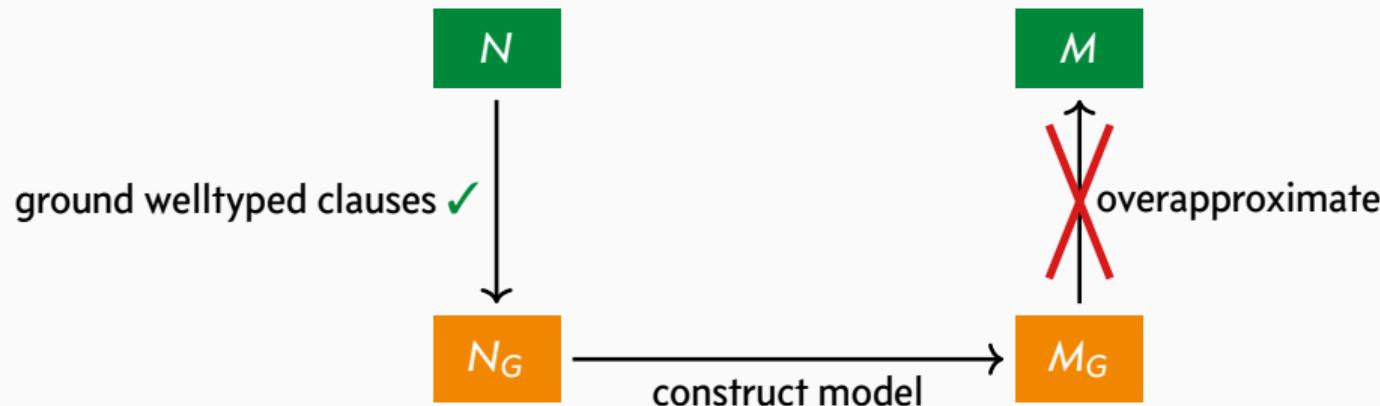


We add types to the nonground level.

Completeness Proof

Goal

For every set N that is saturated, if N entails \perp , then $\perp \in N$.



We add types to the nonground level.

Adapting the Inference Rules

1. The unifiers in the inference rules are type preserving.

Adapting the Inference Rules

1. The unifiers in the inference rules are type preserving.
2. The renaming substitutions in the superposition rule are type preserving.

Adapting the Inference Rules

1. The unifiers in the inference rules are type preserving.
2. The renaming substitutions in the superposition rule are type preserving.
3. For each type, sufficiently many variables exist.

1. The unifiers in the inference rules are type preserving.
2. The renaming substitutions in the superposition rule are type preserving.
3. For each type, sufficiently many variables exist.
4. The variable-type environments in the superposition rule are compatible.

1. The unifiers in the inference rules are type preserving.
2. The renaming substitutions in the superposition rule are type preserving.
3. For each type, sufficiently many variables exist.
4. The variable-type environments in the superposition rule are compatible.
5. One additional side condition for the superposition rule.

Theorem

Let C , D , and E be clauses and \mathcal{V}_1 , \mathcal{V}_2 , and \mathcal{V}_3 be variable-type environments. If there exists an inference superposition $\langle \mathcal{V}_1, D \rangle \langle \mathcal{V}_2, E \rangle \langle \mathcal{V}_3, C \rangle$, then

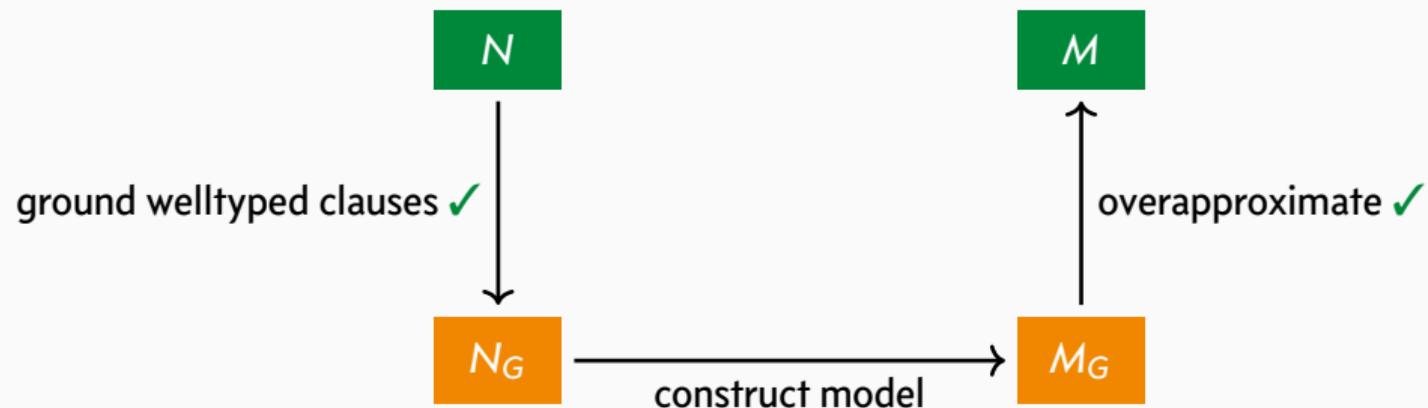
Theorem

Let C , D , and E be clauses and \mathcal{V}_1 , \mathcal{V}_2 , and \mathcal{V}_3 be variable-type environments. If there exists an inference superposition $\langle \mathcal{V}_1, D \rangle \langle \mathcal{V}_2, E \rangle \langle \mathcal{V}_3, C \rangle$, then

$(\text{clause.is_welltyped } \mathcal{F} \mathcal{V}_1 D \wedge \text{clause.is_welltyped } \mathcal{F} \mathcal{V}_2 E) \rightarrow \text{clause.is_welltyped } \mathcal{F} \mathcal{V}_3 C$

Theorem

For every set N that is saturated, if N entails \perp , then $\perp \in N$.



Why Are Modular Proofs Useful?

Ahmed and I (2025) derived a formalization of typed ordered resolution.

Why Are Modular Proofs Useful?

Ahmed and I (2025) derived a formalization of typed ordered resolution.

The formalization is compatible with Yamada and Thiemann (2024) by adding only about 150 lines of proof text.

Why Are Modular Proofs Useful?

Ahmed and I (2025) derived a formalization of typed ordered resolution.

The formalization is compatible with Yamada and Thiemann (2024) by adding only about 150 lines of proof text.

We are extending the approach to rank-1 polymorphism.

Conclusion

We parameterized our formalization of superposition with a monomorphic type system.

Conclusion

We parameterized our formalization of superposition with a monomorphic type system.

We work on rank-1 polymorphism.

Conclusion

We parameterized our formalization of superposition with a monomorphic type system.

We work on rank-1 polymorphism.

Our goal is to obtain a verified executable superposition prover.