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Superposition
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Saturation Calculi

Saturation calculi automatically prove theorems.

They start from a set of formulas and repeatedly

e derive new formulas,
e remove redundant ones,

until a contradiction is found or saturation is reached.
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Formulas of Superposition

Terms: xorf(ty,...,t,)
Atoms: t =~ t/
Literals: + ~t ort % t'

Clauses: 1V --- VI,
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E, SPASS, Vampire, and Zipperposition implement superposition.
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pi % zero A (Vx. x % zero = inv(x) = div(one, x))

= abs(inv(pi)) ~ abs(div(one, pi))

|
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pi % zero  x ~ zero V div(one,x) & inv(x)
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Example: Inverse of

pi % zero  x ~ zero V div(one,x) & inv(x)

abs(div(one, pi)) % abs(inv(pi))

pi A= zero V abs(inv(pi)) 5 abs(inv(pi))

pi ~ zero
zero # |zero
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Formalization

We formalized untyped superposition in Isabelle (Desharnais et al. 2024).

We formalized soundness and completeness using the saturation framework
(Waldmann et al. 2022; Tourret and Blanchette 2021).
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Untyped Superposition Locale

locale superposition_calculus =
nonground_order <; +
nonground_selection_function select + ...
for
<"t = 't = bool and
select :: 't clause = 't clause and ...
begin

} assumptions

inductive superposition :: 't clause = 't clause = 't clause = bool where ...
inductive eq_resolution :: 't clause = 't clause = bool where ...
inductive eq_factoring :: 't clause = 't clause = bool where ...

end
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Why Do We Want Types?

X~y p#t

The symbols p and t have the Boolean type.
The clause set is satisfiable if the types of x and y are not Boolean.

Modern provers support types natively.
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Simple Monomorphic Types - Example

F replicate 2 = ([Char, Nat|, String) ~ Vx = Char  F five 0 = ([|, Nat)
F,V I replicate x five : String
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Liftings

p 3 Well-typedness for terms

Natural func’rorl

- Well-typedness for atoms

Natural functor

Vi
A}

- Well-typedness for literals

Natural functor

- Well-typedness for clauses

Vi
A}



p 4 Substitutions, orders, entailment, and well-typedness for terms

Natural func’rorl

- Jll Substitutions, orders, entailment, and well-typedness for atoms

Natural functor
~

Substitutions, orders, entailment, and well-typedness for literals

Natural functor
~

U: -l Substitutions, orders, entailment, and well-typedness for clauses
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Typed Superposition Locale

locale superposition_calculus =
nonground_order <; +
nonground_selection_function select +
type_system welltyped + ...
for
<t 't = 't = bool and
select :: 't clause = 't clause and
welltyped :: ('v = 'ty) = 't = 'ty = bool and ...
begin

inductive eq_resolution :: ('t,'v, ty) typed_clause = ('t,'v,’ty) typed_clause = bool where

end
1
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2
construct model

We add types to the nonground level.
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Adapting the Inference Rules

1. The unifiers in the inference rules are type preserving.
The renaming substitutions in the superposition rule are type preserving.
For each type, sufficiently many variables exist.

The variable-type environments in the superposition rule are compatible.

o> @ N

One additional side condition for the superposition rule.

13
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Well-typedness Preservation

Theorem

Let C, D, and E be clauses and V1, Vo, and V53 be variable-type environments. If there exists an
inference superposition (V1,D) (V2,E) (V3,C), then

(clause.is_welltyped F V1 D A clause.is_welltyped F Vo E) — clause.is_welltyped F V3 C



Completeness Proof with Types

For every set N that is saturated, if N entails |, then | € N.

ground welltyped clauses v/ overapproximate v/

construct model
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Why Are Modular Proofs Useful?

Ahmed and | (2025) derived a formalization of typed ordered resolution.

The formalization is compatible with Yamada and Thiemann (2024) by adding only about
150 lines of proof text.

We are extending the approach to rank-1 polymorphism.
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Conclusion

We parameterized our formalization of superposition with a monomorphic type system.
We work on rank-1 polymorphism.

Our goal is to obfain a verified executable superposition prover.
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