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Abstract

In this thesis, we start with a picture of current existing theorem-proving systems. Then

we describe our new meta-logical system (named DiaToM) for mechanizing foundations of

mathematics. Using dependent sorts and first-order logic, our system (implemented as an LCF-

style theorem-prover) improves on the state-of-the-art by providing efficient type-checking,

convenient automatic rewriting, and interactive proof support. By formalizing the proof

theory of the DiaToM logic, we verified that the most suspicious design, namely the “formula

variable”, does not break the first-orderness of our logic. We assess our implementation by

axiomatizing Lawvere’s Elementary Theory of the Category of Sets(ETCS), Shulman’s Sets,

Elements and Relations(SEAR), and McLarty’s Categories of Categories as a Foundation of

mathematics(CCAF). With a suitable choice of axioms, our system is sufficient to perform

some basic mathematical constructions such as quotients, induction, and coinduction by

constructing integers, lists, and co-lists. More interestingly, we can provide concrete examples

of some constructions that are not possible to be carried out in simpler systems as HOL can

be carried out with SEAR in our system. This demonstrates that our system is in a sweet

spot of simplicity and expressiveness.
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Chapter 1

Introduction

We present the problem we want to address, introduce the current candidate solutions to it,

point out how they are lacking given our particular aims, and outline the rest of the thesis,

which presents our proposed solution.

1.1 Overview

When most mathematicians describe their own work, they do not explicitly ground their work

on any particular foundation. Similarly, there is often no explicit record of a piece of work’s

foundations when it appears as a publication. As a subject that admits the ultimate level of

precision, a significant feature of mathematics is that it is possible to do it formally. However,

to formalize a mathematical argument, we do require a primitive foundation, from which each

step of our reasoning can be derived.

Then there is the question of which foundation we should use to formalize all this mathematics.

The answer in short is “it depends on what we care about”. Most foundations are designed

with a particular aim in mind. Thus, it is important to know what the foundation is designed

for, before choosing to reason with it, because the things it can capture and prove are different.

The most obvious example is that some theorems can only be proved with the axiom of choice.

One important difference is also evident by comparing ZF [28] and Morse-Kelley set theory [26],

where the former does not allow expressing statements about proper classes at all, but the

latter can. As another interesting aspect, the “size issues” [8] are a matter of concern around

the topic of cardinality, which motivates the question of whether we want a universal set. In

case we do, Quine’s new foundation [43] gives us one. But it is actually not the only choice:

Tarski–Grothendieck set theory [48] also provides such a set by adding an extra axiom to

ZF, but in a different sense than NF. Therefore, the choice of foundation does make some

difference.

Even if two foundations have the same power, the choice is still flexible based on our aesthetic

preferences. One construction capturing the same intended idea may look neat in one
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foundation, and look messy in another. The beauty of ZF in terms of being both powerful

and simple is appreciated by many. But many find it inelegant that ZF can prove 1 ∈ 2. To
address this issue, people have developed structural set theories. The idea is to have two sorts,

sets and elements. Instead of having everything being a set, we have each “thing” either a set

or an element, but not both. With the restriction that the “membership” relation can only

hold between a set and an element, and given that 1 and 2 are both elements of the same set,

it does not make sense to write 1 ∈ 2 anymore. The development of structural set theories

was pioneered by William Lawvere, who wrote down the axioms of The Elementary Theory of

the Category of Sets (ETCS) [29]. More recently, a more powerful theory, Sets, Elements and

Relations (SEAR) was developed by Michael Shulman [7]. As a direct solution to the problem

occurring in ZF, we also have an option to present ZF structurally, yielding structural ZF [9].

We will see that our system DiaToM models these structural theories particularly well.

Category theory can also serve as a foundation in a certain sense. Two well-known attempts

are McLarty’s Categories of Categories As a Foundation of Mathematics(CCAF) [33] and

Lawvere’s Elementary Theory of the Category of Categories(ETCC) [30], with the former

having been shown capable of capturing many non-trivial results. And, though ETCC is

known to be flawed, people have never lost interest in fixing it, and are continuing to work on

similar systems.

All the examples above pertain to the traditional approach to foundations that appear in

mathematical publications. Nowadays, to make it easier to present mathematics in computer

programs, there comes the option of using a type theory. As pointed out in the HoTT book [49,

page17], all the above foundations are clearly separated into two layers: a deductive system and

a set of axioms. In contrast, a type theory is its own deductive system and can be axiom-free.

Nevertheless, there remains the option of imposing some axioms on top of a type theory to get

different desired effects. For example, in simple type theory, by creating a type for the ZF sets

and adding relevant axioms, we can obtain the system HOLZF from HOL. With dependent

type theory, in its extension HoTT, many interesting features are due to its univalence axiom.

In the theorem prover Lean [21], which implements a version of dependent type theory, we can

(and often do) add extra axioms stating excluded middle, and one for proof irrelevance, making

the system closer to usual mathematical conventions. As a summary, we list the foundations

we have mentioned with their deductive system in Table 1.1.

There are some systems implementing what we might describe as typeless logics. The space in

the middle, however, has yet to be investigated. Our thesis investigates the space in the middle

by establishing a meta-logical framework to serve as the deductive system for the foundations

ETCS, SEAR and CCAF. By pursuing this, we investigate the mathematical expressiveness of

the logics, as well as their practical utility when realized as a theorem-proving system. We
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Foundation Level of complexity Logic layer Implementation
HoTT high DTT Arend
(variants of) CIC high DTT Lean, Coq
HOLZF medium HOL Isabelle/HOLZF
SEAR medium sorted FOL None
ETCS medium sorted FOL None
CCAF medium sorted FOL None
ZF (+C) low FOL Isabelle/ZF
NBG low FOL Mizar

Table 1.1: Comparing Foundations

System Foundational Intrinsic dependent types Generic
HOL × × ×

Coq/Lean/Agda × X ×
Mizar X X ×
Isabelle X × X

Metamath X × X
DFOL X X X
FOLDS X X X
HOLZF X × ×

Table 1.2: Theorem-Proving Systems

believe this demonstrates the existence of a sweet spot.

1.2 Related Work

In this section, we introduce some popular existing logic systems that are candidates for

formalizing mathematics. While they all have their own advantages and work nicely for their

design purpose, it is clear that none is perfect. Our discussion covers generic and non-generic

theorem-proving systems, as well as theoretical systems. See Table 1.2.

By “foundational” we mean addressing the issue of foundations of mathematics, and by “generic”,

we mean it is possible to use different frameworks of reasoning to write proofs. We see below

that a critical fact is what matters is not only “true or false” in all these dimensions, but also

“in which manner”.

1.2.1 Non-Generic Systems

A non-generic system implements a particular deductive framework. Users are expected to

use the rules that are primitively implemented. They do not provide any generic feature to

enable the use of an alternative foundation. For such a theorem prover, its design addresses

the foundational issue only if it chooses to implement a mathematical foundation. Only a few

theorem provers adopt this choice. The most famous one among them is Mizar. It is a system
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with a 50-year history, distinguished by its rich mathematical library, and still has an active

community.

For such systems, obviously, they have the deficiency that the user is already tied to their

particular choice. But actually, it is not impossible to mechanize proofs using other foundations

in them. There still exists the possibility of constructing the foundation as another layer above

such a framework and using only this layer to do further proof. Let us, however, by taking a

closer look at some possible candidates, explain why it is not a decent approach for this kind

of formalization.

HOL

The system HOL, also known as simple type theory, is indeed very simple and minimal. It does

not have any primitive notion of dependent types: a HOL type cannot involve any HOL term

in it. Certainly, HOL is not as expressive as many other mainstream type theories, namely

variants of the dependent type theory. Nevertheless, the existing mathematical libraries in

HOL already demonstrate that HOL is still capable of many mathematical formalizations.

Due to its simplicity, type-checking in HOL is very easy, and HOL is fast to process proofs.

HOL has a long history and is suitable for mechanizing many aspects of mathematics. For

example, HOL is used to formalize Kepler’s conjecture, as described in Hales et al. [23]. More

recently, work by Bordg et al. [18] has shown that despite its simplicity, it is still possible to

formalize graduate mathematics such as Grothendieck schemes in HOL.

Isabelle/ZF and Isabelle/HOLZF

Isabelle/ZF is an object logic of Isabelle declared using Isabelle’s meta-logic. It is obtained

by creating a type of ZF sets and adding the required axioms. Existing work in Isabelle/ZF

includes the formalization of forcing by Emmanuel et al. [22], as well as the relative consistency

of the Axiom of Choice by Paulson [39].

Isabelle/HOLZF is built on the top of HOL by adding an additional type of ZF sets to the

HOL system. Whereas we can only work with sets in Isabelle/ZF, all the HOL types are

available in Isabelle/HOLZF. It is indeed more powerful than HOL. As a witness, whereas it

is not possible to formalize Partizan Games using the implemented type package in FOL, it is

formalized in HOLZF by Obua [36].

Dependently Typed Systems

Dependent type theory and its extended variants are all very powerful. Implemented as theorem

provers, a dependent type system can handle very sophisticated statements, as witnessed by

theorem provers Lean, and Coq. They are starting to attract a number of mathematicians.
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With their involvement in Lean’s Xena project, Lean has successfully captured the definition

of perfectoid space, as described by work by Buzzard et al. [19], which is considered to be one

of the most complicated definitions ever.

However, such power comes at the cost of complexity. The type-checking machinery in

dependent type theory is delicate. Reflecting on user experience, it takes longer to execute

a proof step. The kernels of these theorem provers are large, and so, more human effort is

required to maintain them.

It is certainly possible to formalize mathematics in these dependently typed provers. As

indicated in [11], Lean implements a version of Calculus of Inductive Constructions(CIC). In

its standard mathlib, there “defines an additional axiom, propositional extensionality, and a

quotient construction which in turn implies the principle of function extensionality”.

For formalizing traditional mathematical foundations, the fact that the system is more powerful

than necessarily required counts as a disadvantage. This makes it harder to keep track of

the involvement of ingredients in the system when performing a proof. Proofs in traditional

mathematical foundations only rely on the relevant first-order rules, but the primitive rules of

the DTT system are more than these. Some of these primitive rules construct some objects

that have a counterpart that can also be constructed from axioms. A user should take care

not to mix the two notions. For instance, whereas the axioms in ZF already allow a user to

construct quotient sets, the ambient systems of Coq and Lean already assert the existence

of quotient types as primitive. During proofs, when only intending to use the mathematical

foundation encoded, a user also has to carefully choose the proof tools so they do not invoke

the rules which is specific to DTT. It is possible to treat such a problem by making some

restrictions. We hence need to develop some tools to restrict ourselves from unconsciously

appealing to the meta-theory instead of the foundation itself.

Mizar

Mizar addresses the foundation issue by employing a mathematical foundation as its kernel. It

implements the Tarski-Grothendieck set theory, a non-conservative extension of ZF. Terms

in Mizar are classes in the usual set-theoretic sense. Classes that belong to another class are

called a set. Reasoning in Mizar is according to the axioms and the FOL rules. In particular,

users prove formulas instead of constructing proof objects. While Mizar has the notion of

function and predicate symbols, it also supports statements with free second-order variables

(e.g. the induction scheme for natural numbers) [35].

On top of the set theory foundation, Mizar implements a “soft type system”. It allows users

to have part of the convenience of types or even dependent types without a primitive notion

of “type”. A type is constructed as a non-empty set by the comprehension axiom schema.
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Non-emptiness means quantification rules are simple, but as we will see in Chapter 2, we

do want the possibility of empty sorts for some applications. In contrast with DiaToM, a

Mizar term can have more than one type. There are no specific “function types” or “higher

order types”, as they are captured by function and predicate symbols of FOL, respectively.

Accordingly, the “lambda abstraction” and “beta reduction” rule, which are primitive notions

in a type theory, do not have a counterpart in Mizar. This makes type-checking much easier

in Mizar because we never encounter the type-checking of a term involving a λ-abstraction.

1.2.2 Generic Systems

There are not many generic theorem provers1, two famous ones are Isabelle and Metamath.

Isabelle provides a meta-logic, enabling the declaration of logical operations in a rather uniform

way without getting to the bottom level. In contrast, everything in Metamath starts from

scratch. For instance, in Isabelle, to declare a new framework, a user can specify how would

the terms look like, and Isabelle can treat the terms according to what the user has written in

meta-logic, whereas Metamath does not even have a primitive notion of terms. Users can write

things like + : term + term → term in Isabelle. It will simultaneously give that + is a valid

symbol acceptable by the syntax and what it produces is a term. In Metamath, users have to

declare manually that there is going to be something called terms, which can be constructed

as the combination of some symbols. Such symbols are initially declared with their names. In

later steps, we can regulate the construction by writing expressions that mean, for example,

“for the symbol +, we have t + r is a term for any possible term t and r”.

1.2.1 Example. Consider the MU puzzle, as described in Hofstadter [25]. We formalize its

signature and axioms as Isabelle/MU using Isabelle’s meta logic and formalize it in Metamath.

The symbols M, I and U are letters that combine into strings. We identify these letters with

the corresponding singleton string and let “ˆ” denote the concatenation symbol. Strings are

converted into atomic formulas by putting “[]” around them. We use “→” to denote the

implication between formulas. The resulting deductive system is untyped and has only one

inference rule, namely the modus ponens.

In Isabelle, there are meta-types o, t and i, whose terms play the roles of formulas, types

and terms respectively. We follow the format of examples as in Paulson [38, page187]. The

symbols are given in Table 1.3 and the axioms are given in Table 1.4.

The only inference rule, modus ponens, is presented as:

[|P → Q;P |] ��> Q
1Unless Coq is generic.
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name meta type description
M i letter M
I i letter I
U i letter U
ˆ i → i → i concatenation
[−] i → o converting a string into an atomic formula
→ o → o → o implication

Table 1.3: Signature of MU Puzzle in Isabelle

axiom description
[xˆI] → [xˆIˆU] Add a U to the end of any string ending in I
[Mˆx] → [Mˆxˆx] Double the string after the M
[xˆIˆIˆIˆy] → [xˆUˆy] Replace any III with a U
[xˆUˆUˆy] → [xˆy] Remove any UU

Table 1.4: Axioms of MU Puzzle in Isabelle

On the other hand, in Metamath, we do the following as imitating Megill and Wheeler [34,

page42]:

1 $( Declare the constant symbols we will use $)

2 $M I U [ ] ^ -> str wff |-$.

3 $( Declare the metavariables we will use $)

4 $x y p q$.

5 $( Specify properties of the metavariables $)

6 $f str x $.

7 $f str y $.

8 $f wff p $.

9 $f wff q $.

10 $( Define "wff" $)

11 $a str M $.

12 $a str I $.

13 $a str U $.

14 $a str ( x ^ y ) $.

15 $a wff ( p -> q ) $.

16 $a wff [x] $.

17 $( State the axioms $)

18 a1 $a |- [x^I] -> [x^I^U] $.

19 a2 $a |- [M^x] -> [M^x^x] $.

20 a2 $a |- [x^I^I^I^y] -> [x^U^y] $.

21 a4 $a |- [x^U^U^y] -> [x^y] $.

22 a5 $a |- [M^I] $.

23 $( Define the modus ponens inference rule $)

24 ${

25 min $e |- p $.
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26 maj $e |- ( p -> q ) $.

27 mp $a |- q $.

28 $}

It is then clear that an implementation of a foundation in Metamath requires a lot of work.

As this system is not designed to be “programmable”, it does not allow the development of a

general framework to be instantiated by various kinds of foundations at the user level. The

only thing we can do is to write an implementation of one foundation and change it slightly to

work for another one.

Isabelle provides more support for high-level specifications. It can treat both formula-style

reasoning, as in HOL, and proof as objects, as in Lean. Indeed, Isabelle has both HOL and

MLTT as implemented object logic. In particular, the presentation of MLTT in Isabelle looks

neat and reasonable. However, whereas Isabelle can handle both judgments and formulas

nicely, the picture becomes much less elegant when we require both of them in a single system.

Whereas everything, including proofs, is a judgment in MLTT, the sort judgment and the

proof statement do not live in the same layer in a dependently sorted foundation. It is hard to

have both layers in Isabelle because it has only one notion in its meta-logic that corresponds

to “truth”. The only obvious Isabelle approach is to capture sort judgments as assumptions,

but then we encounter a pain point when there are dependent sorts, i.e., when sorts are

allowed to depend on terms. Isabelle’s metalogic gives a notion of “type” and “term”. However,

we cannot create “types” that involve “terms”, there is no way to encode a dependent sort

judgement as a type judgement. The only thing we can do is to use predicates instead, so a

sort judgement for, say, a function from set A to set B will be a predicate applied on a term of

a non-dependent sort “function”, declaring its domain is A and its codomain is B. This will

induce two problems: Firstly, a dependent sorted setting is usually applied for a structural set

theory, where we usually do not want equality on sets, but the predicate stating sort judgment

will have to involve equality such as dom( f ) � A, forces us to use equality. Even worse, as for

the composition of functions, the sort-checking, which should ideally happen on the processing

of syntax, becomes a check of this predicate on the level of logical deduction, i.e., something

that we should prove. If the composition is iterated, we need to appeal to a sort-checking

axiom for the composition function symbol to prove in each level such a predicate. For instance,

regarding the composition h ◦ g ◦ f : A→ B → C → D, we need to get its sort from the

axiom:
∀(A B C : set) ( f g : fun).

dom( f ) � A ∧ cod( f ) � B ∧ dom(g) � B ∧ cod(g) � C �⇒
dom(g ◦ f ) � A ∧ cod(g ◦ f ) � C

Then we need to conclude g ◦ f first, and then apply it with h, to prove the composition has

sort A→ D.



Chapter 1. Introduction 9

Moreover, since Isabelle’s metalogic does not allow partial functions, ill-formed terms (i.e.,

with meta-type t such as the composition of arrows f ◦ g such that cod(g) , dom( f )) and
predicate application can be built.

There are also a range of logical frameworks that allows implementing various of type theories.

For instance, the theory DFOL, as we discuss below, is encoded in the logical framework

LF [41], which has Twelf as an implementation. Another notable one is Dowek’s Dedukti

logical framework [14], which has different implementation in Dkcheck, Lambdapi, Kocheck,

etc. Since our goal is to give a uniform treatment to a generalization of first-order foundations

only, and it is straightforward to implement a logic directly in ML, we do not need to implement

it in a logical framework as an intermediate step.

1.2.3 Theoretical Systems

1.2.4 FOLDS

First-Order Logic with Dependent Sorts(FOLDS) by Makkai [31] is an extension of first-order

logic designed for “studying the science of establishing foundations” [32, page159], with the

outstanding feature that the notions are carefully chosen in FOLDS so that truth automatically

agrees on isomorphic models of the theory. On the other hand, as also admitted in [32, page159],

FOLDS is not designed to be used for theorem proving. FOLDS has a very interesting feature:

it imposes some checks on the syntax level that ensures only “meaningful” expressions can be

stated. More specifically, the design of FOLDS intends only to capture the expressions that

are invariant under isomorphisms. However, to a larger extent, as there are many foundations

with many statements that are not preserved by isomorphisms, this is not generally a desired

property.

FOLDS does not support expressing axiom schemata and does not include function symbols

at all. Instead, one is restricted to use predicates only, and functions are binary predicates

that admit only one witness given the first argument. In practice, function symbols can make

a presentation of definitions and proofs much neater. An explicit example is provided in

section 5.1. The absence of function symbols also means not being able to get much benefit

from rewriting using equalities, which are intensively used in theorem provers.

1.2.5 DFOL

DFOL, by Rabe [44], is designed only for the use of the first-order fragment of DTT. One

significant aspect to note is that it separates the layer of “first order statements” out of the

Prop type, where users are required to construct a proof term in a DTT prover. Instead, it

creates a type for statements and introduces rules to prove such statements. This allows us to

separate terms from formulas, which indeed makes the embedding of FOL more faithful.
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Signatures in DFOL must be implemented in a dependently-typed general framework, and

hence cannot be directly extracted as an implementation on their own. The signature of, for

example, standard category theory, where an arrow intrinsically depends on two objects, can

be presented naturally in DFOL. As DFOL is not designed to be used on its own, it does not

come with a rule allowing us to create new functions and relation symbols. Moreover, it does

not provide extra support to express axiom schemata.

1.2.6 Generalized Algebraic Theories

Generalized Algebraic Theories(GAT), as introduced in Cartmell [20], is developed as a

universal framework for expressing algebraic theories with dependent types. For instance,

it can axiomatize the theory of categories by equalities such as 1A ◦ f � f : Hom(A,A)
expressing the left identity law, etc. For using this as a foundation, one obvious barrier is

that there is not a common interest to axiomatize a foundation in an algebraic way. Most

of foundations are not designed in an algebraic way, and do not obviously have an algebraic

reformulation either. In fact, all the foundations we will discuss in this thesis only have models

with at least two distinct objects of interest.

1.3 Our Work

We want a system to define mathematical foundations and to prove theorems on top of that

foundation. Our work designs such a system. We name our system DiaToM, abbreviating the

title of this thesis. It sounds ambitious to make the system capture all these foundations in

general. We need to therefore appeal to a significant common feature of these foundations. All

of them are proposed in first-order logic, with a signature that may involve dependent sorts. It

is not surprising, because first-order logic is the natural language for mathematical expressions.

We are quite happy to live with this constraint: a richer logic can conceal foundational decisions

that we would prefer to make apparent in our axioms. We design a system and then examine

our design. On the theoretical side, we formalize our logic in the existing system HOL to make

sure it is not broken. For the practical aspect, we implement it as a theorem prover and carry

out experiments with three existing mathematical foundations.

Our theorem prover only focuses on faithfully and neatly presenting mathematical foundations

and experiments with their real power. Within each foundation, we can have a theorem prover

that can be compared to main-stream theorem provers, where the foundation is chosen by the

designer. It gives us opportunities to discover very useful first-order systems. For instance,

whereas SEAR is discovered to be powerful for use for theorem proving, it is still far from

being as complicated as DTT. Therefore, it provides an ideal workspace in which to do rather
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complicated proofs with a fast and simple kernel and looks closer to the form of mathematics

that might be written in a textbook. We briefly summarize our contribution as follows:

• In Chapter 2, we develop a formal logical system that is able to express various first-order

axiomatic systems, where sorts can depend on terms.

• We implement our system as a theorem prover and make it usable by designing a

type-inference algorithm and providing interactive tools. Implementation details are in

Chapter 3

• We formalize our system in the theorem prover HOL4. We prove basic operations

preserve well-formed syntax, and that our complicated formula variable instantiation

rule does not break the first-orderness of our system, in Chapter 4.

• In the theorem prover implemented, we specialize this ambient logical system to capture

the foundational systems ETCS, SEAR, and CCAF, as in Chapters 5 and 6. We believe

we are the first to mechanize mathematics in structural and categorical foundations in

any theorem prover.

• On the foundations ETCS and SEAR, which play the same foundational role as traditional

material set theory, we demonstrate that our system can handle common mathematical

constructions such as the development of the algebraic and co-algebraic lists.

• We provide a proof-of-concept implementation that makes logical developments practical

through the development of a number of important, though basic tools. For example,

in ETCS, where proofs greatly rely on internal logic, we build a tool to automatically

construct the internal logic predicates corresponding to “external” predicates. In both

ETCS and SEAR, we automate inductive definitions and provide tools to help with the

construction of quotients.

• In SEAR, we provide evidence that it is possible to use DiaToM’s simple sorts and

appropriate axioms to go beyond the expressiveness of HOL. In particular, we provide an

explicit example we published that cannot be even stated in HOL, but can be formalized

in SEAR smoothly.

• At the end of the thesis, we propose possible future directions from the current work.

• Finally, we provide an appendix with notes on installing and using our computer

implementation of DiaToM.
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Chapter 2

Logic

In this chapter, we present a logical framework, called DiaToM, as indicated in the introduction,

that strikes a delicate balance between expressiveness and simplicity. Our approach focuses

on achieving uniformity in handling partial functions while ensuring the termination of sort-

checking. To elucidate our logical system, we adopt a ‘three-layered’ structure encompassing

sorts, terms, and formulas. Subsequently, we delve into our proof theory, which provides a

natural mechanism for conducting first-order reasoning in our syntax. We will illustrate key

concepts with relevant examples.

2.1 Sorts and Terms

In our system, we establish a mutually recursive relationship between sorts and terms. Each

term is associated with a unique sort, which takes the form st(s , ®t), with ®t maintaining a record

of terms (t1 , · · · , tn) that the sort with name s depends on. To initiate this framework, we

must first declare a signature, which is central and provides an interface to our work. The

first ingredient of a signature is a list consisting of pairs (s , [s1 , · · · , sn]), where s , s1 , · · · , sn

are names of sorts. Such a list expresses that the sort s depends on terms of sorts s1 , · · · sn,

where s1 , · · · , sn are all already declared. In particular, it must start with an entry of the form

(s , []). Secondly, we need a record of primitive function and predicate symbols. Each record of

a function symbol keeps a list of acceptable inputs, declared as a list of variables, and a sort of

its output depends on terms that are built from all these input variables. A record of predicate

only keeps a list of acceptable inputs. A term is either a variable or a function application:

t :� Var(n , s) | Fun( f , s , ®t)

A variable comprises both a name and a sort, while a function term includes the function

symbol’s name, its sort, and a list of arguments, which are terms. A constant term is a nullary

function symbol applied to an empty argument list. The sort of each term is an intrinsic

property, carried in its constructor. A sort that doesn’t depend on any term is called a ground
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sort. Likewise, a term with a ground sort is termed a ground term. Although according to

the constructors, a function term can accept any list of inputs, we only consider well-formed

terms in practice. A function term is well-formed if any only if its list of inputs matches the

signature, from where we can deduce the sort of the function term. Therefore, for a given

signature, it is possible to recover the sort of every term from the sorts of variables that occur

in it. However, in practice, as a function term is often complicated, we do not want to rebuild

all their sorts from the bottom level, hence we also carry the sort of function symbols as a field

of the constructor in our logic, and later, for both our formalization and our implementation.

In the following discussions, the word “variable” may refer to either a variable term or a pair

consisting of a name and a sort, depending on the context.

Since terms and sorts are mutually recursive, we collect the free variables in terms and sort

using mutual recursive functions Vars and Varss respectively, defined as:

Vars(Var(n , s)) � {(n , s)} ∪ Varss(s)
Vars(Fun( f , s , [t1 , · · · , tn])) �

⋃
1≤k≤n Vars(tk)

Varss(st(n , [t1 , · · · , tn])) �
⋃

1≤k≤n Vars(tk)

We give some examples for capturing the sort signature of some foundations. This reveals the

importance of the role of signature-once the signature is understood, our logic can capture a

large variety of foundations.

2.1.1 Example. Many material set theories only have one sort. The classic example is ZF,

where the only sort is “set”. Also note that even if a set theory does have both the notion of

class and set within the system, it is not necessarily distinguished by the sorts. For instance,

in Morse-Kelley set theory [26], Pocket set theory(also presented in [26]) and Vopenka’s

alternative set theory [50], the notion of proper class is captured via definition. In particular,

it is defined to be a class that is not a member of any class. In all of such set theories, there is

only one sort with the name “set”, the sort signature is [(set, [])].

2.1.2 Example. Some set theories have the notion of urelements. Such set theories are often

two sorted, where the other sort is “set” (See Scott-Potter set theory [42] and Kripke-Platek

Set Theory with urelements [15]). The difference between the two sorts is that: a set is a

collection, whereas an urelement is not. A urelement is an element, but unlike in ETCS, where

an element can only belong to one set, a urelement can serve as an element for many sets.

This indicates that a urelement does not store the set in its sort. Hence the sort signature is

simply [(set, []), (umem, [])], consisting of two ground sorts.

2.1.3 Example. Another way that multiple ground sorts can appear is due to the usage of

stages, indicating in which stage a set is formed. The canonical example is the set theory
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called “S”[17]. Its signature is [(set, []), (stage, [])].

2.1.4 Example. The sort-dependency appears naturally in many of structural set theories.

For example, set theories in a local language is structural. An explicit example, the presentation

of Local Intuitionistic Zermelo (LIZ) set theory is provided by Aczel [13]. To avoid clashing

with our logical notions, we rename the “term” and “sort” in [13] into “member” and “set”.

The sort signature of LIZ is [(set, []), (mem, [set])].

2.1.5 Example. In ETCS, there are two sorts, with names “object” and “arrow”. An arrow

sort depends on two object terms. The sort signature list of ETCS hence can be recorded as

[(ob, []), (ar, [ob, ob])]. We use different object variables A and B to indicate the two terms

that an arrow sort depends on are not required to be the same. It has a variant called “ETCS

with elements” [3], which can be obtained with slight modification.

2.1.6 Example. It is possible to re-present material set theories in a structural manner without

changing their strength. One option for doing this for ZFC, presented as structural ZFC [9], is

to work with four sorts: set, member, function, and relation. The sort of sets is the only ground

sort, a member sort depends on a set, and a function or a relation depends on two sets, repre-

senting its domain and codomain. Then [(set, []), (mem, [set]), (fun, [set, set]), (rel, [set, set])]
is the signature sort list. Such a signature is the same as the other system SEAR, which we

will discuss in much more detail in later chapters.

2.1.1 Formulas

We are working only with classical logic and can afford to be minimal with our syntax. A

formula Φ is either falsity, a predicate, an implication, a universally quantified formula, or a

formula variable.

Φ ::� ⊥ | Pred(P , ®t) | Φ1 �⇒ Φ2 | ∀n : s .Φ | fVar(F , ®v , ®t)

In the above, P is a predicate name, and F is the name of a formula variable. Boolean operators

∧,∨,¬ can hence be built from the implication and falsity. We define (∃x. φ) � ¬(∀x. ¬φ) and
the unique existence ∃! is defined as in convention. We write the truth > as an abbreviation

⊥ �⇒ ⊥.

For predicate symbol applications as atomic formulas, the symbol must either be primitive, as

defined within the axiomatic framework or by the user. The only inherent primitive predicate

in the system is equality, which is defined between terms of the same sort. However, we do not

automatically allow equality between terms solely based on having the same sort. For instance,

the designs of ETCS and SEAR do not allow us to equate objects in them. Each foundation

must maintain a record (alongside function symbols, predicate symbols, and axioms) of the
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sorts that support equality. Consequently, while every variable can be quantified, only those

variables whose sort supports equality can be subjected to an ∃!-quantification.
Among the constructors mentioned earlier, the most intriguing one is that of formula vari-

ables. While term variables can be instantiated with terms, formula variables are meant

to be instantiated with formulas. A formula constructed by a formula variable, denoted

as fVar(F , [(n1 , s1), · · · , (nk , sk)], [t1 , · · · , tk]), is essentially a nested universally quantified

formula of the form ∀n1 : s1 ∀ · · ·∀nk : sk .φ, specialized by the terms t1 , · · · , tk . This special-

ization is only allowed if the terms t1 , · · · , tk have the correct sorts and sort dependencies.

If the dependencies are correct, then the application of the formula variable on this term

list is considered well-formed. The variable list [(n1 , s1), · · · , (nk , sk)] serves only to record

the pattern of acceptable “inputs”. It can be thought of as registering the formula variable

with the name F temporarily as a predicate symbol in the signature, associated with this

variable list. Therefore, for each variable (nm , sm) appear as an entity, none of itself or any

variables that appear in sm for 1 ≤ m ≤ k can be regarded to actually appear in the formula

fVar(F , [(n1 , s1), · · · , (nk , sk)], [t1 , · · · , tk]). However, we do count the variables in t1 , · · · , tk

as actually occurring. Formula variables are distinguished by their name and the associated

variable list. If a formula φ has fVar(F , ®v , ®t) as a subformula, then we say the formula variable

(F , ®v) appears in φ.

The concept of formula variables is designed to facilitate the representation of axiom schemata

with a single axiom within the theory. Here, we provide the simplest example of its usage.

2.1.7 Example. The comprehension schema in ZF theory says for each set A and each

formula φ, there exists a set consisting of elements of A satisfying φ. Such a set is effectively

{x ∈ A | φ(x)}. For each formula φ, the instance of this axiom schema is presented in ZF as:

∀A. ∃B. ∀x. x ∈ B⇔ x ∈ A ∧ φ(x)

In our system, once the signature of ZF is declared, the axiom above can be captured using a

single formula with a formula variable in the position of φ as:

∀A. ∃B. ∀x. x ∈ B⇔ x ∈ A ∧ fVar(F , [Var(x0 , set)], [x])

Every instance of the comprehension schema will be obtained by instantiating the formula

variable in the above, using the instantiation rule we will provide in the next section.

An apparent alternative is to individually state the axiom schema for each of its instances.

However, our approach offers significant advantages, particularly in terms of convenience and

readability. This convenience becomes evident when we seek to derive theorem schemata

from axiom schemata while maintaining a clear, mathematical presentation. In terms of
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implementation, implementing each instance of an axiom schema requires us to create a

function that takes a formula and produces a theorem. Manipulating these functions would

be necessary to capture the proof of a theorem schema, forcing the users to operate at the

implementation level. Furthermore, the derived theorems lack a formula representation and

cannot be expressed within the system, and hence are not readable without a concrete instance.

By using our approach, we address this problem by allowing the straightforward notation of

an axiom schema and all its consequences at a practical working level, without altering the

theory’s strength.

Readers may observe that formula variables behave semantically as higher-order variables. For

instance, in the example above, a formula variable behaves like a term of type set → bool.

This might appear to challenge the first-orderness of our system. To resolve this concern,

we will provide in Chapter 4 a formalized proof demonstrating that formula variables do not

introduce any additional strength to our logic.

In the following, we will write a predicate formula as P(®t). For a formula variable with the

name F on arguments of sorts ®v applied on ®t, we write F [®v](®t).

In the case of universal quantification, the n and s carry the name and sort of the quantified

variable. To ensure that the universal quantification of the variable (n , s) in a formula φ is

well-formed, we require that (n , s) does not appear in the sort of any variable in φ. Additionally,

if a formula variable (F , [(n1 , s1), · · · , (nk , sk)]) appears in φ, we need (n , s) to not be present

in any of sm for 1 ≤ m ≤ k. This requirement is crucial for the forthcoming proof of the

elimination of formula variables, which will be detailed also in Chapter 4.

We collect free variables in a formula by a function Varsf by a simple induction:

Varsf(⊥) � {}
Varsf(Pred(P , [t1 , · · · , tn])) �

⋃
1≤k≤n Vars(tk)

Varsf(φ1 �⇒ φ2) � Varsf(φ1) ∪ Varsf(φ2)
Varsf(∀n : s . φ) � Varsf(φ) ∪ Varss(s) \ {(n , s)}
Varsf(fVar(F , ®v , [t1 , · · · , tn])) �

⋃
1≤k≤n Vars(tk)

2.2 Theorems

A theorem consists of a set of variables Γ, called the context, a finite set A of formulas (the

assumptions), and a formula φ as the conclusion. A theorem Γ,A ` φ reads “for all assignments

σ of variables in Γ to terms respecting their sorts, if all the formulas in σ(A) hold, then we

can conclude σ(φ)”.
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The context encompasses the set of variables required for the conclusion to be true, given

the assumptions. This set includes at least all the free variables present in the assumptions

or the conclusion. However, it may also contain variables that do not appear at all in these

statements. These extra variables can be introduced through various means, such as removing

universal quantifiers, instantiating formula variables, or applying previously proven theorems.

Presenting a variable in the context can be seen as a specialized form of an assumption,

asserting the existence of that variable. The context plays a crucial role in our system and

cannot be disregarded.

2.2.1 Example. In ETCS, the object 1 plays the role of the singleton and the object 0

plays the role of the empty set. We have { f : 1 → 0} ` ∃ f : 1 → 0. > as a theorem, but

` ∃ f : 1→ 0. > is easily proved to be false.

As illustrated by this example, the context is essential because not every sort necessarily has a

term. The context serves as a mechanism to prevent us from using variables that do not exist.

As already indicated by this example, we need the context because it is not always the case

that every sort has a term. The context can successfully prevent us from using variables that

do not exist. Before working with a variable with a certain sort, we need to either prove or

assume its existence. As a further minimal example: after proving {} ` ∀ f : 1→ 0. ⊥, once
we can construct a variable f : 1→ 0, we can specialize the quantification to get ⊥. Such a

theorem is useful for proofs by contradiction. Without the restriction that available variables

must come from the context, we could derive ⊥ by specializing with a variable that does not

exist, thereby breaking consistency.

2.3 Proof System

Theorems are obtained by performing proof steps using our primitive rules, as we are introducing

now. The inference rules that are standard are presented in Figure 2.1, a well-formed map

refers to a function sending a variable to a well-formed term.

The rules for the universal quantifier take some extra care of the sort information. Specializing

the quantification on a variable n of sort s by a term t requires checking t has sort s. Once

this is satisfied, we need to add all the free variables of t into the context. The formal rule is:

Γ,A ` ∀x : s .φ(x)∀-E, t is of sort s
Γ ∪ Vars(t),A ` φ(t)

To apply generalisation (∀-I) with a variable a : s, the first requirement is to make sure the

conclusion after abstraction is well-formed, as discussed in 2.1.1. In addition, we require that

(i) a does not occur in the assumption set; (ii) there is no term in the context depending on a.
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Assume
Vars(φ), {φ} ` φ Ax φ is an axiom

Vars(φ) ` φ

Γ,A ∪ {¬φ} ` ⊥
CContr

Γ,A ` φ
ExF

Vars(A ∪ {φ}),A ∪ {⊥} ` φ

Γ,A ` φ
Disch

Γ ∪ Vars(ψ),A \ {ψ} ` ψ �⇒ φ

Γ1 ,A1 ` φ �⇒ ψ Γ2 ,A2 ` φ
MP

Γ1 ∪ Γ2 ,A1 ∪ A2 ` ψ
Γ,A ` a � bSym
Γ,A ` b � a

Γ1 ,A1 ` a � b Γ2 ,A2 ` b � c
Trans

Γ1 ∪ Γ2 ,A1 ∪ A2 ` a � c

Refl the sort of a has equality
Vars(a) ` a � a

Γ,A ` φ
InstTM σ is a well-formed map

σ(Γ), σ(A) ` σ(φ)

Γ1 ,A1 ` t1 � t′1 , · · · , Γn ,An ` tn � t′nFVCong ⋃n
i�1 Γi ,

⋃n
i�1 Ai ` F [®s](®t) ⇔ F [®s](®t′)

Figure 2.1: Natural Deduction style presentation of our sorted FOL

Once all these conditions are met, we can proceed with the application of:

Γ,A ` φ(x)∀-I
Γ \ {x : s},A ` ∀x : s . φ(x)

2.3.1 Formula Variable Instantiation

The instantiation rule for formula variables is given as:

Γ,A(F [®v]) ` φ(F [®v])
Form-Inst

Γ ∪ Vars(ψ),A[F [®v] 7→ ψ] ` φ[F [®v] 7→ ψ]

where we use F [®v] 7→ ψ to denote the instantiation of the formula variable F [®v] with the

formula ψ. It replaces each occurrence of F [®v](®t) on an argument list ®t in the assumption or

conclusion into ψ[®t/®v]. The formula ψ may or may not contain more formula variables, to

be considered as a body of the quantification on the variable list ®v, such that ∀v1 , · · · , vn . φ

adheres to the requirements of being a well-formed formula. A formula instantiation cannot

make a change to the variable list of formula variables. When the situation demands, we rely

on the term instantiation rule to modify the sort list as needed before the formula variable

instantiation.

A notable distinction between term instantiation and formula variable instantiation lies in

their impact on contexts. While term instantiation replaces variables within contexts, formula

variable instantiation primarily extends the context by introducing additional variables, without

causing the removal of existing ones.
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2.3.1 Example. Consider the theorem

{A, B} ` F [(a0 ,mem(A)); (b0 ,mem(B))](a , b) ⇔ F [(a0 ,mem(A)); (b0 ,mem(B))](a , b)

and the instantiation [A 7→ C; B 7→ D]. After the instantiation, we have

{C, D} ` F [(a0 ,mem(C)); (b0 ,mem(D))](a , b) ⇔ F [(a0 ,mem(C)); (b0 ,mem(D))](a , b)

. That is, both A and B are replaced.

But even if we instantiate (F , [(a0 ,mem(A)); (b0 ,mem(B))]) with some formula without any

variable at all, say >, we still obtain:

{A, B} ` T ⇔ T

In other words, all the variables stay. This is semantically reasonable because this formula

variable is regarded as a predicate on elements of A and of B, so the variables are still assumed

to exist.

On the other hand, term variable instantiation is designed to capture a possibly iterated

generalization succeeded by a specialization. Generalization can indeed lead to the removal of

variables from the context. Notably, once formula variables have been eliminated, the need for

the term instantiation rule as a primitive operation diminishes.

It should be noted that we have the liberty to insert Q[ f0 : A→ B] 7→ P[A, B, f0 : A→ B],
but the reverse is not permissible. This is evident from the well-formedness of the instantiation

map. Such a map is recorded as ∀ f : A→ B. P[A, B, f0 : A→ B]( f ), whereas the other way

will be recorded as ∀A B f : A→ B. Q[ f0 : A→ B]( f ), which abstracts the variables in the

sort list.

2.3.2 Congruence

The only primitive congruence rule is exclusively provided for formula variables, as it inherently

encompasses rules for both function and predicate symbols. The rule for predicate symbol is

canonically represented as:

Γ1 ,A1 ` t1 � t′1 , · · · , Γn ,An ` tn � t′nPred-Cong ⋃n
i�1 Γi ,

⋃n
i�1 Ai ` P(t1 , · · · tn) ⇔ P(t′1 , · · · t′n)

With dependent sorts, the above congruence may seem not to be sufficient. A valid concern

arises when dealing with predicates and function symbols in situations where only one argument

features equality while the other arguments lack equality but are identical. For instance,
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consider predicates in the form of P(A, f : A→ B) and f � g. We certainly want to conclude

P(A, f : A→ B) ⇔ P(A, g : A→ B), but the rule above does not directly allow it. Consider

a formula variable Q[ f0 : A → B], the rule above readily gives Q[ f0 : A → B]( f ) ⇔ Q[ f0 :

A→ B](g). Subsequently, we instantiate the formula variable Q[ f0 : A→ B] by mapping it

to P(A, f0 : A → B), which, as discussed above, is permissible. This results in the desired

equivalence. Such scenarios naturally arise, as can be observed in Chapter 6. This feature

simplifies our implementation, as it eliminates the need for an option type when implementing

such a rule.

2.3.3 Specification

Predicate Specification Rule We can extend the signature of a foundation with new

predicate symbols using the predicate specification rule.

Pred-spec P does not occur in φ
Vars(®t) ` P(®t) ⇔ φ(®t)

Applying such a rule will define a new predicate with the name P. The defined predicate

will be polymorphic, where each tuple whose sort is matchable with the list ®t can be taken

as the arguments. Here the argument of the new predicate symbol is not required to be all

of Vars(φ), we only require the whole set of free variables involved can be recovered from the

arguments. For instance, if {a1 : s1 , a2 : s2(a1)} exhausts the free variables involved, then the

predicate can just take the single argument a2 instead of both a1 and a2.

Function Specification Rule The specification rule for introducing new function symbols

is notably intricate. Given a theorem Γ,A ` ∃a1 : s1 , · · · an : sn .Q(a1 , · · · , an) where Q is

any formula, if the uniqueness of the tuple (a1 , · · · , an) holds in a sense acceptable to the

foundation, we proceed to define function symbols f1 , · · · , fn in such a way that their output

tuple satisfies the property Q. The process of defining a new function symbol entails presenting

a theorem affirming the unique existence of certain terms up to a specified relation, another

theorem asserting that the relation is indeed an equivalence relation, and a further theorem

ensuring the non-emptiness of the relevant sorts, where we intend to generate function terms.

In a general sense, an equivalence relation must be captured by a predicate that operates on

two lists of variables, representing the two entities under consideration. These lists are referred

to as “meta-tuples”. Given that the built-in logic lacks a concept of tuples, we cannot directly

define an equivalence relation on real “tuples”. Instead, we require theorems in the form as
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follows:

` R(〈a1 : s1 , ..., an : sn〉, 〈a1 : s1 , ..., an : sn〉)

` R(〈a1 : s1 , ..., an : sn〉, 〈a′1 : s′1 , ..., a
′
n : s′n〉)

�⇒ R(〈a′1 : s′1 , ..., a
′
n : s′n〉, 〈a1 : s1 , ..., an : sn〉)

` R(〈a11 : s11 , ..., a
1
n : s1n〉, 〈a21 : s21 , ..., a

2
n : s2n〉) ∧ R(〈a21 : s21 , ..., a

2
n : s2n〉, 〈a31 : s31 , ..., a

3
n : s3n〉)

�⇒ R(〈a11 : s11 , ..., a
1
n : s1n〉, 〈a31 : s31 , ..., a

3
n : s3n〉)

If the three theorems all hold for a concrete property R, then R is an equivalence relation

(abbreviated as er(R) in the rest of the discussion). If R is used as the equivalence relation

above, the corresponding existential theorem is required to be of the form:

∃ai : si . Q(〈a1 : s1 , ..., an : sn〉) ∧

∀a′i : s′i . Q(〈a′1 : s′1 , ..., a
′
n : s′n〉) �⇒ R(〈a1 : s1 , ..., an : sn〉, 〈a′1 : s′1 , ..., a

′
n : s′n〉)

We abbreviate the formula above as ∃!Rai : si . Q(〈a1 : s1 , ..., an : sn〉). The sorts of the two

argument lists are not required to be equal, and they are generally not equal because the sorts

of the latter variables often depend on the previous ones. The rule is expressed as:

Γ0 , ∅ ` ∃ai : si .> Γ′,A′ ` er(R) Γ,A ` ∃!Rai : si .Q(〈a1 : s1 , ..., an : sn〉)
Γ,A ` Q(〈 f1(Γ′), ..., fn(Γ′)〉)

where

• Q and R do not contain any formula variables; and

• Γ0 ⊆ Γ, Γ′ ⊆ Γ, and A′ ⊆ A.

Our rule’s leftmost premise requires the existence of terms of the required (output) sorts, given

the existence of variables in the context corresponding to the sorts of the arguments. In this

way, the rule guarantees that terms built using the new function symbol will always denote

values in the output sort. For the equivalence relation, we can take R to be equality, meaning

we are specifying new function symbols according to unique existence. If we take R to be the

>, we have imported the Axiom of Choice into our system. The choice of which R’s to allow

is up to the designer of the object logic.

Treatment of Equalities Our logic allows the users to enable equalities on terms of every

sort. However, it is not always helpful to allow such equalities. This is because, in contrast to

DTT, where equalities between terms always result in equalities between types that depend

on equal terms, our logic does not have a notion of equality of sorts at all. This becomes
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evident when we consider our formalization of dual categories in CCAF, as we will discuss in

Chapter 6.

2.3.4 Semantics via Translation to Sorted FOL

As formula variables and their proof rules represent a conservative extension and can be

eliminated, the term-instantiation rule (InstTM in Figure 2.1) can be derived from ∀-I and
∀-E and can also be removed from the list of primitive rules. This is because once there are no

formula variables, for each theorem, we can order its context into a correct dependency and

generalize all the variables. Then we specialize all of them with the desired terms to capture

the instantiation.

2.3.2 Example. Considering structural ZF and a theorem in it:

{A, B, f : A→ B, g : A→ B} ` (∀a ∈ A. f ◦ a � g ◦ a) �⇒ f � g

where f and g are functions from A to B. To recover the instantiation [A 7→ X, B 7→ Y, f 7→
h : X → Y, g 7→ k : X → Y], we generalize the theorem so it becomes

` ∀A ( f : A→ B) (g : A→ B). (∀a ∈ A. f ◦ a � g ◦ a) �⇒ f � g

then we instantiate with [X,Y, h , g], so it becomes:

{X, Y, h : X → Y, k : X → Y} ` (∀a ∈ X. h ◦ a � k ◦ a) �⇒ h � k

as desired.

Subsequently, our semantics below ignore formula variables (meaning that our formulas come

in just four forms: ⊥, implications, the universal quantifier and predicate symbols). Our logic

can be translated into non-dependent sorted FOL, which is equivalent to FOL. Given a list of

sorts s1 , · · · , sn , such that sk only depends on terms with sorts occurring earlier in the list for

each 1 ≤ k ≤ n, we create non-dependent sorts s1 , · · · , sn. These sorts are thought of as the

non-dependent versions of s1 , · · · sn . We can think of the set of terms of sort si as the union of

all terms of sort si(®t) for all possible tuples ®t of terms.

{a | a : si} �
⋃
®tk

{a | a : si( ®tk)}

For example, the ETCS terms f : A → B and g : C → D are of different arrow sorts,

but their translation both have sort ar. For a function symbol f taking a list of terms

[t1 : s1 , · · · , tn : sn], we create a non-dependent sorted function symbol f , such that its

argument term list has the corresponding sort list s1 , · · · , sn. We do the same for predicate
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symbols. Translation from terms of sk into those of FOL sort sk is done by forgetting sort

dependency:

~Var(x , sk(t1 , · · · tm))�t � Var(x , sk)

~Fun( f , sk(t1 , · · · , tm), (a1 , · · · , an))�t � Fun( f , sk , (~a1�t , · · · , ~an�))

For sorts s depending on terms t1 : s1 , · · · , tm : sm , we create function constants ds ,1, · · · , ds ,m .

For 1 ≤ i ≤ m, ds ,i takes an argument of sort s and outputs a term of sort si. If a function

symbol f takes arguments (t1 : s1 , · · · , tn : sn), and outputs a non-ground sort s, where s

depends on terms r1 , · · · , rn, and each sk depends on terms qk ,i, then we add an axiom to

regulate the dependency information of its sort when translated into non-dependent-sort FOL:∧
k

∧
i

dsk ,i(~vk�t) � ~qk ,i�t �⇒
∧

j

ds , j(~ f (v1 , · · · , vn)�t) � ~r j�t

As an example, the composition function symbol in ETCS takes g : B→ C and f : A→ B,

and outputs g ◦ f : A→ C. The corresponding axiom is:

∀(A : ob) (B : ob) (C : ob) ( f : ar) (g : ar).
dar,1( f ) � A ∧ dar,2( f ) � B ∧ dar,1(g) � B ∧ dar,2(g) � C �⇒

dar,1(g ◦ f ) � A ∧ dar,2(g ◦ f ) � C

For an arbitrary function symbol f , although its arguments can include ground terms, the

axiom only needs to state information about the dependently sorted argument, where the

functions dk , as shown above, exist. If the output of a function symbol is a ground sort, we do

not need such an axiom for it.

Translation of formulas only makes sense under the translation of some context that contains

at least all of its free variables. Defining the translation of a context amounts to translating

sort judgments of variables. We translate the sort judgment of any ground sort into >. As for
a variable a : sk(t1 , · · · , tn), we write

~a : sk(t1 , · · · , tn)�ts �
∧

i

dk ,i(~a�t) � ~tn�t

to denote the translation of a context element (~· · ·�ts calculates the denotation of a term’s

sorting assertion). An entire context Γ is translated into the conjunction of the translation of

its elements.

As we do for function symbols, we create for each dependent sorted predicate symbol P a

corresponding non-dependent sorted one, written as P. We define the translation of formulas



Chapter 2. Logic 24

by induction as:

~P(t1 : s1 , · · · , tn : sn)�f � P(~t1�t , · · · , ~tn�t)

~φ �⇒ ψ�f � ~φ�f �⇒ ~ψ�f

~∀x : s . ψ�f � ∀x : s . ~x�ts �⇒ ~ψ�f

Finally, a theorem Γ,A ` ψ translates into

∀v1 . . . vn .
∧
(vi :si)∈Γ

~vi : si�ts ∧ ~A�f �⇒ ~ψ�f

It is routine to check that the rules are valid under the translation and hence have the intended

sense. As an example, consider ∀-I. Assume Γ, {a : s(t1 , · · · , tn)},A ` φ(a) and the variable a

appears in neither Γ nor A. The theorem translates into

~Γ�ts , ~a : s(t1 , · · · , tn)�ts ,
∧

~A�f ` ~φ(a)�f

(where we overload ~· · ·�ts and ~· · ·�f to include the versions mapping sets to conjunctions

of translations). The fact that a does not appear in Γ translates into the corresponding

variable a : s not appearing in ~A�f , and the requirement that no variable depends on a

translates to the requirement that ~a : s(. . . )�ts does not appear in ~Γ�ts either. Therefore,

we can discharge ~a�ts from the assumption and deduce from the FOL universal elimination

rule that ~Γ�ts , ~A�f ` ∀a : ~s�s. ~a : s�ts �⇒ ~φ(a)�f . This is the translation of

Γ,A ` ∀a : s(t1 , · · · , tn).φ(a), as required.

2.4 Limitation

Our logic was crafted to serve as a minimal framework capable of capturing mathematical

foundations in a generic manner. While it offers versatility and a natural approach, it does

have its inherent limitations.

Cannot Capture the Meta-Theory When compared to a Dependent Type Theory (DTT)

theorem prover that allows for embedding the foundational logic and using the same prover for

theorems both within the foundation and the ones about the meta-theory, our theorem prover

has a limitation: it can only prove theorems within the specific foundation it is specialized into.

This limitation can become apparent when we need to prove a theorem that involves elements

of a broader meta-theory but ultimately results in a theorem within the specific foundation.

For instance, there are some general proofs in Shulman’s paper [47], for instance, the ones

on Section 7 about the Axiom of Replacement, that require concepts from category theory
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in the larger mathematical context. It is possible to formalize each individual case of these

theorems. But a DTT theorem prover allows the proof of the most general case using the

broader meta-theory, offering a more efficient approach to handling such situations.

No Variants on Versions of First-Order Logic We emphasize that our system exhibits

generality primarily within the realm of dependent sorted first-order logic. In contrast to more

versatile systems like Isabelle and Metamath, where users can declare logical operators and

introduce new proof rules, our system is tailored for only classical first-order logic. Nevertheless,

within an appropriate foundational framework, it’s possible to formalize other logics on top of

our system, as illustrated in the example in Section 5.2.8. Additionally, there’s the potential

to extend our design to accommodate variants of first-order logic, but these extensions would

typically require individual implementations, lacking a generalized mechanism for users to

declare logical rules without delving into the implementation details.

Sorts are Required to be Well-Founded We also note that a term-sort-tree must be

well-founded. We must start with a ground sort without any dependency, so the following

construction cannot be formalized in our system.

2.4.1 Example. One presentation of a theory within a category is to have only one sort, that

is an arrow. In such a setting, the identity arrow is identified with the object. It is not possible

to make “arrows depend on two identity arrows” intrinsic in our setting.

Absence of Sort Variables Whereas mainstream type theories have type variables, our

system does not incorporate sort variables, which may look surprising to type theorists. As a

consequence, we do not have the capability to assert or prove theorems that hold universally

across all sorts. This limitation is a deliberate aspect of our approach and underscores the

utility of sorts. While type variables in other systems enable the expression of statements

valid for all types, they necessitate consideration of all cases across existing types. In contrast,

through the use of sorts, we restrict our focus to theorems applicable to a specific category of

entities.

The advantage of employing sorts is to maintain separation between different categories and

to ensure that certain features only apply to entities within a particular collection. This

separation serves to impose type-checking for predicate and function application and therefore

prevents situations where it might be possible to write down a statement such as 1 ∈ 2. Sorts,
in essence, help us keep distinct categories distinct and prevent issues that might arise from

treating everything together as a single entity.

No Notion of Restricted Formula Variable Instantiation One of the limitations that

significantly affects the flexibility of our current system is the absence of syntax condition
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checks before a formula instantiation. Such checks are indeed crucial for certain foundations.

While it is feasible to introduce an additional parameter to our formula variable instantiation

rule to accommodate a predicate related to the instantiation map, it’s important to recognize

that these checks are often not doable within the foundation to be declared. In practical

terms, implementing a predicate for these checks typically necessitates involvement at the

implementation level. This limitation becomes particularly relevant in cases involving variations

of the separation schema [1], where new “collections” are constructed from existing ones.

2.4.2 Example. When formulating an unsorted set theory in our setting, we require restricted

separation to avoid the Russell paradox. As in 2.1.7, we need the formula to be satisfied to

be conjuncted with the pre-condition that x is in a fixed set A. The same check can be done

in an alternative way: we omit the conjunct x ∈ A, and check the formula includes that x

is in a fixed set A before instantiation. Then the axiom can look like ∀A. ∃B. ∀x ∈ B ⇔
F ([Var(x0 , set)], [x]) instead.

2.4.3 Example. Whereas the condition only on the x can be ensured by adding a conjunction,

we cannot use the same approach to check boundedness. A bounded formula is a formula

such that every quantification happens only on elements of the same set. Therefore, the

syntax-checking predicate we define will hold if immediately after a quantification, we see a

conjunct x ∈ A for some fixed set A.

2.4.4 Example. As a more complicated case used in Quine’s new foundation, we need a

formula to be stratified before constructing a new set out of it. This suggests the condition-

checking predicate should allow take some extra input, say, a function. A formula can be

stratified if there exists a function f from each variable of it, bounded or not, to a natural

number, such that whenever x ∈ y occurs in the formula, we have f (x) + 1 � f (y). It is

impossible to do this check within our logic since we do not even have a notion of natural

numbers. However, for implementing our logic in a language such as SML, where we do have

a type of natural numbers, it would not be any problem implementing it.

No Dependent Function It is no obvious way to capture dependent functions as in

dependent type theory in our system. In DTT, a dependent function f : Πa:AB(a) consists of
a family of types indexed by a type A, captured as a function B : A→ Type assign each term

a : A a type B(a). The application of the function on a outputs a term of type B(a). In this

sense, the type of the output varies.

The critical feature of a dependent function is that given an input, it simultaneously figure

out a type where the output lives in, and a term as the output. A direct translation into our

system will require a function to the collection of all sorts. As we do not have a term that

serves as collection of all sorts, such a translation is not possible.
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As an approximation using a foundation, say, the structural ZF, we can create a two function

symbols that outputs a set and a member of it at the same time. In more symbolic notation,

given a ∈ A, it is possible to create function symbols f1 and f2 such that f1(a) ∈ f2(A). This can
effectively recover some cases of dependent functions. However, note that such approximation

has to be captured by two function symbols, whereas the counterpart is captured as a term in

DTT.
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Chapter 3

Implementation

We discuss our approach to implementing the logical system described in the last chapter using

the SML language, including examples. The implementation basically follows the LCF-style [6].

In particular, this means that we implement our theorems as an abstract data type, with the

primitive rules of inference being the only way to construct theorem values. We discuss how

sorts, terms, formulas and theorems are represented in SML, and how the primitive rules of

inference are implemented.

On top of kernels such as this, any useful system must implement a great deal of extra

machinery. Many proof tools such as tactics, tacticals and derived rules in the theorem prover

HOL4 can be re-implemented in our system with only mild modification. We are also able to

borrow HOL’s library of proof stacks, history and parts of its pretty-printer. The simplifier is

implemented following Paulson’s higher-order rewriting [37]. We also apply HOL’s counterpart

of the term net for an effective search for the theorems with matching patterns.

On the other hand, as our desired syntax is different, we must implement a new parser.

Among other features, for usability, it is critical to implement type-inference (in our case, “sort

inference”). We describe our algorithm in Section 3.2.

3.1 Primitive rules

We implement our datatype of terms and formulas with the following constructors:

Bound variables (i.e., terms built with the Bound constructor) are exclusively created through

abstraction and are never encountered independently; they are always associated with a

quantifier. The name of the quantified variable is retained and can serve as the default name

when we strip the quantification, as happens during pretty-printing, for example. A theorem

is a 3-tuple that faithfully captures our design.

1 datatype thm = thm of (( string * sort) set * form list * form)
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1 datatype sort = Srt of string * term list
2 and term = Var of string * sort
3 | Bound of int
4 | Fun of string * sort * term list;
5
6 datatype form = Pred of string * term list
7 | fVar of string * (string * sort) list * term list
8 | Conn of string * form list
9 | Quant of string * string * sort * form

Figure 3.1: SML declarations for terms, sorts and formulas

In the interest of efficiency, compared with our design from the last chapter, we also make

the connectives ∧ (conjunction), ∨ (disjunction), ¬ (negation) and the existential quantifier

primitive formula constructors. The implemented inference rules for each of them are taken to

be primitive rules, avoiding the need for performing expansions through derived rules every

time these operations are used. The implementation is generally straightforward.

Even for the complicated function specification rule, the implementation follows a systematic

procedure. We take the relation provided by the user, construct the corresponding formula

that serves as the condition for it to be an equivalence, and subsequently validate that the

user-provided theorem indeed has this formula as its conclusion. In the following, we only

delve into the two most interesting cases: the ones for term and formula variable instantiation.

3.1.1 Term variable instantiation

The instantiation map, which records the mapping between the variables to be instan-

tiated and the actual terms, is implemented as a dictionary using a (string#sort , term)-
Binarymap.dictionary. The instantiation of a theorem involves the instantiation of its context,

formulas in assumption sets, and the conclusion formula. This instantiation process is ac-

complished using a function called finst, which takes an instantiation map and a formula as

its arguments. This function is organized into three stages, with the first two stages, tinst

and sinst, handling terms and sorts, respectively. Since the implementation follows the de

Bruijn approach for handling bound variables, instantiating a variable does not result in any

renaming. Bound variables remain unchanged by any instantiation. A variable term Var(n , s),
is instantiated into the term t if the variable (n , s) is found in the dictionary and is mapped to

t; otherwise, it remains unchanged. Instantiations on function terms and sorts are constructed

inductively. The instantiation function is total, meaning it handles all possible cases, and it

never raises exceptions or enters into infinite loops during its execution.

The application of the instantiation rule in our system involves a preliminary check to ensure

that the instantiation map is well-formed, as specified in Section 2.3. To perform this check,

we define a function that assesses the well-formedness of the map. Given a map σ, this
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1 fun inst_thm env th =
2 i f is_wfmenv env then
3 l e t
4 va l G = HOLset . l i s t I t em s ( cont th )
5 va l G’ = var_bigunion ( L i s t .map ( f v t o ( t i n s t env ) o mk_var)

G)
6 va l A = L i s t .map ( f i n s t env ) ( ant th )
7 va l C = f i n s t env ( conc l th )
8 in
9 thm(G’ ,A,C)

10 end
11 e l s e r a i s e s imp l e_ fa i l "bad␣environment"

Figure 3.2: Code for Term Variable Instantiation Rule

function returns true if each variable (n , s) in the map’s domain is mapped to a term t with

the sort sinst σ s. Once the check for well-formedness has been successfully passed, we proceed

to instantiate the formulas within the assumption sets and the conclusion using the finst σ

function. Regarding the context, which comprises variables (n , s), we transform them into

variable terms, map them using σ and subsequently gather the variables present in all the

output terms to form the new context. The SML code is: Note that we do not require the

domain of the map to cover all the variables in the context. This will not result in any

ill-formedness, as we have checked by verification in HOL4.

3.1.2 Formula variable instantiation

An instantiation map for formula variables associates each formula variable to a concrete

formula. Each formula variable (F , ®v) in the domain of dictionary is associated with a well-

formed formula of the form ∀®v. ψ. The instantiation of a formula variable (F , ®v) only takes care

of subformulas of form F [®v](®t). To facilitate this process, an auxiliary function is employed to

modify such subformulas. Once a subformula of the pattern F [®v](®t) is detected, the auxiliary

function replaces the bounded variables in ψ with the actual terms ®t. When instantiating a

formula variable with a list of terms, in the form of F [v1 , · · · , vn](t1 , · · · , tn), we form out of

the list of terms [t1 , · · · , tn] a map of indices to actual terms, as 0 7→ tn , · · · , n − 1 7→ t1. As

an example:

3.1.1 Example. Consider the instantiation of F [(A, ob), (B, ob), ( f ,A→ B)](X,Y, h : X →
Y) with the predicate on (A, B, f : A→ B) that f is an injection. We are required to specialize

the quantification ∀A B f : A→ B. Inj(Bound(0)) with the term list [X,Y, h : X → Y]. The
indices map used here is 0 7→ h : X → Y, 1 7→ B, 2 7→ A, where the indices are observed

inside the list of universal quantification. In this case, only the information 0 7→ h : X → Y is

used, because 1 and 2 do not appear explicitly in the body of the formula.
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The subformula can appear anywhere within a formula and may involve bound variables.

Leveraging the de Bruijn index approach, instead of the more complex process of stripping

quantification, applying substitution, and re-abstraction, we can directly replace bound

variables with terms that involve bound variables. This can be achieved efficiently by keeping

track of the binding depth. The substitution essentially involves replacing specific numerical

indices (corresponding to bound variables) with specific terms. As a result, the function

responsible for this task takes as input a map that associates numbers (indices) with terms, as

well as the formula φ. This function is named fprpl. The lower-level counterparts, tprpl and

sprpl, which deal with terms and sorts, respectively, are relatively straightforward to define.

The only non-trivial case arises in the clause concerning quantifiers, where the index values

change.

3.1.2 Example. Consider the theory ZF and the formula variable (F , [(a , set)]) on a set

to be instantiated as the property of being non-empty, i.e., the combination of the variable

list and the output of the map is ψ :� ∀A. ∃x0. x0 ∈ A. In terms of de Brujin index,

it is ∀A. ∃x0. Bound(0) ∈ Bound(1). We now want to instantiate the formula variable in

the formula ∃x. F [(a , set)](x). The subformula containing the formula variable appears

as F [(a , set)](Bound(0)). This means the formula variable is applied on the term Bound(0).
Accordingly, we form a map that assigns 0 7→ Bound(0), indicating the outermost bounded

variable in ψ will be instantiated with Bound(0). However, the outermost bounded variable in

∃x0. x0 ∈ Bound(1) has its index not 0 but 1 because this formula is itself a quantification. In

this case, we shift the map 0 7→ Bound(0) to assign 1 7→ Bound(1) instead. We then replace

according to this map the index 1 in ∃x0. x0 ∈ Bound(1) into Bound(1), leaving the formula

unchanged. Putting back the quantification on x, the resultant formula after instantiation is

∃x. ∃x0. Bound(0) ∈ Bound(1), to be interpreted as ∃x. ∃x0. x0 ∈ x.

The step of modifying the map on bounded indices is done by a function called mapshift,

taking a natural number regarded as the depth to be shifted, in this case, is 1, and a map

to be shifted. The first thing modified by this function is the domain: As the utmost level

of ∃x0. x0 ∈ Bound(1) is a quantification, the bounded variable Bound(0) already has an

associated quantifier, so the index 0 is not in the domain of the index map anymore. Therefore,

the domain should be modified to start with 1. The term that was previously the output for

the index map at the input 0 should now be the output for 1 instead, more generally, the

output for n should now be the output for n + 1. In other words, the output for n in the

modified map should be acquired by applying the original map to the index n − 1. However,
it’s important to remember that the indices in the original output terms correspond to the

original input indices. To maintain this correspondence, we need to adjust the indices in the

output terms accordingly. In our example, the 0 in the domain becomes 1 in the shifted map,

to keep the level correspondence, we need to add 1 to every index that appears in the original
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1 fun fprpl bmap f =
2 case f of
3 Pred(P,tl) =>
4 Pred(P,List.map (tprpl bmap) tl)
5 | fVar(P,vl,tl) =>
6 fVar(P,vl ,(List.map (tprpl bmap) tl))
7 | Conn(co,fl) =>
8 Conn(co ,List.map (fprpl bmap) fl)
9 | Quant(q,n,s,b) =>

10 Quant(q,n,sprpl bmap s, fprpl (mapshift 1 bmap) b)

Figure 3.3: SML Code of the Index-Replacing Function

output for 0. Adding a number uniformly to all the indices is done by the function tshift.

The general effect of the map mapshift is summarized as follows. The domain of mapshift i σ

is {n + i | n ∈ domain of σ}. When applying on n in its domain, we have

(mapshift i σ)(n) � tshift i (σ(n − i))

Such an n is at least i, so the subtraction does not cause any misbehavior.

Employing this function, we define fprpl as:

3.2 Parsing

Despite the simplicity of the logic, the parsing procedure is a bit involved. Parsing consists of

the following steps:

• Tokenizing a string into keywords and identifiers.

• Building an abstract syntax tree from the tokenized list.

• Turning an abstract syntax tree into a pre-sorted-syntax-structure.

• Performing type inference using unification.

• Building a well-formed, sorted syntax structure using the information obtained by type

inference.

String → Token list Tokenizing is standard.

Token list → AST (Abstract Syntax Tree) The datatype of AST is declared as follows:

In the Abstract Syntax Tree (AST) stage, we aim to determine the structure in which we

should parse the token list without distinguishing among terms, sorts, and formulas. The

constructors used for building the AST are designed to handle a variety of cases:
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1 datatype ast =
2 aId of string
3 | aApp of string * ast list
4 | aInfix of ast * string * ast
5 | afV of string * ast list * ast list
6 | aBinder of string * ast * ast

Figure 3.4: Constructors of AST

• aId (Atomic Identifier): This constructor takes a string as its argument and is used for

names that stand alone. These names can represent variable names, sort names, nullary

predicates, or constants.

• aApp (Application): This constructor is versatile and is used for function symbol and

predicate symbol applications. It also covers two additional cases: sort dependency and

negation (¬). In the case of sort dependency, the string represents the name of the sort,

and the AST list is the list of terms it depends on. In the case of negation, the AST list

is not eventually turned a list of terms but rather a singleton list containing a formula.

• aInfix (Infix Operator): This constructor is used for both the function symbol and

predicate symbol applications as infixes and binary logical connectives. In the former

case, the two ASTs will be eventually turned into argument terms, whereas in the latter

case, they will be turned into formulas

• afV (Formula Variable): This constructor is specifically reserved for formula variables.

Formula variables are distinguishable by the presence of two pairs of brackets, making

them easy to identify.

• aBinder (Quantification): The recognition of quantifiers is straightforward, and a separate

constructor is reserved exclusively for quantification cases. In this constructor, the string

and the first AST capture the name and the sort of the variable, while the last AST

captures the body of the quantification.

An AST records a variable is either atomic or an infix. In these two cases, the AST has a

name, which is output by name_of_ast.

AST → pre-sorted-structure The next step is to transform the Abstract Syntax Tree

(AST) into a preliminary representation of a term, a sort, or a formula. These preliminary

structures, known as “pre-term”, “pre-sort”, and “pre-formula” are raw in the sense that the

sorts of terms, that should eventually be stored in the constructors, are yet to be determined.

See Figure 3.5.

We have three distinct functions, each responsible for creating the corresponding structure (each

of pre-sort, pre-term and pre-form). Most of the pre-constructors above have the counterpart
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1 datatype psort = psrt of string * pterm list
2 | psvar of int
3 and pterm = ptUVar of int
4 | pVar of string * psort
5 | pFun of string * psort * pterm list
6 | pAnno of pterm * psort
7 datatype pform = pPred of string * pterm list
8 | pConn of string * pform list
9 | pQuant of string * string * psort * pform

10 | pfVar of string * pterm list * pterm list ;

Figure 3.5: Constructors of Pre-syntax

for an “full version”. Here are the only three exceptions: The constructor psvar reads “pre-sort

variable”, it will only later be associated with a concrete sort; The constructor Uvar reads

“unification variable”, it is generated in the case that we need some terms for an inferred sort

to depend on. Both of these are only generated during the type-inference and are never built

from an AST. The constructor pAnno reads “annotation”. This constructor is used when the

sort is annotated by the user.

The pre-syntax building functions take an AST and an environment and will output the

pre-syntax with such an environment as well. The pre-syntax and the environment built in

this step contain all the sort information that is immediately inferable from the provided AST.

An environment is a tuple containing four maps and a natural number,

• A map int → pterm, assigns each unification variable to a pre-term.

• A map int → pterm, assigns each pre-sort variable to a pre-sort.

• A map string → int , records the correspondence between pre-variable names and the

sort variable it is associated with.

• map int → psort, records the pre-sort of each generated unification variable.

The fourth map is indeed required because a unification variable only has a name. Its

constructor does not give a field to store its sort. All of them are implemented as a dictionary.

The final component of an environment records the number that can be used for a fresh name

for the next generated pre-sort variable or unification variable.

The three main functions we define for this step are shown in Figures 3.6, 3.7 and 3.8. In

below, the function astl2ptl simply folds the function ast2pt and sortname_of_infix looks up

the database to check the name of the output of an infix function symbol. The function

ps_of_const takes the pre-sort of a constant. The first four components of the environment

are modified by insert_us, insert_ps, record_ps and insert_pt. The function clear_ps erases

from the third component. When a pre-term is not a unification variable, it has a pre-sort,
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which can be obtained by applying ps_of_pt. We call fresh_var to increase the number stored

in the last component of an environment by 1.

We do not perform unification during the conversion to pre-syntax, so no unification variable

is generated and we do not use the first and the fourth component of the environment.

The functions ast2ps, ast2pt building pre-terms and pre-sorts are mutually recursive. When

attempting to turn an AST into a pre-term, the constructor aId can be transformed into either

a constant using pFun or a pre-term variable. In the first case, the sort of the constant is

acquired from the signature. This sort is then converted into a pre-sort and stored within

the constructor. When the identifier is determined to be a variable with the name n, we

check if it has already encountered this variable when converting another part of the same

AST. This check is performed by examining the third map in the input environment. If the

variable name n is already associated with a pre-sort variable k, then the AST is transformed

into pVar(n , psvar k). In this scenario, the output consists of this pre-term, and the input

environment remains unchanged. If the variable name n is not associated with a pre-sort

variable in the environment, the system uses the name m recorded in the last slot of the

environment. In this case, the output consists of pVar(n , psvar m), and the environment is

modified by adding an extra record to the third map, mapping n to m. Additionally, the field of

the fresh name is updated to m + 1. For an AST constructed with aApp( f , astl), it can only be

converted into a function pre-term. The resulting pre-term has the form pFun( f , psvar m , ptl),
where m is a fresh name obtained from the environment, and the pre-term list ptl is constructed

inductively by calling the ast2pt function. This recursive process enables the construction of

function pre-terms from ASTs containing function symbol applications.

A pre-term pAnno can only be obtained from an AST of the form aInfix(a1 , :, a2). This means

the user intends to annotate the term a1 to be of the sort a2. In this case, we call ast2pt on a1
and ast2ps on a2, obtaining t0 and s0. The sort encoded within the constructor of t0 will be

unified with s0 in the later step for type-inference. Other instances of infixes are treated in

the same manner as a function application, except for when the symbol is not in the signature.

For such a case, the function will fail, along with the other two remaining constructors that do

not capture a pre-term, namely aBinder and afV.

The two constructors aBinder and afV are left to be dealt with ast2pf, the function building

pre-formulas. On an afV, the function ast2pf calls ast2pt on both of the two AST lists to turn

them into lists of pre-terms, with the first list consisting of pre-term variables only. When

coming across an aBinder(q , v , b), the v will be an AST recording a variable that is bounded

within b, an AST recording the body of the quantification. We first attempt to build the

pre-term variable v. Let it have name n. The input environment env may already record a

pre-sort for such a name, but within the quantification, it is not relevant. However, such a
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1 fun ast2pt as t ( env , n) =
2 case as t o f
3 aId ( a ) =>
4 i f i s_const a then
5 (pFun(a , ps_of_const a , [ ] ) , env )
6 e l s e
7 l e t va l a ’ = i f a = "_" then a ^ Int . t oS t r ing n e l s e a
8 va l n ’ = i f a = "_" then n + 1 e l s e n
9 in case ps_of env a ’ o f

10 NONE => l e t va l (Av , env1 ) = fresh_var env
11 va l env2 = record_ps a ’ ( psvar Av) env1
12 in ( pVar (a ’ , psvar Av) , env2 )
13 end
14 | SOME ps => (pVar (a ’ , ps ) , env )
15 end
16 | aApp( st r , a s t l ) =>
17 i f is_fun s t r then
18 case a s t l o f
19 [ ] =>
20 l e t va l (Av , env1 ) = fresh_var env
21 in (pFun( st r , psvar Av , [ ] ) , env1 )
22 end
23 | h : : t =>
24 l e t va l ( pt0 , env1 ) = ast2pt (aApp( st r , t ) ) env
25 va l ( pt , env2 ) = ast2pt h env1
26 in ( pFun_cons pt0 pt , env2 )
27 end
28 e l s e r a i s e s imp l e_ fa i l ( "not␣a␣ func t i on ␣symbol : ␣" ^ s t r )
29 | a I n f i x ( ast1 , s t r , as t2 ) =>
30 i f s t r = " : " then
31 case ast1 o f
32 aId (name) =>
33 l e t va l ( ps0 , env1 ) = ast2ps ast2 env
34 in
35 case ps_of env name o f
36 NONE =>
37 l e t va l (Av , env2 ) = fresh_var env1
38 va l env3 = record_ps name ( psvar Av) env2
39 va l ps = psvar Av
40 va l env4 = insert_ps Av ps0 env3
41 in
42 (pAnno(pVar (name , ps ) , ps0 ) , env4 )
43 end
44 | SOME ps =>
45 l e t va l name0 = psvar_name ps
46 va l env2 = insert_ps name0 ps0 env1
47 in
48 (pAnno(pVar (name , ps ) , ps0 ) , env2 )
49 end
50 end
51 | _ =>
52 l e t va l ( ps0 , env1 ) = ast2ps ast2 env
53 va l ( pt0 , env2 ) = ast2pt ast1 env1
54 in
55 (pAnno( pt0 , ps0 ) , env2 )
56 end
57 e l s e
58 i f i s_ i n f i x s t r then
59 l e t va l ( pt1 , env1 ) = ast2pt ast1 env
60 va l ( pt2 , env2 ) = ast2pt ast2 env1
61 va l (Av , env3 ) = fresh_var env2
62 in
63 (pFun( st r , psvar Av , [ pt1 , pt2 ] ) , env3 )
64 end
65 e l s e r a i s e s imp l e_ fa i l ( "not␣an␣ i n f i x ␣ operator : ␣" ^ s t r )
66 | aBinder ( s t r , ns , b) =>
67 r a i s e s imp l e_ fa i l " quan t i f i e d ␣ formula ␣ parsed ␣ as ␣a␣term ! "
68 | afV _ => r a i s e s imp l e_ fa i l " ast2pt . a s t ␣ i s ␣a␣ fVar , ␣not␣a␣ s o r t "

Figure 3.6: SML function producing pre-term
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1 and ast2ps ast (env ,n) =
2 case ast of
3 aId(ns) => (psrt(ns ,[]),env)
4 | aApp(ns,atl) =>
5 let val (ptl ,env1) = astl2ptl atl env
6 in (psrt(ns ,ptl),env1)
7 end
8 |aInfix(ast1 ,inx ,ast2) =>
9 let

10 val (pt1 ,env1) = ast2pt ast1 env
11 val (pt2 ,env2) = ast2pt ast2 env1
12 val sn = sortname_of_infix inx
13 in
14 (psrt(sn ,[pt1 ,pt2]),env2)
15 end
16 | _ => raise PER ("ast2ps.wrong␣attempt␣of␣trying␣to␣turn␣an␣

aBinder␣or␣afV␣into␣a␣pre -sort" ,[],[])

Figure 3.7: SML function producing pre-sort

record cannot be discarded because it is still required to build the remaining parts of a formula.

Thus, this information is set aside as follows: When building the body b, we erase such a

record and associate n with a fresh pre-sort variable m. Building the pre-formula for b will

give us another environment env1. We erase the record n 7→ m from the third map of env1

and put back the previous pre-sort record on n, which gives us env2. Then env2 will be the

output environment, together with the pre-formula built.

3.2.1 Example. Consider the parsing of the string ◦(g , f : A→ B) representing the compo-

sition of two arrows into the AST:

aApp(“ ◦ ”, aId(“g”), aInfix(aId(“ f ”), : , aInfix(aId(“A”),→, aId(“B”))))

as we are working in the signature of ETCS. To build it into a pre-term, we start from an empty

environment ([], [], [], [], 0). The constructor aApp indicates that it is a function term, we

descend into the branches to build its arguments. The first argument aId(g) will be turned into

a variable since there is no constant with the name g. Taking the first fresh name from the last

component of the environment, we build it into the pre-variable pVar(g , psvar 0), and update

the environment into ([], [], [g 7→ 0], [], 1). The second argument is an annotation. Processing

aId( f ) gives pVar( f , psvar 1), ([], [], [g 7→ 0; f 7→ 1], [], 2). The pre-sort constructed with the in-

fix “→” is built into psrt(ar, [pVar(A, psvar 2), pVar(B, psvar 3)]), with environment ([], [], [g 7→
0; f 7→ 1; A 7→ 2; B 7→ 3], [], 4). This environment is kept the same when we output the

annotated pre-term pAnno(pVar( f , psvar 1), psrt(ar, [pVar(A, psvar 2), pVar(B, psvar 3)])). The
remaining task is to put the two arguments together and assign the function term a pre-sort
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1 fun a s t2p f a s t ( env : env , n) =
2 case as t o f
3 aId ( a ) =>
4 i f a = "T" then ( pPred ( "T" , [ ] ) , env ) e l s e
5 i f a = "F" then ( pPred ( "F" , [ ] ) , env ) e l s e
6 ( case ( lookup_pred ( ! psyms ) a ) o f
7 SOME l => i f l = [ ] then ( pPred (a , [ ] ) , env )
8 e l s e r a i s e s imp l e_ fa i l ( "Using␣multi−argument␣"^a^
9 "␣ as ␣a␣pred . ␣var " )

10 | _ => ( pfVar (a , [ ] , [ ] ) , env ) )
11 | aApp( "~" , [ a s t ] ) =>
12 l e t va l ( pf , env1 ) = as t2p f a s t env in
13 (pConn( "~" , [ p f ] ) , env1 )
14 end
15 | aApp( s t r , a s t l ) =>
16 l e t va l ( pt l , env1 ) = a s t l 2 p t l av l env
17 in ( pPred ( s t r , p t l ) , env1 )
18 end
19 | afV ( s t r , avl , a a rg l ) =>
20 l e t va l ( pvl , env1 ) = a s t l 2 p t l av l env
21 va l ( pargl , env2 ) = a s t l 2 p t l aa rg l env1
22 in
23 ( pfVar ( s t r , pvl , parg l ) , env2 )
24 end
25 | a I n f i x ( ast1 , s t r , a s t2 ) =>
26 i f mem s t r [ "&" , " | " , "<=>" , "==>" ] then
27 l e t
28 va l ( pf1 , env1 ) = as t2p f as t1 env
29 va l ( pf2 , env2 ) = as t2p f as t2 env1
30 in
31 (pConn( s t r , [ pf1 , pf2 ] ) , env2 )
32 end e l s e
33 i f mem s t r [ "=" , "==" ] then
34 l e t
35 va l ( pt1 , env1 ) = ast2pt ast1 env
36 va l ( pt2 , env2 ) = ast2pt ast2 env1
37 in
38 ( pPred ( s t r , [ pt1 , pt2 ] ) , env2 )
39 end e l s e
40 r a i s e s imp l e_ fa i l ( "not␣an␣ i n f i x ␣ operator : ␣" ^ s t r )
41 | aBinder ( s t r , ns , b ) =>
42 i f mem s t r [ " ! " , "?" , " ? ! " ] then
43 l e t va l name = name_of_ast ns
44 va l pso = ps_of env name
45 va l env1 = clear_ps name env
46 va l (Av, env2 ) = fresh_var env1
47 va l env3 = record_ps name ( psvar Av) env2
48 va l ( pt , env4 ) = ast2pt ns env3
49 va l ( ps , env5 ) = ps_of_pt pt env4
50 va l ( pf , env6 ) = as t2p f b env5
51 va l env7 = clear_ps name env6
52 va l env8 = case pso o f SOME ps => record_ps name ps env7

| _ => env7
53 in
54 ( pQuant ( s t r , name , ps , pf ) , env8 )
55 end
56 e l s e r a i s e s imp l e_ fa i l "not␣a␣ q u a n t i f i e r "

Figure 3.8: SML function producing pre-formula
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variable, obtaining the pair consisting of

pFun( ◦ , psvar 4, [pVar(g , psvar 0), pAnno(pVar( f , psvar 1), psrt(ar, [pVar(A, psvar 2), pVar(B, psvar 3)]))])

and

([], [], [g 7→ 0; f 7→ 1; A 7→ 2; B 7→ 3], [], 5)

Type-inference via unification This step infers sort information. For each pre-sort

variable, we will eventually unify it with a concrete pre-sort. These pre-sorts may involve

some generated unification variables. In the case that the unification variables can be inferred

to be a more concrete term, it is unified with that term. When the signature requires two

unification variables to agree, this is resolved by unifying the two unification variables. If

multiple unification variables agree, the “chasing” functions chases and chaset, will eventually

direct them all to the same pre-term. Such a term can be a more concrete term or just a single

unification variable.

The primary basis for type inference comes from the signature of function and predicate

symbols. The type inference function for terms takes an environment env , a pre-term t0, and

a pre-sort s0 as inputs and produces a new environment as output. The definition of such a

function is shown in Figure 3.9, where the unification functions called by it are defined in

Figure 3.10. Unification is performed during the process of inferring the sort of t0 to be s0.

The type-inference function for predicate symbols is the same as the one for function symbols,

except that there is no need to infer the sort of the output term. Quantification case

pQuant(q , n , s0 , b0) is handled similarly to constructing the AST. We erase the association

from n to the pre-sort variable k, if any, from the provided environment, assign it a new

pre-sort variable m, bind m 7→ s0 in the second map of the environment, type infer the body,

and then add back the association n 7→ k. This is still necessary because the type-inference

of this quantified formula might be a part of a connective, in which case the type-inference

accumulates on a list. The variable n can still be present in other parts, where the sort

information on it remains useful.

3.2.2 Example. We continue with the previous example. For type-inferring this annotation

term, we look up the function symbol ◦ in the signature. The signature gives that for the input

list [ f : A→ B, g : B→ C], the output g ◦ f is of sort A→ C. According to the signature,

we generate in total 5 unification variables: Two for the arrows, and three for the domains and

codomains. We associate the generated unification variables with names from 6 to 10, where

8, 9 and 10 are “pre-object”, which means that their pre-sorts stored in the 4-th map in the

environment are all psrt(ob, []). In that map, we also associate 6 to the pre-arrow from 9 to 10,

and 7 to the pre-arrow from 8 to 9. The type-inference on g does not make a change. That on
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1 fun type_infer_ptl env ptl =
2 List.foldr
3 (fn (pt ,env) =>
4 let val (ps,env1) = ps_of_pt pt env
5 in type_infer env1 pt ps
6 end)
7 env ptl
8 and type_infer_pfun env t ty =
9 case t of

10 pFun(f,ps ,ptl) =>
11 let
12 val env = type_infer_ptl env ptl
13 in
14 (case lookup_fun (!fsyms) f of
15 SOME (s,l) =>
16 let val (uvs ,nd ,env1) = npsl2ptUVarl (map ns2nps l) env
17 val (s1 ,nd1 ,env2) = fgt_name_ps (s2ps s) nd env1
18 val tounify = zip ptl uvs
19 val env3 = foldr
20 (fn ((a,b),env) => unify_pt env a b)
21 env1 tounify
22 in
23 unify_ps (unify_ps env3 ty s1) ty ps
24 end
25 | _ => env)
26 end
27 | _ => raise simple_fail ("not␣a␣function␣term" ^ (stringof_pt t

))
28 and type_infer env t ty =
29 case t of
30 pFun(f,ps ,ptl) => type_infer_pfun env t ty
31 | pAnno (pt ,ps) =>
32 let val env1 = type_infer env pt ps
33 val (ps’,env1 ’) = (ps_of_pt pt env1)
34 val env2 = type_infer env1 ’ pt ps ’
35 in unify_ps env2 ty ps
36 end
37 | pVar (name ,ps) =>
38 (case ps of
39 psrt(sn,ptl) =>
40 let val env = type_infer_ptl env ptl
41 in unify_ps env ty ps
42 end
43 | _ => unify_ps env ty ps)
44 | ptUVar name =>
45 (case lookup_us env name of
46 SOME ps => unify_ps env ps ty
47 | _ => insert_us name ty env)

Figure 3.9: Type inference from terms
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the annotation term f will result in storing 1 7→ psrt(ar, [pVar(A, psvar 2), pVar(B, psvar 3)])
in the second map.

Building well-formed syntax The remaining step of constructing formal syntax from

pre-syntax amounts to descending along the tree structure of the pre-syntax and acquiring

the sort information exclusively from the provided environment. This means that there’s

no need to consult the signature of function and predicate symbols at this stage. Three

functions, pt2tm, ps2st and pf2fm, are responsible for taking a pre-syntax and an environment

and producing the corresponding formal syntax. All four maps stored in the environment may

be consulted during this step to ensure accurate sort information is obtained for constructing

the formal syntax.

To acquire the sorts, we need to know where the pre-sort variables and the unification variables

eventually go. This is found out by two chasing functions chasevars and chasevart. They are

declared as where the functions lookupt and lookups simply find the outputs of the first and

the second map in the environment. The chasing functions do terminate. This is ensured by

the occurs check on the previous unification step that creates the environment. The procedure

of syntax-building is straightforward. The only thing to note is that a quantified formula from

pQuant(q , n , s0 , b0) is built by firstly building the body to be a well-formed formula, where the

sort of the variable n is obtained from not the provided environment but s0, then abstract on

the variable n. A unification variable that is not eventually assigned a concrete term will be

left with a number as its name. A pre-sort variable that is not eventually assigned a concrete

sort will just be assigned the first ground sort stored in the signature.

3.2.3 Example. We finally build the composition term according to the environment obtained

from the last example. The sort of the whole function term is an arrow from the unification

variable 8 to 10. When building this sort, we chase in the environment where these two

variables go to and get that 8 goes to A. As the 10 is not associated with anything, the whole

function term will end up being of an arrow sort from A to 10. The sort information of A is

obtained because its pre-sort variable is unified with the counterpart of 8, which is assigned to

a pre-object from the point it is generated.
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1 fun unify_ps env ( ps1 : psor t ) ( ps2 : psor t ) : env =
2 case ( chasevars ps1 env , chasevars ps2 env ) o f
3 ( psvar n1 , psvar n2 ) =>
4 i f n1 = n2 then env e l s e insert_ps n1 ( psvar n2 ) env
5 | ( psvar n , ps ) =>
6 i f occs_ps n env ps
7 then r a i s e UNIFY
8 ( " occurs ␣ check ( ps ) : " ^ s t r ingo f_ps ( psvar n) ^ "␣" ^
9 s t r ingo f_ps ps , [ ] )

10 e l s e insert_ps n ps env
11 | ( ps , psvar n) =>
12 i f occs_ps n env ps
13 then r a i s e UNIFY
14 ( " occurs ␣ check ( ps ) : " ^ s t r ingo f_ps ( psvar n) ^ "␣" ^
15 s t r ingo f_ps ps , [ ] )
16 e l s e insert_ps n ps env
17 | ( p s r t ( sn1 , p t l 1 ) , p s r t ( sn2 , p t l 2 ) ) =>
18 i f sn1 = sn2 then
19 L i s t . f o l d r ( fn ( ( a , b) , env ) => unify_pt env a b)
20 env ( z ip pt l 1 pt l 2 )
21 e l s e r a i s e UNIFY (" d i f f e r e n t ␣ s o r t s : ␣" ^ sn1 ^ "␣ , ␣" ^ sn2 , [ ] )
22 and unify_pt env pt1 pt2 : env=
23 case ( chasevart pt1 env , chasevart pt2 env ) o f
24 ( ptUVar a , ptUVar b) =>
25 i f a = b then env e l s e
26 l e t va l ( psa , env1 ) = ps_of_pt pt1 env
27 va l ( psb , env2 ) = ps_of_pt pt2 env1
28 va l env3 = unify_ps env2 psa psb
29 in insert_pt a (ptUVar b) env3
30 end
31 | ( ptUVar a , t ) =>
32 i f occs_pt a env t
33 then r a i s e UNIFY (" occurs ␣ check ( pt ) : " ^
34 s t r ingo f_pt (ptUVar a ) ^ "␣" ^ st r ingo f_pt t , [ ] )
35 e l s e
36 l e t va l ( ps1 , env1 ) = ps_of_pt pt1 env
37 va l ( ps2 , env2 ) = ps_of_pt pt2 env1
38 va l env3 = unify_ps env2 ps1 ps2
39 in
40 inser t_pt a t env3
41 end
42 | ( t , ptUVar a ) =>
43 i f occs_pt a env t
44 then r a i s e UNIFY (" occurs ␣ check ( pt ) : " ^
45 s t r ingo f_pt t ^ "␣" ^ st r ingo f_pt (ptUVar a ) , [ ] )
46 e l s e
47 l e t va l ( ps1 , env1 ) = ps_of_pt pt1 env
48 va l ( ps2 , env2 ) = ps_of_pt pt2 env1
49 va l env3 = unify_ps env2 ps1 ps2
50 in
51 inser t_pt a t env3
52 end
53 | ( pVar ( a1 , ps1 ) , pVar ( a2 , ps2 ) ) =>
54 i f a1 = a2 then unify_ps env ps1 ps2
55 e l s e r a i s e UNIFY (" d i f f e r e n t ␣ va r i ab l e ␣name" , [ ] )
56 | (pFun( f , ps1 , l 1 ) ,pFun(g , ps2 , l 2 ) ) =>
57 i f f = g andalso l ength l 1 = length l 2
58 then ( l e t va l env = unify_ps env ps1 ps2 in
59 case ( l1 , l 2 ) o f
60 ( [ ] , [ ] ) => env
61 | ( h1 : : r1 , h2 : : r2 ) =>
62 l e t va l env1 = unify_pt env h1 h2
63 in unify_pt env1 (pFun( f , ps1 , r1 ) ) (pFun(g , ps2 , r2 ) )
64 end
65 | _ => r a i s e UNIFY ("term␣ l i s t ␣ cannot␣be␣ un i f i e d " , [ ] )
66 end )
67 e l s e r a i s e UNIFY (" d i f f e r e n t ␣ func t i on s : "^ f ^ " , ␣" ^ g , [ ] )
68 | (pAnno( pt , ps ) , t ) => unify_pt env pt t
69 | ( t , pAnno( pt , ps ) ) => unify_pt env pt t
70 | _ => r a i s e UNIFY (" terms␣ cannot␣be␣ un i f i e d " , [ ] )

Figure 3.10: SML code for unification
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Chapter 4

Verification

Despite their convenience, formula variables obviously add a great deal of complexity to our

system and we want to make sure they do not break soundness. To test that our logic works

as expected, we formalize the system in the theorem prover HOL [5]. By formalizing, we make

sure that:

• Well-formedness of terms, sorts and formulas are preserved under our defined operations

such as substitutions.

• Formula variables are only a convenience, so our system has no more power than

dependent sorted FOL.

We start with the HOL formalization of the syntax of our logic. In particular, we give formal

definitions of well-formed terms, sorts, and formulas. We then prove our instantiation operation

preserves well-formedness. After that, we formalize our proof system via inductive relations.

By the end of this chapter, we will arrive at our conclusion which addresses our concern, which

can be summarized as “formula variables can be effectively eliminated”.1

4.1 Syntax

4.1.1 Terms and Sorts

Terms and sorts are mutually recursive with each other as a HOL datatype:

term � Var string sort | Fn string sort (term list) | Bound num;

sort � St string (term list)
1If we modeled still more of our implementation within the logic, one might hope that an entire implementa-

tion could be automatically derived, or “extracted”, from this logical specification. For example, this approach
is behind the construction of the Candle theorem prover [12].
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The functions collecting free variables in terms and sorts defined in Section 2.1 are directly

formalized, and output sets of free variables in a term t or a sort s as tfv t and sfv s.

A set V of variables is a well-formed context (abbreviated as “is context” in this chapter,

formalized in HOL as cont V ) if once (n , s) ∈ V, we have sfv s ⊆ V . For a term t and a sort

s, the sets tfv t and sfv s inherently constitute well-formed contexts.

Because terms and sorts are algebraic, we have ∀ s n . (n , s) < sfv s . This is proved by defining

a size-measuring function on terms and sorts and appealing to the fact that the sort size of any

free variable appearing in a term is strictly less than the size of the term. The size measuring

function is used across our whole formalization to prove the termination of functions defined

on terms and sorts.

This section serves to explain the definition of term well-formedness, which is declared as:

Definition 4.1.1.

wft (Σs ,Σf ) (Var n s) def
� wfs (Σs ,Σf ) s

wft (Σs ,Σf ) (Fn f s tl) def
�

wfs (Σs ,Σf ) s ∧ (∀ t . MEM t tl ⇒ wft (Σs ,Σf ) t) ∧ isfsym Σf f ∧
IS_SOME (tlmatch ∅ (MAP Var’ (fsymin Σf f )) tl FEMPTY) ∧
ins (THE (tlmatch ∅ (MAP Var’ (fsymin Σf f )) tl FEMPTY)) (fsymout Σf f ) � s

wft (Σs ,Σf ) (Bound i) def
� F

wfs (Σs ,Σf ) (St n tl) def
� EVERY (λ a . wft (Σs ,Σf ) a) tl ∧ MAP tsname tl � Σs ’ n

where

• The predicate IS_SOME on a term of the option type means that it is not the NONE, i.e.

the matching does not fail.

• The term ins θ s is obtained by instantiating the sort s by the map θ. The instantiation

function takes a finite map θ of HOL type string × sort 7→ term and a term t or a

sort s, gives the term int θ t or ins θ t by replacing each variable v in the domain of θ

into θ ’ v , and skipping any bound variables. We will keep using the Greek letter θ for

term instantiation maps. Whereas a matching can fail, an instantiation always gives an

output.

• The notation Var’ uncurries the constructor Var as a function, i.e. Var’ (n , s) � Var n s.

• The predicate EVERY P for a term P with type α → bool that encodes a predicate

holds for an α-list if and only if every item of the list satisfies P.

• The function THE takes out the term encoded in an option type, i.e. THE (SOME a) � a
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The clause on function terms says a term Fn f s tl is well-formed when f is a function symbol,

all the terms in tl are well-formed, and moreover, the sort encoded in s must be the same as

the sort built from the signature according to the sort of the arguments tl . As bound variables

only occur when an abstraction happens while building quantified formulas, they are never

well-formed when standing alone. As the check is recursive, any subterm of a well-formed term

or sort has to be well-formed.

Well-formed terms are those constructed in accordance with a signature pair (Σs ,Σf ) where
Σs is a list of sort names (as strings) that records the sort dependency, and Σf is the sort

information of function symbols. In our formalization, a signature on function symbols is a

finite map string 7→ sort × (string × sort) list. This is denoted as Σf . We write

isfsym Σf f if the string f is in the domain of Σf , meaning it is a function symbol. We write

fsymin Σf f for f ’s input variable list, and fsymout Σf f for the expected sort of the output

based on the inputs.

To do this check, we match the variables recorded in the signature to the terms in the argument

list. The matching function is of type (string × sort → bool) × term × term ×
(string × sort 7→ term) →
(string × sort 7→ term) option. It takes a set lcs of local constants, a term serving as a

pattern, a concrete term to be matched with, a map storing variable assignments that are

already determined, and outputs a map as the result of the matching process if the two input

terms can be matched. If the terms cannot be matched, it returns the option NONE. We

present its definition in Figure 4.1 As above, a variable fails to match if we try to match:

• a variable to a variable with a bound variable in it.

• a local constant with another term, except to itself.

• a variable to another term, given it is already assigned to some term by the input map.

Matching a bound variable doesn’t contribute any new information to be recorded in the map.

Nevertheless, it can cause the matching function to fail if an attempt to match two bound

variables with different depths is detected. A function symbol application can only be matched

with the application of the same function symbol. Also visible from above is that this function

only augments the input map; it never removes anything from it. This is a standard example

of formalizing a definition with mutual recursion.

We usually start the matching with the empty map FEMPTY. Hence the map we obtain will

have no bound variables in its codomain (written as no_bound in HOL). The set of local

constants is taken to be empty when performing well-formedness checks. In this case, the

obtained map has its domain precisely the set tfv t . We call a map whose domain is a context

to be complete. Starting a matching with a complete map will give a complete map. Such
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tmatch lcs (Var n s) ct f
def
�

if tbounds ct , ∅ then NONE
else if (n , s) ∈ lcs then if Var n s � ct then SOME f else NONE
else if (n , s) ∈ FDOM f then if ct � f ’ (n , s) then SOME f else NONE
else
case smatch lcs s (sort_of ct) f of
NONE ⇒ NONE
| SOME f0 ⇒ SOME (f0 | + ((n , s), ct))

tmatch lcs (Fn f1 s1 tl1) (Fn f2 s2 tl2) f
def
�

if f1 � f2 then
case tlmatch lcs tl1 tl2 f of NONE ⇒ NONE | SOME σ0 ⇒ smatch lcs s1 s2 σ0

else NONE

tmatch lcs (Fn v0 v1 v2) (Var v3 v4) f
def
� NONE

tmatch lcs (Fn v5 v6 v7) (Bound v8) f
def
� NONE

tmatch lcs (Bound i) (Bound j ) f
def
� if i � j then SOME f else NONE

tmatch lcs (Bound i) (Var v9 v10) f
def
� NONE

tmatch lcs (Bound i) (Fn v11 v12 v13) f
def
� NONE

smatch lcs (St n1 tl1) (St n2 tl2) f
def
�

if n1 � n2 then tlmatch lcs tl1 tl2 f else NONE

tlmatch lcs [] [] f
def
� SOME f

tlmatch lcs [] (h :: t) f
def
� NONE

tlmatch lcs (h :: t) [] f
def
� NONE

tlmatch lcs (h1 :: t1) (h2 :: t2) f
def
�

case tmatch lcs h1 h2 f of NONE ⇒ NONE | SOME f1 ⇒ tlmatch lcs t1 t2 f1

Figure 4.1: Definition of term matching
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theorems are all formalized in HOL using mutual induction. An important result that we have

formalized states that a pattern can be matched to a concrete term if and only if the term is

an instantiation of the pattern. This result is elegantly expressed as an equivalence, which can

be formulated as follows:

Theorem 4.1.1.

` IS_SOME (tmatch ∅ t1 t2 FEMPTY) ⇐⇒
∃ θ. cstt θ ∧ no_bound θ ∧ tfv t1 � FDOM θ ∧ t2 � int θ t1

where the condition cstt θ means θ is consistent, meaning for each variable (n , s) ∈ FDOM θ,

we have sort_of (θ ’ (n , s)) � ins θ s.

The procedure of instantiation can be iterated: If θ1 contains every variable in t and θ2

contains every variable in int θ1 t , then we can combine the two instantiation maps into a

single one by instantiating the variables in the codomain of θ1 with θ2, resulting in a map

called o_vmap θ2 θ1. With this combined map, we can obtain the result of two instantiations

with a single instantiation, as we prove int θ2 (int θ1 t) � int (o_vmap θ2 θ1) t . Accordingly,

matching can also be iterated. If the term t1 can be matched to t2 and t2 can be matched

to t3, then t1 can be matched to t3. By combining these theorems, we yield transitivity of

matchability:

Theorem 4.1.2.

` IS_SOME (tmatch ∅ t1 t2 FEMPTY) ∧ IS_SOME (tmatch ∅ t2 t3 FEMPTY) ⇒
IS_SOME (tmatch ∅ t1 t3 FEMPTY)

4.1.2 Formulas

The formula type is straightforward, apart from the fVar constructor:

form �

⊥
| Pred string (term list)
| IMP form form

| FALL sort form

| fVar string (sort list) (term list)

There are two notable differences between the presentation in Chapter 2 and the formalization.

Using de Brujin indices, the quantification constructor does not have to carry the name of the

variable. As a consequence, the variable list for a formula variable, encoding a λ-abstraction,

does not have to carry their names either. The sorts in that list are then not necessarily
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well-formed when taken in isolation because they may contain bound variables, referring to

the previous items in the list.

4.1.1 Example. In the previous presentation as in Chapter 2, a formula variable to be

instantiated with a predicate on the meta-tuple of the form [A, B, f : A → B] is recorded

F [A : set, B : set, f : A → B]. With de Brujin indices, it is now recorded F [set, set, ar :

Bound 1→ Bound 0]. The Bound 0 here, according to the construction of de Brujin indices,

refers to the quantified term that is closest to the current level, that is, the second item in the

list. The Bound 1 refers to the term bound at the head of the list. Accordingly, the iterated

quantification ∀A B f : A→ B. φ in Chapter 2 will become ∀set set (Bound 1→ Bound 0). φ
in the formalization.

We write ffv f for the set of free variables in a formula f , and write fVars f for the set of formula

variables, consisting of pairs (P , sl). Variables that appear in the sort list of a formula variable

are now interesting. Such a sort list is regarded as obtained by iterated abstraction, and the

variables remaining in this list are the ones that do not become bound during the abstraction.

Our well-formedness predicate on formulas will refer to this set of variables. There are also

many places where we need to collect variables. To collect variables uniformly, we introduce a

new syntax. We define Uof f s as an abbreviation of
⋃{ f x | x ∈ s}. The HOL term Uof has

type (α → β → bool) → (α → bool) → β → bool. It admits neat rewritings such as:

` Uof f (A ∪ B) � Uof f A ∪ Uof f B

` Uof f A ⊆ B ⇐⇒ ∀ a . a ∈ A ⇒ f a ⊆ B

Then the free variables appearing in the sort list of a formula variable in f are collected as

fVslfv f
def
:�Uof (slfv ◦ SND) (fVars f ), where slfv serves to collect the variables in a sort list.

Our predicate, wff asserting the well-formedness of a formula takes a 4-tuple (Σs ,Σf ,Σp ,Σe)
and a formula. It is inductive on the formula. The first and second components record

sort dependency and function symbols and the third component records predicate symbols.

Equality is not stored as a predicate symbol. The last component Σe records the name of the

sorts where we can use equality.
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The complication of well-formed formulas is brought by quantification and formula variables.

Beyond these two cases, other clauses are simply:

` wff (Σs ,Σf ,Σp ,Σe) ⊥

` wft (Σs ,Σf ) t1 ∧ wft (Σs ,Σf ) t2 ∧ sort_of t1 � sort_of t2 ∧
has_eq Σe (tsname t2) ⇒
wff (Σs ,Σf ,Σp ,Σe) (EQ t1 t2)

` (∀ t . MEM t tl ⇒ wft (Σs ,Σf ) t) ∧ ispsym Σp p ∧
IS_SOME (tlmatch ∅ (MAP Var’ (Σp ’ p)) tl FEMPTY) ⇒
wff (Σs ,Σf ,Σp ,Σe) (Pred p tl)

` wff (Σs ,Σf ,Σp ,Σe) f1 ∧ wff (Σs ,Σf ,Σp ,Σe) f2 ⇒ wff (Σs ,Σf ,Σp ,Σe) (IMP f1 f2)

As we can readily read, an equality is well-formed if and only if both sides are well-formed

terms with the same sort, where the sort is required to have equality. A predicate is well-formed

if the arguments are well-formed, and have the correct sorts according to the signature.

Now let us investigate the complicated cases. According to the discussion in Chapter 2, before

making quantifiers, we need to check on the variable (n , s) to be quantified that it does not

appear in any formula variable and is on the top level, meaning it does not appear in any

sort of a free variable in f . When the quantification is allowed, we build it via the formula

∀mk n s f . It in turn calls a function fabs that replaces the term Var n s by a bound term

Bound i , where the index i is initially 0, and increases as the recursion descends past other

quantifiers in the formula.

The inductive rule for universal quantification is thus:

` wff (Σs ,Σf ,Σp ,Σe) f ∧ wfs (Σs ,Σf ) s ∧ (n , s) < fVslfv f ∧
(∀n1 s1. (n1 , s1) ∈ ffv f ⇒ (n , s) < sfv s1) ⇒
wff (Σs ,Σf ,Σp ,Σe) (∀mk n s f )

One might consider an alternative possibility of characterizing this well-formedness without

inductive rules. One could substitute the variable into the body of the formula, and assert the

abstracted formula to be well-formed if the formula obtained by substitution is well-formed.

We can derive such a characterization of well-formed universal formulas as a consequence of
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our definition, formalized as:

` wff (Σs ,Σf ,Σp ,Σe) (FALL s b) ⇐⇒
∃ f n .

wff (Σs ,Σf ,Σp ,Σe) f ∧ wfs (Σs ,Σf ) s ∧ (n , s) < fVslfv f ∧
(∀n1 s1. (n1 , s1) ∈ ffv f ⇒ (n , s) < sfv s1) ∧ FALL s b � ∀mk n s f

The most complicated clause is that for formula variables. Eventually, we will define:

` wffstl (Σs ,Σf ) sl tl ⇒ wff (Σs ,Σf ,Σp ,Σe) (fVar P sl tl)

The rest of this section serves to explain wffstl.

As with the characterization above for universal quantification, we can see this as defining

well-formed specialization. Throughout the specialization, the sort list keeps changing: the

bounded variables become concrete terms. The bound-variable-replacing function, as outlined

in Figure 3.3, can be readily translated into our formalization. Here our case is even simpler

because we are replacing one bound variable at a time, and so we do have to take a list to

map all bound variables at once. The sort srpl i t s is the result after substituting the bound

variable i with the concrete term t in s. We define a specialization of a list as:

Definition 4.1.2.

` (∀ i t . specsl i t [] � []) ∧
∀ i t s sl . specsl i t (s :: sl) � srpl i t s :: specsl (i + 1) t sl

We then define the “specializability” predicate for a sort list and a term list, in below:

Definition 4.1.3.

wfabsap Σ [] [] def
� T

wfabsap Σ (s :: sl) (t :: tl) def
�

(∀n0 s0 st . MEM st sl ∧ (n0 , s0) ∈ sfv st ⇒ sbounds s0 � ∅) ∧ wft Σ t ∧
s � sort_of t ∧ wfs Σ s ∧ wfabsap Σ (specsl 0 t sl) tl

wfabsap Σ (s :: sl) [] def
� F

wfabsap Σ [] (t :: tl) def
� F

The first parameter it takes is the function symbol signature. This is because it has to check

that all the terms for specialization are well-formed, and right before being specialized, the sort

on the top level of the quantification must be checked for well-formedness as well. This function
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inductively checks that at each step, we are specializing a sort list capturing a well-formed

quantification with a well-formed term.

While not every item in sl is required to be well-formed, their selection is not arbitrary. It should

be the sorts s1 , · · · , sn in the quantification list of a well-formed formula ∀ s1 ∀ · · · ∀ sn . φ′,

constructed by abstracting a variable list from a formula φ. As the objects we abstract away

are variables, the most natural approach to obtain such a list is through iterated abstraction

from a variable list. Of course, we stipulate that the variable list subject to abstraction must

exhibit well-formed dependency. We established a general predicate that determines whether

a list can be abstracted from a formula, characterized as:

` (wfvl Σ [] f ⇐⇒ T) ∧
(wfvl Σ (h :: t) f ⇐⇒
wfvl Σ t f ∧ wfs Σ (SND h) ∧ h < fVslfv f ∧
∀n s . (n , s) ∈ ffv (mk_FALLL t f ) ⇒ h < sfv s)

where mk_FALLL simply repeats ∀mk. Then we can formally prove the statement wff Σ f ∧
wfvl Σ1 vl f ⇒ wff Σ (mk_FALLL vl f ),

meaning abstracting a well-formed variable list, as defined above, from a well-formed formula,

will give a well-formed formula.

To convert an abstractable variable list into a sort list, we employ a function that abstracts a

single variable from a sort list:

Definition 4.1.4.

abssl (n , s) i [] def
� []

abssl (n , s) i (h :: t) def
� sabs (n , s) i h :: abssl (n , s) (i + 1) t

where sabs (n , s) i st replaces each occurrence of the variable (n , s) in st with Bound i . The

function vl2sl that does the conversion can be characterized as

` vl2sl (v :: vl) � SND v :: abssl v 0 (vl2sl vl)

Any sort list obtained this way from a well-formed variable list would have no outstanding

index, i.e. indices that appear in the n-th item of the list are no more than n − 1.

Conversely, we can create from a list of sorts containing bound variables a list of terms by

providing a list of names. This is done by the function sl2vl, taking a string list and a sort list.
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This is effectively done by specializing a sort list, calling the function specsl defined before.

sl2vl [] [] def
� []

sl2vl (n :: nl) (s :: sl) def
� (n , s) :: sl2vl nl (specsl 0 (Var n s) sl)

Of course, a successful application of sl2vl requires the two lists to have the same length. If the

names nl are all distinct and do not overlap with any name that appears in sl , then we have

vl2sl (sl2vl nl sl) � sl . The second condition is indeed necessary: Consider taking the name

list [A, f ] and the sort list [set,A→ B], then the re-abstraction after the substitution gives

[set, 0→ B] instead of the original list.

We want to collect the variables remaining after the abstraction since the well-formed rule

for quantification requires avoiding them. To ease the collecting process, we impose a further

condition on their names:

` okvnames vl ⇐⇒ ∀m n . m < n ∧ n < LENGTH vl ⇒ EL n vl < sfv (SND (EL m vl))

This condition says a variable to be abstracted away never has another chance to appear again

and remain as a free variable in the output list.

4.1.2 Example. The names in [B, f : A→ B] are ok, but those in [ f : A→ B,A] are not.

This is because the variable A is abstracted away but then appears again freely in the sort of

f .

For the elimination proof, we want to realize formula variable renaming as formula variable

instantiation. We require formulas of form

∀mk n1 s1 ∀mk · · · ∀mk nk sk F [(n1 , s1), · · · , (nk , sk)](Var n1 s1 , · · · ,Var nk sk)

to be well-formed. During the proof, there is a step for substituting all the variables (ni , si),
for 1 ≤ i ≤ k, uniformly by the bound variables at once, by using a map sending a variable to

an index. We need all the variables to be distinct to make this map. This is made easy by

taking all the variable names to be distinct.

We want to consider the sort list obtained by iterating abstraction of a variable list. It is not

necessary to concern ourselves with the specific formula from which this list is abstracted.

Such validation is conducted prior to us receiving a map and conducting the instantiation

check. Therefore, our sole requirement is for this list to be abstractable from a formula without

any free variables whatsoever. We can use ⊥ as this body formula. In total, a well-formed sort

list-term list application pair is defined as:
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Definition 4.1.5.

wffstl Σ sl tl
def
�

wfabsap Σ sl tl ∧
∃ vl . wfvl Σ vl ⊥ ∧ vl2sl vl � sl ∧ ALL_DISTINCT vl ∧ okvnames vl

Apart from the abstractability and specializability, the two extra conditions are due to the

discussion above. Certainly, once we have a well-formed variable list, we can rename them to

fulfil the two extra conditions as well. The two final conjuncts of the definition (under the

existential quantifier) are redundant, but make subsequent proofs a bit easier.

4.1.3 Preservation of Well-Formedness

The definition of syntax well-formedness above is intricate and susceptible to fragility. We do

not want our kernel’s operations to break any of these conditions. Therefore, we formalized

proofs showing well-formedness is preserved by the operations we use to define our proof rules.

The two most important such theorems are those on term and formula variable instantiations.

Term Variable Instantiation

The eligibility of the instantiation map is checked before carrying out the instantiation. The

restrictions on a term map are completeness, consistency and terms in the codomain all

being well-formed (under a given signature Σf ). These three are combined into a single

predicate wfvmap Σf . The formalized theorem, expressing the preservation of well-formedness

by instantiating with such a map, looks like:

` (∀ fsym .

isfsym Σf fsym ⇒
sfv (fsymout Σf fsym) ⊆ ⋃ { tfv (Var n s) | MEM (n , s) (fsymin Σf fsym) } ) ⇒

∀ θ. wff (Σs ,Σf ,Σp ,Σe) f ∧ wfvmap (Σs ,Σf ) θ ⇒ wff (Σs ,Σf ,Σp ,Σe) (inf θ f )

The assumption on the function signature says the output term is not of a sort that contains

a variable that never appears in the argument list. For instance, we do not want function

symbols to take an input of sort A→ B and give a term A→ X. The proof is by inducting

on well-formedness clauses, with three interesting cases.

Predicates Given a predicate of form Pred P l under the signature Σp storing P with

the variable list l0, the well-formedness for Pred P l means that l0 is matchable to l . The

preservation of well-formedness under instantiation means l0 is still matchable to MAP (int θ) l .

By Theorem 4.1.1, we realize the l as an instantiation of l0. Then MAP (int θ) l is turned
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into an iterated instantiation, and hence an instantiation of l0 by Theorem 4.1.1. Hence

Theorem 4.1.1 and Theorem 4.1.2 prove this case.

Universal Quantifier Assuming f is well-formed and for every wfvmap θ0, we have inf θ0 f

is well-formed, we want inf θ (∀mk n s f ) to be well-formed for a given wfvmap θ. We show this

by constructing inf θ (∀mk n s f ) as an application of ∀mk n s with an eligible variable (n , s)
from a well-formed formula and conclude with the well-formedness clause for quantification.

This is a tedious but typical manipulation of de Brujin indices.

Formula Variables The most complicated case is on formula variables, requiring a proof of

wffstl Σ (MAP (ins θ) sl) (MAP (int θ) tl) from wffstl Σ sl tl . There are two checks: By induction

on tl , we can check wfabsap Σ (MAP (ins θ) sl) (MAP (int θ) tl) from wfabsap Σ sl tl . For the

other check, given vl is a well-formed abstraction list with the extra two conditions, abstracting

into sl , we build a list with the same condition such that it abstracts into MAP (ins θ) sl . This

is done by applying the sl2vl function on MAP (ins θ) sl . Our task is hence provide a proper

list of names. Such a list is chosen by avoiding all the names in vl , the domain of θ, and the

variables in the instantiation MAP (ins θ) sl .

Formula Variable Instantiation

The formalized instantiation function is inductive on constructors. We use the Greek letter δ

for formula variable instantiation maps.

` (∀ δ. infV δ ⊥ � ⊥) ∧ (∀ δ p tl . infV δ (Pred p tl) � Pred p tl) ∧
(∀ δ f1 f2. infV δ (IMP f1 f2) � IMP (infV δ f1) (infV δ f2)) ∧
(∀ δ s φ. infV δ (FALL s φ) � FALL s (infV δ φ)) ∧
∀ δ P sl tl .

infV δ (fVar P sl tl) �

if (P , sl) ∈ FDOM δ then fprpl (mk_bmap (REVERSE tl)) (δ ’ (P , sl))
else fVar P sl tl

The function fprpl is the same as the one in implementation. The map δ is of type string ×
sort list 7→ form, recording where the formula variable (P , sl) goes. We require for each

(P , sl) ∈ FDOM δ, the combined formula FALLL sl (δ ’ (P , sl)) is well-formed (under the

signature Σ ), written wffVmap Σ δ. When it sees a fVar P sl tl with (P , sl) ∈ FDOM δ,

the function fprpl replaces all the bounded variables into concrete terms in parallel. This

is effectively specializing FALL sl (δ ’ (P , sl)) with the term list tl . The inductive proof of

the well-formedness of formula variable instantiation has only two interesting cases: that for

formula variables and universal quantification.
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Instantiating fVar P sl tl amounts to formally realizing it as an iterated specialization, which

can be obtained by proving the preservation of well-formedness on a single specialization, and

then induction on the length of the abstraction list.

The quantification case is more involved. We just give an example to illustrate the renaming

procedure involved in this proof.

4.1.3 Example. Consider the formula ∀A. F [set](A), and the predicate stating a map

f : A→ B factors through this object, then we want to instantiate with

λX. ∃g : A→ X h : X → B. h ◦ g � f

Then after the instantiation, the variable A is no longer abstractable, since it appears in the

sort of the free variable f . We thereby rename the A in the map into A′ instead, so the

instantiation gives:

∃g : A′→ A h : A→ B. h ◦ g � f

Abstraction will give a formula that is, via de Brujin index, equal to

∀K. ∃g : A′→ K h : K → B. h ◦ g � f

Then we can rename A′ back to A, yields:

∀K. ∃g : A→ K h : K → B. h ◦ g � f

which is well-formed.

The whole procedure is summarized into chained equalities:

FALL s (infV δ (abst (n , s) f ))
� FALL s

(frename (nn , s) n (abst (n , s) (infV (fVmap_rename (n , s) nn δ) f )))
� frename (nn , s) n

(FALL s (abst (n , s) (infV (fVmap_rename (n , s) nn δ) f )))

We reduce the left-hand side to the right-hand side. As f is well-formed, its instantiation is

well-formed by the inductive hypothesis, the well-formedness is preserved by the abstraction

and finally by the renaming. This completes the induction.
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4.2 Proof Rules

Recall that a theorem in our formalization is a 3-tuple (Γ ,A, φ) consisting of Γ , a HOL set of

type string × sort → bool, A, a HOL set of assumptions of type form → bool and φ, a

formula. We use functions cont, assum and concl to extract the three slots. The set of formula

variables in a theorem is collected with the function thfVars. A proof is a list of theorems,

where each step is obtainable from some previous step by applying some primitive rules. We

formalize the predicate Pf Σ axs pf to mean the list pf is a proof under signature Σ from

the axioms axs. We write PfDrv Σ axs th to signify that there is a proof that ends with th,

meaning this theorem is derivable. Rules for connectives are straightforward. For instance,

the rule for modens ponens says:

` Pf Σ axs pf 1 ∧ Pf Σ axs pf 2 ∧ MEM (Γ1 ,A1 , IMP f1 f2) pf 1 ∧
MEM (Γ2 ,A2 , f1) pf 2 ⇒
Pf Σ axs (pf 1 ++ pf 2 ++ [(Γ1 ∪ Γ2 ,A1 ∪ A2 , f2)])

We exclude the less interesting cases and only present those that are necessary to discuss

before explaining our elimination proof.

Congruence As in our design, our primitive congruence rule is only on formula variables. It

considers formula variables with a non-empty list of arguments with sorts s1 , · · · , sn , recorded

in the list sl . The congruence rule takes a list of proofs that involve an item with its conclusion

an equality. These equations are where the congruence would take place. The list is recorded by

a function Pfs of type num → ((string × sort → bool) × (form → bool) × form) list,
such that for each n < LENGTH sl , the proof Pfs gives us a theorem proving an equation

between terms of sort EL n sl . The theorems on equality are captured by a function eqths from

a natural number to a theorem. The function GENLIST simply takes a natural number n and

a function, and produces a list by taking the output of the function up to n. An application

of this rule produces a big proof by attaching all the input proofs together, and attaching a

theorem with its context and assumption set as the union of the counterpart from the equality

theorems, and has conclusion IFF (fVar P sl tl1) (fVar P sl tl2), produced by a function fVcong.
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The connective IFF is defined as in convention. It is formally presented as:

` sl , [] ∧ wffVsl (FST2 Σ ) sl ∧
(∀n . n < LENGTH sl ⇒

is_EQ (concl (eqths n)) ∧ Pf Σ axs (Pfs n) ∧ MEM (eqths n) (Pfs n) ∧
sort_of (Leq (concl (eqths n))) � EL n sl) ∧

(∀ s . MEM s sl ⇒ wfs (FST2 Σ ) s) ⇒
Pf Σ axs

(FLAT (GENLIST (LENGTH sl − 1) Pfs) ++ [fVcong (GENLIST (LENGTH sl − 1) eqths) P sl])

where FST2 takes the first two components of a 4-tuple. Note that all the sorts of the terms to

be equated are all well-formed. In particular, the formula variable it outputs will have a sort

list without any bound variable. By the discussion in Section 2.3.2, it is sufficient to consider

lists of well-formed sorts only.

Instantiation In the formalization, for the term instantiation θ to be applied to the theorem

(Γ ,A, φ), we include an extra condition that the domain of the well-formed map θ to cover

the whole context Γ . Such a condition shortens the proof and is clearly reasonable because any

consistent map could be expanded to cover every variable we want to include. The theorem

inth
t θ (Γ ,A, f ) is the result of the instantiation. The assumption set and conclusion are

obtained by applying the formula instantiation. The context is the set { tfv (θ ’ v ) | v | v ∈
FDOM θ ∩ Γ } . The rule for term instantiation is then presented as:

` Pf Σ axs pf ∧ MEM th pf ∧ wfvmap (FST2 Σ ) θ ∧ cont th ⊆ FDOM θ ⇒
Pf Σ axs (pf ++ [inth

t θ th])

The rule for formula instantiation is similar, where the condition wfvmap (FST Σ ) θ is replaced

by wffVmap Σ δ and cont th ⊆ FDOM θ is replaced by thfVars th ⊆ FDOM δ. Again, the

instantiated theorem’s assumptions and conclusion are the image of the instantiation map. The

context is Γ ∪ { ffv (δ ’ fv ) | fv ∈ thfVars (Γ ,A, f ) } It is evident that instantiating formula

variables can only expand the context. We will call the instantiated theorem inth
f δ (Γ ,A, f ).

Universal Quantifier The restriction imposed by the generalization rule is verified by

ensuring that the variable (x , s) does not appear in the set of prohibited variables. These

prohibited variables are compiled as a union of variables collected using our previously defined

Uof. We refer to this union as genavds (Γ ,A, f ). Furthermore, generalization cannot introduce

new variables. If we intend to abstract a variable whose sort includes an additional free

variable, we must first apply the context expansion rule to include it. Once these conditions are

met, the generalization rule removes the free variable from the context and abstracts it in the



Chapter 4. Verification 58

conclusion while leaving the assumptions intact. It produces the theorem gen (x , s) (Γ ,A, f ).

` Pf Σ axs pf ∧ MEM (Γ ,A, f ) pf ∧ wfs (FST2 Σ ) s ∧ sfv s ⊆ Γ ∧
(x , s) < genavds (Γ ,A, f ) ⇒
Pf Σ axs (pf ++ [gen (x , s) (Γ ,A, f )])

As for specialization, it checks the term is of the correct sort only:

` Pf Σ axs pf ∧ MEM (Γ ,A, FALL s f ) pf ∧ wft (FST2 Σ ) t ∧ sort_of t � s ⇒
Pf Σ axs (pf ++ [spec t (Γ ,A, FALL s f )])

4.3 Elimination of Formula Variables

While formula variables provide a convenient way to work with our system, they are essentially

higher-order variables. In systems like HOL, if we were to create a datatype for “sets”, a formula

variable F [A : set] would correspond to a HOL term of type set→ bool. In a dependently

typed system like Lean, which has types for sets and dependent types for functions, a formula

variable F [A : set, B : set, f : A→ B] would capture a term of type ΠA:setΠB:setΠ f :A→Bbool.

Such terms do not exist in a first-order system. Therefore, it’s not immediately clear why

we can introduce this type of formula without compromising the first-order nature or the

soundness of the system. We will now present evidence that this design is indeed safe by

proving that our system is not more powerful than a dependent sorted first-order logic without

any formula variables.

Every theorem provable in our system can also be derived in a simpler system without formula

variables. We will write Pf0 instead of Pf for the notion of proofs and derivability in this proof

system, described as follows. In Pf0, we use formulas coupled with contexts to specify its

initial axioms. The proof system Pf0 has the same proof rules as Pf, with only one exception:

The formula variable congruence rule, which implies every congruence rule, is replaced by a

rule that directly gives any case of congruence. i.e. the congruence rule as in Section 2.3.2 is

replaced by the following rule on concrete formulas.

Γ1 ,A1 ` t1 � t′1 , · · · , Γn ,An ` tn � t′n⋃n
i�1 Γi ,

⋃n
i�1 Ai ` φ(t1 , · · · tn) ⇔ φ(t′1 , · · · t′n)

In what follows, by abuse of terminology, the phrase “concrete formula” may refer to either a

formula in Pf-proof system without any formula variables, or a formula in the Pf0-proof system,

where the constructor of formula variables does not exist.



Chapter 4. Verification 59

We prove that every proof in Pf corresponds to an “instantiated proof” in Pf0.

AX AX’

Γ,A ` φ Γ′,A′ ` φ′

Pf0-counterpart of fVar-inst with concrete formulas

derivation derivation′

Pf0-counterpart of fVar-inst with concrete formulas

The set AX on the top left corner is the original axioms, and AX’ is all its instances as

theorems, obtained by first applying the Ax-rule and then instantiating the formula variables.

The proof in the left half of the picture happens entirely in Pf, and that on the right happens

entirely in Pf0. We will prove that if a theorem Γ,A ` φ is derivable in Pf, then every of its

concrete instances is derivable in Pf0. We obtain it by proving a strengthened result saying

that under certain well-formedness assumptions, after adjusting all distinct formula variables

into distinct names, instantiating variables and then all the formula variables into concrete

formulas, the resultant theorem has a Pf0-proof.

In the following description, as before, we will use θ and δ for instantiation maps for term

and formula variables respectively. By abuse of notation, we will denote an instantiation on

a formula or a theorem by putting the instantiation maps into a bracket in front of it. For

example, we write (δ; θ)φ to mean instantiate the formula φ with variable map θ first, and

then instantiate with formula variable map δ.

A concrete theorem from Pf is always obtained by taking a proved theorem, instantiating the

variables, and then, if any, instantiating the formula variables all into concrete formulas. We

need to notice that if we swap the order by instantiating formulas first and then the term

variables, we are not able to get all of the derivable instances. This is because predicates

have to be “sort-checked” against their signatures. For instance, before instantiating the B

in P[mem(A),mem(B)](a , b) to be Pow(A), we cannot instantiate the predicate F into the

membership predicate IN. If the formula instantiation δ covers every formula variable in a

theorem (θ)th, and has only concrete formulas in its codomain, then instantiating with it will

produce a concrete theorem. One might imagine that to prove every instantiation (δ; θ)th of a

theorem th has a Pf0-proof. However, it is possible for two formula variables to be identified

upon term instantiation if they have the same name but take arguments of different sorts. For

instance, the formula F [mem(A)](a) and F [mem(B)](b) will become the same if we instantiate

B 7→ A. To see how it obscures the proof: when proving the formula variable instantiation

case, the aim is to complete the dashed arrows in a commutative square:

th (θ′)th (δ′; θ′)th

(δ0)th (θ; δ0)th (δ; θ; δ0)th

θ′

δ0

δ′

θ δ
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The inductive hypothesis says: Assume PfDrv Σ ax th, then for each variable map θ′ and

formula variable map δ′, sending all the formula variables in (θ′)th into a concrete formula,

the theorem (δ′; θ′)th has a Pf0-proof. The goal is to prove for every formula instantiation

(δ0)th, each eligible two-step instantiation with θ and δ is also provable in Pf0. In the diagram

above, the fixed maps are drawn in solid arrows. The proofs amount to finding out the dashed

arrows. We want maps θ′ and δ′ to be used to specialize the inductive hypothesis, producing

a theorem derivable in Pf0 by the inductive hypothesis. Then we apply a proof step in Pf0 to

prove the desired theorem (δ; θ; δ0)th in Pf0.

In terms of formulas, we require for each formula f appearing in th, the conclusion, or a

hypothesis, the commutativity of the diagram:

φ (θ′)φ (δ′; θ′)φ

(δ0)φ (θ; δ0)φ (δ; θ; δ0)φ

θ′

δ0

δ′

θ δ

Ideally, the vertical dashed arrow should be the identity. If so, then we only have to modify

the context by adding in some variables.

The goal can be achieved by effectively swapping θ and δ0. This will require a modification of δ0
according to the term instantiation θ into another map δ′0, which satisfies (δ′0; θ)φ � (θ; δ0)φ
Once this is achieved, we end up with a term instantiation followed by two consecutive formula

instantiations. We can then compose the two formula variable instantiations. This allows us

to take the composition of δ′0 followed by δ as the δ′ required.

Back to the aforementioned example F [mem(A)](a) ∧ F [mem(B)](b), we consider the case

when the two distinct formula variables on members of A and of B, with the same name F ,

are renamed into R and S respectively by δ0, where θ is [B 7→ A]. There is no formula map

that fits in the dash in the diagram below since F [mem(A)] and F [mem(B)] are identified

after instantiation, and hence do not have any chance to eventually become different formula

variables R[mem(B)] and S[mem(B)].

F [mem(A)](a) ∧ F [mem(B)](b) F [mem(A)](a) ∧ F [mem(A)](b)

R[mem(A)](a) ∧ S[mem(B)](b) R[mem(A)](a) ∧ S[mem(A)](a)

To avoid this problem, we ensure different formula variables are not identified by term variable

instantiation by renaming all of them with distinct names. A map capturing such a renaming

is encoded by a finite map of type (string × sort) list 7→ string. We use the ones

that are injections on a set s, which we call a uniquenification. We will always use µ for an
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unique-ification map. Again, by abuse of notation, we write (µ)φ or (µ)th for unique-ification

of a formula or a theorem. Unique-ification ensures that formula variables are not accidentally

identified during term instantiation, preserving the distinctness of formula variables. With the

unique-ification, our problematic example can be resolved by following the flow below. As F1
and F2 now have different names, they can never be identified and can be sent to different

places.

P[mem(A)](a) ∧ P[mem(B)](b) P1[mem(A)](a) ∧ P2[mem(B)](b) P1[mem(A)](a) ∧ P2[mem(B)](b)

R[mem(A)](a) ∧ S[mem(B)](b) R[mem(A)](a) ∧ S[mem(B)](b) R[mem(A)](a) ∧ S[mem(A)](a)

B 7→A

P1[mem(A)]7→R,P2[mem(A)]7→S

With this adjustment, our theorem for the formula variable elimination is formally proved as:

Theorem 4.3.1.

` wfsigaxs Σ axs ∧ wfsigaths Σ aths ∧ Pf Σ axs pf ∧
Uof (UCIth Σ ) (IMAGE ax2th axs) ⊆ aths ∧ MEM th pf ∧ wfvmap (FST Σ ) θ ∧
wfcfVmap Σ δ ∧ thfVars ((θ; µ)th) ⊆ FDOM δ ∧ cont th ⊆ FDOM θ ∧
uniqifn µ (thfVars th) ⇒
Pf0Drv Σ aths ((δ; θ; µ)th)

There are four well-formedness assumptions in this theorem. Two are on the signature and two

are on the instantiation maps. Proving this theorem amounts to completing the commutative

squares similar to the above ones, but extended by an initial step of unique-ification. The

assumption thfVars ((θ; µ)th) ⊆ FDOM δ says the domain of the final formula variable map

covers all the formula variables in the theorem to be instantiated. As this map is concrete, this

assumption makes sure we always end up with a concrete theorem. We use subset inclusion

instead of equality because it is required to proceed the induction. In each case, we can easily

restrict the domains to make it an equality. This allows us to assume the domains of the maps

cover precisely what is required during the following discussion about our main proof.

The induction steps on equality rules, the context expansion and the assume rule are trivial

and the ones on logical operators are very straightforward: The top arrows can just be taken

to be identical to the bottom arrows. The other ones are more interesting. Throughout the

proof, the manipulation mainly happens on the level of formulas. The modification of context

is tedious but routine. The readability of relevant arguments highly relies on the usage of Uof,

with its first argument varies among all the variable-collecting functions we have seen.

We prove the interesting inductive cases. As the modifications on contexts are rather straight-

forward, we will focus on explaining the story on the level of formulas.
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Term Variable Instantiation

The inductive hypothesis says that every possible three-stage-instantiation of th, as in the

dashed maps on the top row, has a Pf0-proof. We then construct an Pf0-proof of (δ; θ; µ; θ0)th.

th (µ′)th (θ′; µ′)th (δ′; θ′; µ′)th

(θ0)th (µ; θ0)th (θ; µ; θ0)th (δ; θ; µ; θ0)th

θ0

µ′ θ′ δ′

µ θ δ

The variable instantiation θ can indeed identify some formula variables, but it does not matter:

we only require the formula variables that are not identified at the end to be kept separated in

the top row instantiation. If they are identified at the bottom, no extra care is required to

keep them separated on the top. But as the inductive hypothesis requires the first map µ′ to

be a unique-ification, actually they are kept separated along all the maps.

In this diagram, no formula instantiation happens until the instantiation δ and δ′, so the

formulas in (δ′; θ′; µ′)th and (δ; θ; µ; θ0)th will be in the same pattern and their formula

variables are in a one-to-one correspondence. To identify their sort lists, we take θ′ to be the

composition o_vmap θ θ0. Then the formula variables in the two theorems only differ with a

renaming. Therefore, the formula instantiation maps δ and δ′ only differ in a renaming of

their domains. In other words, the effect of instantiation δ′ is a renaming followed by δ. We

only have to recover this renaming, amounts to find the vertical renaming map σ in:

ψ (µ′)ψ (θ′; µ′)ψ

(θ0)ψ (µ; θ0)ψ (θ; µ; θ0)ψ
θ0

µ′ θ′

σ

µ θ

Again, to make it clear, we extract the change on a formula variable as the diagram:

(P , sl) (µ′ ’ (P , sl), sl) (µ′ ’ (P , sl),MAP θ′ sl)

(P ,MAP θ0 sl) (µ ’ (P ,MAP θ0 sl),MAP θ0 sl) (µ ’ (P ,MAP θ0 sl),MAP θ (MAP θ0 sl))

θ0

µ′ θ′

σ

µ θ

It is clear what the map σ should do:

• For a formula variable (P ′, sl ′), which is known to be in the form as in the upper right

corner of the diagram above, use the fact that µ′ is a bijection to find out the original

(P , sl) in th.

• Instantiate (P , sl) with θ0, then (P ′, sl ′) will be renamed into µ ’ (P ,MAP θ0 sl).
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The renaming σ can be recaptured as a formula variable instantiation and we compose it with

δ. This gives the map δ′ in the original diagram.

Modus Ponens

Upon initial inspection, modus ponens might seem as straightforward as the other rules for

connectives. However, it does require additional attention due to a unique feature: While the

other logical rules concerning falsity and discharge preserve the presence of proper subformulas

in the input theorems, modus ponens eliminates the antecedent of the implication theorem

that it takes as an input.

In the formal proof, the inductive hypothesis gives: if thfVars (Γ1 ,A1 , IMP φ ψ) and thfVars (Γ2 ,A2 , φ)
both have Pf-proof, and for all feasible instantiation maps µ1, θ1, δ1 and µ2 θ2 and δ2, on the

two theorems respectively, the instantiations have a Pf0-proof. We want to prove any feasible

3-step-instantiation of (Γ1 ∪ Γ2 ,A1 ∪ A2 , ψ), with µ, θ and δ, has a Pf0-proof.

The problem is that the domain of µ and δ only contains the formula variables from (Γ1 ∪
Γ2 ,A1 ∪ A2 , ψ), but the inductive hypothesis is on theorems involving the φ, and asks for

a map that includes formula variables from it. We hence adopt a modification on those two

maps: The renaming µ will be extended to also include formula variables in φ, and to be

kept as an injection. The formula map δ will be extended to also include formula variables

that originally comes from φ, and send them all to ⊥, so it does not bring any extra free

variables. The choice of formulas does not make a difference, because all the instantiated

concrete formulas, in our case, all the ⊥ brought by this instantiation, will disappear after

applying modens ponens in Pf0. The proof from here is straightforward.

Universal Quantifier

Generalization The generalization changes the conclusion and delete the generalized vari-

able from the context of the theorem (Γ ,A, ψ). We have a commutative diagram:

ψ (µ)ψ (θ′; µ)ψ (δ; θ′; µ)ψ

∀mk x s φ µ(∀mk x s φ) (θ; µ)(∀mk x s φ) (δ; θ; µ)(∀mk x s φ)
∀mk x s

µ θ′ δ

∀mk nn ((θ)s)
µ θ δ

where the map θ′ sends (x , s) to Var nn ((θ)s) and agrees with θ on every other variable, for

a new nn with some conditions. The unique-ification and formula map on the top row is the

same as the bottom one. We need a renaming process here. To keep the formula maps on

the two rows the same, we take the option to rename the variable in the body of the formula,

hence the generalization in Pf0 is on the variable with the new name. We need to avoid the
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names in δ and in θ. We also want to avoid the names that already exist in the context. Once

the choice of the new name nn avoids these three variable sets, we can prove the equality:

(δ; θ; µ)(gen (x , s) th) � gen (nn , (θ)s) ((δ; θ′; µ)th)

which directly implies our result.

Specialization The proof of the specialization case is quite simple. As expressed in the

diagram, deferring the specialization just amounts to specializing with the instantiated term

instead.

ψ (µ)ψ (θ; µ)ψ (δ; θ; µ)ψ

specf t ψ (µ)(specf t ψ) (θ; µ)(specf t ψ) (δ; θ; µ)(specf t ψ)

specf t

µ θ δ

specf ((θ)t)
µ θ δ

This is due to the three neat equations:

(θ)(spec t th) � spec ((θ)t) ((θ)th)

(µ)(spec t th) � spec t ((µ)th)
(δ)(spec t th) � spec t ((δ)th)

under easy well-formedness conditions.

The highlight is that this case is the reason we need term instantiation to be primitive, and

do not allow generalization over the sort list of formula variables. Semantically, it is indeed

reasonable. But if we allow such instantiation, our induction will get stuck on this step. This is

because there might be more formula variables that become instantiable after the specialization.

However, there is no obvious way to conclude anything about such newly introduced formula

variables from the induction hypothesis.

4.3.1 Example. Consider the (ill-formed) quantified formula variable ∀B. F [A → B]( f ).
Before we specialize the variable B , it does not make sense to instantiate such a formula. Its

codomain is not specified, so we do not know which formula makes sense for such instantiation.

Congruence

Despite the simplicity of this case, we point out that we use choice in our formalization via a

step of Skolemization.

The choice happens as follows: the inductive hypothesis gives a list of Pf-theorems, each with

a step proving an equation, and their instantiations all admit a Pf0-proof. We only have the
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existence of such Pf0-proofs, but there may be more than one. Choosing one particular proof

is requested by the Pf0-congruence rule since it requires an explicit list of proofs to be put

together. Avoiding such a choice may be possible but is not trivial. It will demand us to

strengthen our theorem to be strong enough to give a machinery of building a Pf0-proof of an

instantiation of a theorem from a Pf-proof of the theorem.
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Chapter 5

Two Structural Set Theories

In this chapter, we describe the formalization of two structural set theories, namely ETCS [29]

and SEAR [7], in DiaToM. With each, we work within a well-pointed boolean topos. This

ensures usual mathematical constructions can be performed in both of them. Notably, they

both possess fundamental mathematical constructs such as products, coproducts, exponentials,

and initial and terminal objects. ETCS incorporates the existence of these constructs as

primitive axioms. In contrast, SEAR constructs them manually.

In terms of power, SEAR is stronger than ETCS. ETCS stands out for its simplicity. It can

be finitely axiomatized and yet possesses the mathematical strength of HOL, allowing for a

significant range of mathematical operations. SEAR, on the other hand, is more complex, as

it has two axiom schemata. These schemata enable the proof of highly potent theorems, thus

exceeding the expressiveness limitations of HOL.

We will commence with the introduction of ETCS due to its simpler presentation. Most of our

explanations and demonstrations will be carried out in SEAR. For the formal presentation

of a theorem in this and the next chapter, when the context is obvious and there are no

assumptions, we only present the conclusion as a formula.

5.1 Formalizing ETCS

The theory ETCS stands as a classic example of structural set theory. It was developed early

by William Lawvere as a pioneering piece of work on formulating set theory with a “categorical”

spirit. This happens in the sense of focusing on how objects interact with each other, in

contrast to asking “What is in an object”. It is achieved by omitting the primitive notion of

“membership” and working entirely with the objects, here the sets, and the interaction between

them, here the functions. With the presence of the terminal object, which is assumed by the

axioms, we can recover a notion of “elements” via a special kind of function: those from the

terminal objects. Moreover, as ETCS assumes well-pointedness, imposing two functions to be
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equal if they agree on all the elements of the domain, we can mostly just think of working

with more conventional versions of set theory.

As already seen in Example 2.1.5, ETCS has two sorts: objects (A, B, . . . ; a ground sort)

and arrows (e.g., A→ B), where an arrow sort depends on two object terms. Equality can

only hold between arrows. An object is to be considered as a set in the usual sense: an arrow

1→ X is regarded as an element of the set X.

We believe the approach we take is the original design as in Lawvere [29]. The ways to present

ETCS are actually not unique. As pointed out in [10], alternatively, we can present ETCS in

one sort, or two sorts without dependency as well. In these cases, information that is naturally

captured by sort judgements must be captured using predicates such as “being a set” and

“being an element”. For such an approach, we are required to impose equality on sets as well, as

it is the only obvious way to verify the domain and codomain condition when treating partial

function symbols, e.g., composition. Such an approach, however, is employed in Lawvere’s

later paper on ETCC. Presenting ETCS with dependent sorts does not yield any obvious pain

points. This is evident from the smoothness of the formalization of Lawvere’s original paper,

where all 6 statements labelled as “theorems” admit a direct mechanical translation.

Despite its elegance in presenting some branches of mathematics, ETCS is not considered

to be perfect, or even better than the material approach of set theory. One spot where

inconvenience arises is the treatment of ordinal and cardinal numbers. Whereas they admit

explicit constructions in material set theories, it is hard to yield a treatment of them without

always explicitly using the notion of well-ordered sets and comparing cardinalities using

injections or surjections.

For the current version of ETCS, people may also not like the fact that it hard-coded the

Axiom of Choice as one of its axioms. This axiom is employed when proving Theorem 5 as

in Lawvere’s original paper. Thankfully, as there exists a model that satisfies all the other

axioms but not AC Riehl [45], the axiom of choice is independent of the others. There are

many variants of ETCS of interest. For the purposes of our experimentation, we have focused

on the original version of ETCS, as we will describe in the following.

5.1.1 Basic settings

The table for primitive function symbols required by the signature of ETCS is displayed below.

The only primitive predicate symbol is the equality between arrows. Unlike the other two

systems SEAR and CCAF that we have experimented with, where some predicates have to be

primitive, with their behavior characterized by axioms, all the predicate symbols in ETCS can
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Symbol Input Output Source
◦ [ f : A→ B, g : B→ C] g ◦ f : A→ C signature
id [A : Ob] id(A) : A→ A signature
× [A : Ob, B : Ob] A × B : Ob Axiom 1
π1 [A : Ob, B : Ob] π1(A, B) : A × B→ A Axiom 1
π2 [A : Ob, B : Ob] π2(A, B) : A × B→ B Axiom 1
+ [A : Ob, B : Ob] A + B : Ob Axiom 1
i1 [A : Ob, B : Ob] i1(A, B) : A→ A + B Axiom 1
i2 [A : Ob, B : Ob] i2(A, B) : B→ A + B Axiom 1
∅ [] ∅ : Ob Axiom 1
1 [] 1 : Ob Axiom 1

Exp [A : Ob, B : Ob] BA : Ob Axiom 2
ev [A : Ob, B : Ob] ev(A, B) : A × BA → B Axiom 2
N [] N : Ob Axiom 3
z [] z : 1→ N Axiom 3
s [] s : N→ N Axiom 3

Table 5.1: Primitive symbols required by ETCS

be obtained by definitions. In order to state the axioms, we now define required predicate

symbols (in contrast to via axiomatizing).

• Initial object is to be regarded as the empty set, and admits a function to any set.

` ∀X. intl(X) ⇔ ∀A. ∃! f : X → A. >

• Terminal object is to be regarded as the singleton set, and admits a function from any

set.

` ∀X. tml(X) ⇔ ∀A. ∃! f : A→ X. >

• Product set is regarded as the set of pairs, with two projections giving the components:

` ∀AB p1 : AB → A p2 : AB → B.

isPr(p1 , p2) ⇔ ∀X f : X → A g : X → B. ∃!fg : X → AB .p1 ◦ fg � f ∧ p2 ◦ fg � g

• Coproduct set is regarded as a disjoint union, with two inclusions from the sets where

the elements come from.

` ∀AB i1 : A→ AB i2 : B→ AB .

iscoPr(i1 , i2) ⇔ ∀X f : A→ X g : B→ X. ∃!fg : AB → X. fg ◦ i1 � f ∧ fg ◦ i2 � g
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• Equalizer of two functions f , g : A→ B captures the set {a ∈ A | f (a) � g(a)}. This set
is the E in the definition and admits an inclusion to the set A.

` ∀A B f g : A→ B E e : E→ A.

isEq( f , g , e) ⇔
f ◦ e � g ◦ e ∧ ∀X a : X → A. f ◦ a � g ◦ a �⇒ ∃!a0 : X → E. a � e ◦ a0

• Coequalizer of two functions f , g : A → B captures the quotient set B/R, where R

relates b1 to b2 if and only if they come from the same element in A. That is, there

exists an element a such that f (a) � b1 and g(a) � b2. The set is the E as below and

admits a surjection as the quotient map from the set B.

` ∀A B f g : A→ B E e : B→ E.

iscoEq( f , g , e) ⇔
e ◦ f � e ◦ g ∧ ∀X b : B→ X. b ◦ f � b ◦ g �⇒ ∃!b0 : E→ X. b � b0 ◦ e

We highlight the point that in the definition of the initial and terminal object, the assertion of

a variable of a certain sort is given by applying the existential to the truth. A non-existence

assertion of a variable is of the form ∀v : s . ⊥, which allows us to prove falsity by specialization

from each term of such a sort.

The definition of a product, stated in English, will start with “a product consists of an object

and two projections”, referring to three terms. As the object is encoded in the sort of projection

maps, we do not have to put it into the argument. For the same reason, the definition of

(co-)equalizer does not make the equalizer object.

In both SEAR and CCAF, the counterparts of all the definitions above exist. The definitions

look exactly the same as above. In the relevant parts of this thesis, we use the same symbol

to be the corresponding notion for these two systems as well, as does the definition below on

exponential.

As the first definition that requires us to take a decision, the definition of exponential is more

complicated. Since the characterizing property of the exponential refers to the notion of the

product, we need to determine whether we should fix a chosen product or directly refer to all

the possible products in the definition. The second option is possible. Indeed, we can write
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out a definition without referring to any particular products:

∀A E AE B (e : AE → B).
isExp(A, E, e) ⇔
∃(p1 : AE → A) (p2 : AE → E).
isPr(p1 , p2) ∧
∀X AX (p′1 : AX → A) (p′2 : AX → A) ( f : AX → B).
isPr(p′1 , p′2) �⇒
∃!(g : X → E). ∀(h : AX → AE ). p1 ◦ h � p′1 ∧ p2 ◦ h � g ◦ p′2 �⇒ e ◦ h � f

There are two products involved in this definition: the product between A and the exponential

object E written in BA in the usual notation, and the ones between A and X, which is the

AX above. For the first one, although it is possible to avoid referring to the projection maps,

referring to the product object AE is unavoidable. This is because an exponential must contain

the information of its evaluation map, which is a map from this product. Therefore, this object

has to be present in its sort. It is also notable that since the association between the object

and the product involving it (here the A and the product AE ) are not evident in the syntax:

instead of getting the A from sort information of e, we have to take A as an argument as

well. Another option with an explicit reference to a chosen product but without the usage of

any function symbol is to omit the quantification on the projections p1 and p2 and replace

the A and E in the argument list of isExp with them. But it is already clear that none of

these options is as simple as the following definition, where we directly use the chosen product

symbol.

` ∀A B E (e : A × E→ B).
isExp(e) ⇔ ∀X ( f : A × X → B). ∃!h : X → E.e ◦ 〈π1(A,X), h ◦ π2(A,X)〉 � f

We adopt this definition.

Now we are equipped with all the ingredients to post the full list of formal ETCS axioms. The

numbering of the axioms again follows from Lawvere [29].

• Identity acts on both sides

` ∀B A ( f : B→ A). f ◦ id(B) � f ∧ ∀B A ( f : B→ A). id(A) ◦ f � f

• Composition is associative

` ∀A B C D ( f : A→ B) (g : B→ C) (h : C→ D). (h ◦ g) ◦ f � h ◦ g ◦ f
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• Axiom 1: The constant 1 is terminal and ∅ is initial. The function symbols ×, π1,

and π2 produce product information and +, i1 and i2 produce coproduct information.

Equalizer and coequalizer exist for any parallel pair of maps.

` tml(1) ∧ intl(∅)
` ∀A B. isPr(π1(A, B), π2(A, B)) ∧ iscoPr(i1(A, B), i2(A, B))
` ∀A B f g : A→ B. (∃E e : E→ A. isEq( f , g , e)) ∧ (∃E e : B→ E. iscoEq( f , g , e))

• Axiom 2: The function symbols __ and ev produce the exponential for each pair of

objects.

` ∀A B. isExp(ev(A, B) : A × BA → B)

• Axiom 3: The constant N is a natural number object. It has the universal property: To

specify a map from N to X is to give a starting point x0 : 1→ X and a map X → X,

describing how to get the next output from the previous output.

` ∀X x0 : 1→ X t : X → X. ∃x : N→ X. x ◦ z � x0 ∧ x ◦ s � t ◦ x

• Axiom 4 (well-pointedness): Two arrows are equal if and only if they agree on all the

elements of the domain.

` ∀A B f g : A→ B. ¬( f � g) �⇒ ∃a : 1→ A. ¬( f ◦ a � g ◦ a)

• Axiom 5: Axiom of choice (see below for further explanation)

` ∀A B a : 1→ A f : A→ B. ∃g : B→ A. f ◦ g ◦ f � f

• Axiom 6: Every non-initial object admits a map from the terminal object 1, i.e., has an

element.

∀X. ¬intl(X) �⇒ ∃x : 1→ X. >

• Axiom 7: Every element of a coproduct factors through one inclusion map. i.e., any

element of a disjoint union comes from one of the disjunct.

` ∀A B f : 1→ A+B. (∃ f0 : 1→ A. i1(A, B) ◦ f0 � f ) ∨ (∃ f0 : 1→ B. i2(A, B) ◦ f0 � f )
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• Axiom 8: There exists an object with two distinct elements.

` ∃X (x1 x2 : 1→ X). x1 , x2

The original version of Axiom 1 as from Lawvere [29] asserts all finite limits exist. The

category-theoretic definition of limits refers to the concept diagram, which is a functor from a

category encoding an arrangement of arrows to the category where the required limit lives.

Whereas ETCS is developed with some spirit of category theory, it itself does not capture

much category theory. Instead, it is simply a model of a particular category. The notion of

“functor” is between two categories, and hence lives on the meta-level when talking about the

ETCS system. Such a notion does not exist within ETCS. Therefore, the original Axiom 1

cannot be stated directly. We address this issue by appealing to a theorem from category

theory: the existence of finite limits is guaranteed by the existence of three particular limits

(and dually, co-limits): the terminal object, the product, and the equalizer.

We might adopt another approach at the level of the implementation. As the functor required

for constructing the limit encodes no more than a “shape”, it is possible to create a data

type representing the shape. Without any explicit usage of meta-level category theory, we

could implement a rule that takes a term in this data type and outputs a theorem stating a

limit of this graph exists. We do not adopt such an option. Firstly, we prefer working with

the mathematical level instead of the programming level and prefer axiom formulas to more

primitive rule implementation when possible. Secondly, according to experiments up to now,

there is no current usage of a general (co)-limit, so our choice does not cause any problem.

The special limits we take as primitive in our axioms are invoked explicitly, indicating that it

would be convenient to assume their existence.

We do not create function symbols for equalizers and coequalizers. It is possible to apply

the function specification rule in Section 2.3 to create them. A function symbol that creates

a (co-)equalizer object will take two arrows, between which equalities can be written, and

produce an object, where there is no notion of equality. This means that even if we have

f1 � f2 : A → B, we cannot write Eqo( f1 , g) � Eqo( f2 , g) provided Eqo is such a function

symbol. Nevertheless, when proving a theorem with conclusion φ( f1) for some property φ,

our congruence rule can be applied as a shortcut to reduce it into φ( f2). We conclude from

our rule that F ([ f : A → B], [ f1]) ⇔ F ([ f : A → B], [ f2]), and instantiate the formula

variable to be φ. Note that it does require the formula φ not to have any free variables

with f1 appearing in their sorts. But in most cases, the interesting forms of φ will look

like ∀ f : X → Eqo( f1 , g). ψ( f ) for some object X, for Eqo( f1 , g) being an equalizer. We

do recommend using the universal property to perform this reduction, as is always possible.
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Theorem 3 in Section 5.1.2 will be an example showing that such function symbols would not

bring any particular convenience.

The universal property of the natural number object only gives the existence of the function.

This is actually uniquely determined, as can be proved from well-pointedness.

The approach taken by Axiom 5 to state the axiom of Choice is indeed unusual. The

quantification on a : 1→ A actually adds an additional assumption required from the g to

exist, namely the non-emptyness of the domain of f . It does imply the canonical form that

every epimorphism has a section. Indeed, for an epimorphism f : A→ B, from Axiom 6, A is

either initial or has an element. If A is initial then so does B as f is epic, but then the g can

be taken by the identity. Otherwise, we have f ◦ g ◦ f � g, which implies f ◦ g � id(B),
again since f is an epi.

5.1.2 Theorems in Lawvere’s paper

In this section, we present the formalization of the 6 theorems in Lawvere [29]. As the

translations of the proofs are mostly routine, we will omit them and focus on explaining the

presentations and roles of the formal theorems.

Theorems 1 and 2 express basic properties of the natural numbers. While the axiom concerning

the natural number object N initially only permits defining functions via recursion, Theorem 1

increases the flexibility by allowing definition by primitive recursion as well.

5.1.1 Theorem 1 (Primitive recursion).

` ∀A B (g : A→ B) (h : (A ×N) × B→ B).
∃ f : A ×N→ B.

f ◦ 〈π1(A, 1), z ◦ π2(A, 1)〉 � g ◦ π1(A, 1) ∧
h ◦ 〈id(A ×N), f 〉 � f ◦ 〈π1(A,N), s ◦ π2(A,N)〉

The meaning of this theorem is obvious when we consider what the functions do to elements.

Take an element a : 1 → A of A, the function A × N → B proved to exist has value

f ◦ 〈a , z〉 � g ◦ a, because the second component is zero. Recursively, knowing the value of

f ◦ 〈a , n〉 for an element n of N, we can deduce the value of f ◦ 〈a , n+〉, where n+ :� s ◦ n

is the successor of n, to be h ◦ 〈〈a , n〉, f ◦ 〈a , n〉〉.

Primitive recursion is useful when defining functions on N taking multiple arguments, such

as addition. To define it, we take both A and B to be N, take g to be the identity id(N)
(meaning adding by the element z is the constant function), and take h to be s ◦ π2(N×N,N).
While calculating the sum of two elements a and b+, the elements a and b are stored in the

N ×N part of the triple product, and the sum of them is stored in the N part. We take the
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projection on the second component to take out the sum of a and b, then take its successor.

This description is actually exactly what is in our mind when doing natural number addition.

Whereas Theorem 1 captures this elegantly, its canonical expression in material set theories will

be much more involved. Function applications are not presented naturally as composition to

an element, because a function is a subset of the set of pairs. Moreover, Theorem 1’s function

is “typed”, which means we make sure we are working with input that makes sense from the

very beginning. As with the case for simple recursion, the function is uniquely determined by

g and h.

Theorem 2 proves some of Peano’s axioms. The original theorem presented in Lawvere [29] is

formalized as.

5.1.2 Theorem 2.

` ∀n : 1→ N. s ◦ n , z

` Mono(s)
` ∀A a : A→ N.

Mono(a) ∧ (∃z0 : 1→ A.z � a ◦ z0)
(∀n : 1→ N.
(∃n0 : 1→ A. n � a ◦ n0) �⇒ ∃n′. s ◦ n � a ◦ n′)

�⇒ Iso(a)

The first two parts express that zero is not a successor, and the successor function is an

injection. The third part actually expresses the principle of induction. In the language of

category theory, a monomorphism is to be regarded as an inclusion from a subset. An element

n : 1→ N belongs to the subset a : A→ N if n factors through A, i.e., if n is in the image a

as an inclusion map. With the spirit that a subset on N corresponds to a statement on N, the

theorem reads “if a statement holds for zero and if it holds an element n, then it also holds for

its successor, then the predicate holds for the whole N”.

Later, for formalizing natural number arithmetic, we will prove the “working version” of the

induction principle. From now on, we write 2 to denote the disjoint union 1 + 1. By Axiom 7,

the two inclusions i1(1, 1) and i2(1, 1) are exactly the only two elements of 2. The object 2

can then be regarded as the two-element set for truth values. We denote them as falsity ⊥I

and truth >I respectively.

Using Theorem 5, to be proved later, we prove each monomorphism uniquely corresponds to a

characteristic function, to be regarded as a predicate φ that holds on an element x if and only
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if φ ◦ x � >I :

` ∀A X a : A→ X.

Mono(a) �⇒
∃!φ : X → 2. (∀x : 1→ X. (∃x0 : 1→ A. a ◦ x0 � x) ⇔ φ ◦ x � >I)

Then we can identify the subset a as in Theorem 3 using its characteristic function p : N→ 2.

It in turn gives the induction principle a more conventional reformulation, which we proved as:

` ∀p : N→ 1 + 1. p � >N⇔ p ◦ z � > ∧
∀n : 1→ N.p ◦ n � > �⇒ p ◦ s ◦ n � >I

Here >N :� >I ◦ !N (where !_ is the unique map to the terminal object) is the characteristic

function for the whole N, which assigns every element of N to >I . The mechanism to apply

it might not be obvious now, because it requires the property, described as a formula, to be

captured by a monomorphism, or an arrow N→ 2. Its practical application becomes more

straightforward after the development of internal logic within ETCS. Internal logic enables

the transformation of properties expressed as first-order formulas into characteristic functions,

thereby allowing us to apply the aforementioned principle. Moreover, the construction is not

restrictive to N but can be used to build a predicate on any set. We leave the details of this

construction to Section 5.1.3.

One standard and useful fact that holds in any topos is that any arrow can be factorized into

an epimorphism, regarded as a surjection onto its image, and a monomorphism, regarded as

an inclusion from its image to its codomain. This result is required for all the three remaining

Theorems 4, 5, and 6. It is a corollary of Theorem 3:

5.1.3 Theorem 3.

` ∀A B f : A→ B.

∀ R′ (k′ : B + B→ R′) I (q′ : I → B) R (k : R→ A × A) I′ (q : A→ I′).
iscoEq(i1(B, B) ◦ f , i2(B, B) ◦ f , k′) ∧ isEq(k′ ◦ i1(B, B), k′ ◦ i2(B, B), q′) ∧
isEq( f ◦ π1(A,A), f ◦ π2(A,A), k) ∧ iscoEq(π1(A,A) ◦ k , π2(A,A) ◦ k , q) �⇒
∃!h : I′→ I . q′ ◦ h ◦ q � f ∧ Iso(h)

The commutative diagram for this theorem is:

R A × A A B B + B R′

I′ I

k π1(A,A)

π2(A,A)

f

q

i1(B,B)

i2(B,B)
k′

h

q′



Chapter 5. Two Structural Set Theories 76

As for the order, the coequalizer k′ of i1(B, B) ◦ f and i2(B, B) ◦ f , as well as the equalizer

k of f ◦ π1(A,A) and f ◦ π2(A,A), are formed in the first step. The q and q′ are

formed as the coequalizer and equalizer for the horizontal maps obtained by composing the

inclusion/projection with k′ and k, respectively. The theorem expresses that there is a unique

isomorphism linking this pair of the equalizer and the coequalizer.

We have opted to exclusively employ predicates for representing equalizer and coequalizer

information, abstaining from the introduction of any additional function symbols. As mentioned,

here an evidence that such function symbols would not enhance the theorem in any meaningful

way. If we use function symbols, the term that is simply a variable with the name R′ as above

will become coEqo(i1(B, B) ◦ f ), i2(B, B) ◦ f ). The construction is nested. In the next step,

the name of the object I would be even more cumbersome. The term will be a bulky function

symbol application, expressed as:

Eqo(coEqa(i1(B, B) ◦ f , i2(B, B) ◦ f ) ◦ i1(B, B), coEqa(i1(B, B) ◦ f , i2(B, B) ◦ f ) ◦ i2(B, B))

In that case, it is important to use only variable names, in both the proof and the theorem, to

keep the expressions handy to work with.

5.1.4 Theorem 4.

` ∀J X (s : J → 2X).
∃U (a : U → X).
Mono(a) ∧
∀x : 1→ X. (∃x0. x � a ◦ x0) ⇔ ∃ j : 1→ J. ev(X, 2) ◦ 〈x , s ◦ j〉 � >I

According to the discussion about Theorem 2, a subset of X can be identified by its characteristic

function X → 2. Taking its transpose, such a characteristic function is an element 1→ 2X of

the exponential. A function from a set J to 2X has its image as a subset in 2X. We regard

what is in this image as the family indexed by J. For each element j : 1→ J, the set indexed

by it is the transpose of s ◦ j : 1→ 2X. Theorem 4 says such a family can be unioned into

a subset of X. The union is captured by the monomorphism a in the theorem. Indeed, the

right-hand side of the iff says an element x : 1→ X is in a precisely if it is in some set indexed

by some element of J.

It is worth emphasizing that Theorem 4 captures the union of possibly infinitely many sets.

Given two subsets a1 : A1 → X and a2 : A2 → X, their disjoint union admits a map into X.

By taking the mono-epi factorization of this map, binary union, and hence unions of finitely

many sets, are easy to construct. This theorem proves a statement with far more generality,

providing us with the means to effectively handle potentially infinite disjunctions.
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5.1.5 Theorem 5.

` ∀A X a : A→ X. Mono(a) �⇒ ∃A′ a′ : A′→ X. Mono(a′) ∧ Iso(
( a
a′
)
)

Theorem 5 proves every subset has a complement, with
( a
a′
)
denoting the canonical arrow from

the coproduct. It uses a corollary of the Axiom 5 (Choice). The usage is to prove a lemma

that says for each element x of X which is not in a, there exists a special subset that contains

x and does not intersect with a. Then the complement of a is taken to be the union of all

these subsets. The usage of choice is specific to ETCS. The counterpart in SEAR is easier

due to a comprehension theorem schema that we can prove, which allows us to immediately

get the set constructed by negating any formula, and in particular, the formula asserting an

element belongs to a certain subset.

The final non-meta theorem that appears states another well-known result in topos theory. As

a slogan, it reads “any equivalence relation is the kernel pair of its coequalizer”. In standard

mathematical presentation, an equivalence relation on a set A is a subset of A × A. Explicitly,

it is the set {(a1 , a2) | a1Ra2}. This set can be represented by the two projection maps from it

to A. In ETCS, a relation on A consists of two maps f0 , f1 : R→ A with a common domain.

The concept of being an equivalence relation can also be formulated in the diagrammatic

manner and is expressed as Equiv( f0 , f1).

5.1.6 Theorem 6.

` ∀R A ( f0 f1 : R→ A) E (e : E→ A × A) Q (q : A→ Q).
Equiv( f0 , f1) ∧ iscoEq( f0 , f1 , q) ∧ isEq(q ◦ π1(A,A), q ◦ π2(A,A), e) �⇒
∃h1 h2. e ◦ h1 � 〈 f0 , f1〉 ∧ 〈 f0 , f1〉 ◦ h2 � e ∧ h1 ◦ h2 � id(E) ∧ h2 ◦ h1 � id(R)

The coequalizer q of f1 and f2 is the quotient of the set A by the equivalence relation given

by the pair. The kernel pair of q is a set consisting of pairs of elements of A that are sent

to the same place by the quotient map. This set is the E as in Theorem 6. Theorem 6 then

states that E has a structural-respectful isomorphism to R. This effectively expresses that the

diagram:

R A

A Q

f0

f1

q

q

is a pullback. In terms of elements: given two elements a1 and a2 of A, they are identified in

the quotient if and only if they come from a pair in R. That is, in other words, if and only if

they are related by the equivalence relation.
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5.1.3 Comprehension via Internal logic

A comprehension schema in a system refers to the mechanism for extracting a part of an object

of interest that satisfies a certain condition to form another object. Such schemata play a vital

role in any foundational framework. While it may not be apparent from its axioms alone that

we allow a certain form of comprehension, we are able to derive a practical comprehension

schema thanks to the internal logic. We now briefly discuss the topic of internal logic. A more

detailed treatment is given in [46]. Despite the restrictions of the ETCS comprehension we

will derive, this schema is sufficiently powerful for many mathematical applications. In fact, it

equips ETCS as a system that is at least as strong as HOL. The advantage of ETCS, in terms

of simplicity, becomes evident when compared to HOL. While HOL incorporates higher-order

logic into its kernel, ETCS remains a first-order system with only a 2-sort dependency.

Recall that an arrow p : X → 2 corresponds to a predicate on X in the sense that if x : 1→ X,

then p ◦ x � >I means p is true for x. Our arrow p gives rise to a separate object as

characterized by the theorem:

∀A (p : A→ 2). ∃B (i : B→ A). Inj(i) ∧ ∀a : 1→ A. p ◦ a � >I ⇔ ∃b. a � i ◦ b

The existence of i is witnessed by the pullback of the map >I along p.

ETCS proves that for each first-order formula expressed in the language that is bounded, we

can capture it by such an arrow. The word bounded is a terminology in first-order logic. It

holds for a formula precisely when all the quantifiers appear in it binds some variable that

represents an element, in contrast to representing a set or an arrow in general, i.e., those ones

whose domain is not 1. For example, the formula ∀n : 1 → N.∃m : 1 → N. n + m , n is

bounded, whereas ∀A a : 1→ 2A .Fin(A) �⇒ ∃n : 1→ N. |a | � n, stating every finite set has

a cardinality, is not bounded due to the quantification on A.

Let us call the formulas of our logic (all formulas seen so far) external formulas. We automati-

cally construct a corresponding internal formula as a term of the logic. When the external

formula is on variables with sorts (1→ X1), (1→ X2), . . . , then the internal formula will be

an arrow of sort ΠXi → 2. For an external formula Φ[x1 : 1→ X1 , . . . ], then let p : ΠXi → 2

be the corresponding formula. We require

∀a : 1→ ΠXi . p ◦ a � >I ⇔ Φ[(πi ◦ a)/xi]

where Φ[t/x] is the substitution of term t for variable x. This could be regarded as an

axiom, one rather like Separation in ZF. However, we can instead prove all results of this form

automatically. This is simply by rewriting with all the theorems with relevant definitions and

properties of the internal logic operators as explained below.
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We have implemented an automatic translation (a “derived rule”) that generates an internal

logic formula given a list of variables, considered as the arguments, and the formula. The

translation produces an internal logic predicate and proves that it gives the value >I if and

only if the formula is true when applied to the arguments.

5.1.7 Example. We illustrate our algorithm with an example over N, the natural number

object, the arrow SUC : N→ N, and the function symbol _+, such that n+ def
� SUC ◦ n. Then,

the pair ([n],m+ − n+ � m − n) encodes a simple unary predicate on n. In this case, the

output of our derived rule is an arrow term p : N→ 2 satisfying:

∀n : 1→ N. p ◦ n � > ⇔ m+ − n+
� m − n

If the list of arguments is [m , n] instead, the produced arrow p : N ×N→ 2 will satisfy:

∀m , n : 1→ N. p ◦ 〈m , n〉 � > ⇔ m+ − n+
� m − n

Operator Sort Defining Property
∧I 2 × 2→ 2 ∧I ◦ 〈p1 , p2〉 ⇔ p1 � >I ∧ p2 � >I
∨I 2 × 2→ 2 ∨I ◦ 〈p1 , p2〉 ⇔ p1 � >I ∨ p2 � >I
⇒I 2 × 2→ 2 ⇒I ◦〈p1 , p2〉 ⇔ p1 � >I �⇒ p2 � >I
¬I 2→ 2 ¬I ◦ p � >I ⇔ p � ⊥I
∀X 2X → 2 ∀X ◦ p ◦ y � >I ⇔ ∀x.p ◦ 〈x , y〉 � >I
∃X 2X → 2 ∃X ◦ p ◦ y � >I ⇔ ∃x : 1→ X.p ◦ 〈x , y〉 � >I

Table 5.2: Operators of the Internal Logic

To convert formulas into internal formulas, we need to first convert terms into ‘internal terms’.

In particular, function symbols will map into arrows of an appropriate sort. For example, if our

‘external formula’ is on variables [x : 1→ N, y : 1→ N], then any ‘internal term’ built as part

of this translation will be from N ×N. In our N-example, the arrow corresponding to y+ will

be SUC ◦ π2(N,N). In most circumstances, the connection between the function symbol and

the arrow will simply be that symbol’s definition. For generality’s sake, our implementation

stores the external-internal correspondence of function and predicate symbols in a simple

dictionary data structure.

Our formula-converting function is recursive on the structure of the formula, using the semantics

of the various connectives and quantifiers given in Table 5.2. The only built-in predicate,

equality, corresponds to the characteristic map of the diagonal monomorphism. For user-defined

predicates, such as < over natural numbers, users can store the correspondences manually. The

induction steps for the connectives are straightforward. For quantifiers, for example, consider

the formula ∀a : 1 → A. a � a0. Begin by converting the body a � a0 into a predicate on
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[a , a0]; and then transpose the output and post-compose with the internal logic operator ∀A.

The existential case is similar.

5.2 Formalizing SEAR

We now present the system SEAR, another structural set theory designed by Michael Shul-

man [7]. Its standard presentation does not use any categorical terminology, aiming to

demonstrate structural set theory is independent of category theory. The spirit behind SEAR

is more similar to ETCS, but from its signature, its presentation is intuitively closer to struc-

tural ZF. In terms of strength, it is equivalent to ZF without choice. Adding choice to it yields

a system equivalent to ZFC, stronger than ETCS.

5.2.1 Basic settings

As per Shulman’s original construction, SEAR has three sorts: sets (A, B, . . . ; a ground sort);

members (_ ∈ A, depending on a set term); and relations (A # B, depending on two set

terms). SEAR also adds a primitive predicate Holds(R : A# B, a ∈ A, b ∈ B), declaring that

the relation R relates a and b. Equality can hold between relations with the same domain and

codomain and elements of the same set.

In SEAR, a relation R : A# B is called a function if for each member a ∈ A, there exists a

unique b ∈ B such that Holds(R, a , b). In practice, we want to be able to write f (a) as the
result of applying a function to an argument, but we cannot do this if we are restricted to

just the relation sort. A first thought might be to create a function symbol Eval, that takes a

relation and a member of A, so the term Eval(R : A# B, a ∈ A) is a member of B. However,

such a function symbol breaks soundness, as the term Eval(R, a) can be expressed for every a

of the correct sort before checking the function condition on R. In particular, we can write a

term Eval(R : 1# 0, ?), nominally producing an element of 0.

Rather, we introduce a function sort which is a “proper subsort” of the relation sort.1 A

function f from A to B is written f : A → B, and we add the following axiom describing

terms of function sorts:

` ∀R. isFunction(R) �⇒
∃! f : A→ B. ∀(a ∈ A) (b ∈ B). Eval( f , a) � b ⇔ Holds(R, a , b)

The isFunction predicate embodies the definition above, and we also have a new Eval function

symbol that takes a function term from A to B and a member term of A, and outputs a

member term of B.
1Shulman (personal communication) agrees that the resulting system is still effectively SEAR as he conceives

it.
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Symbol Input Output Source Function/Predicate
Holds [R : A# B, a ∈ A, b ∈ B] - Axiom 1 Predicate
App [ f : A→ B, a ∈ A] App( f , a) ∈ B Axiom 2 Function
N0 [] N0 : set Axiom 4 Function
z0 [] z0 ∈ N0 Axiom 4 Function
s0 [] s0 : N0 → N0 Axiom 4 Function

Table 5.3: Primitive symbols required by SEAR

We will write Eval( f , a) simply as f (a) in the rest of the thesis. The Eval symbol is typed

so that only function terms can be its first argument. It is clear that this is a conservative

extension, as any theorems involving Eval can be expressed using just Holds and uses of the

isFunction hypothesis if desired.

SEAR is a remarkably simple system with very few primitive symbols and only 6 axioms.

These symbols are illustrated in Figure 5.3. Interestingly, the first five axioms are already

sufficient for handling the vast majority of mathematical proofs, underscoring the simplicity

of SEAR. The sole function symbol, used for function term application, was introduced due

to the additional sort we added. Notably, SEAR does not even employ primitive symbols for

relation composition and identity relations; these are all derived from their respective axioms.

In our notation, we represent relation composition as an infix ◦R, the identity function on set

A as Id(A), and the identity relation on A as id(A). Furthermore, the relation term A # B,

arising from a function f : A → B, is constructed as asR( f ). We write the composition of

function terms as an infix ◦. All these function symbols are deduced from the specification rule

using equality, as they are indeed unique. In the following, we present the first four axioms.

5.2.1 Axiom 0. There exists a set with an element.

` ∃A (a ∈ A). >

5.2.2 Axiom 1. For a formula that can be regarded as a property on elements of two sets A

and B, it defines a relation R from A and B .

{A, B} ` ∃!(R : A# B). ∀a ∈ A b ∈ B. Holds(R, a , b) ⇔ F [a0 ∈ A, b0 ∈ B](a , b)

An instantiation of this axiom with a suitable formula variable will produce a unique relation

between A and B that holds precisely between elements where the formula holds. Note that

the F [a0 ∈ A, b0 ∈ B] does not have to be instantiated with a formula that is only on these

two variables, it may have other free variables. For example, when A and B are both N, we

can use the formula that holds for two natural numbers n1 and n2 if their sum is another
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natural number n. It does not require the variables a and b to appear in the formula either.

Instantiating it with > and ⊥ gives the total and empty relation.

5.2.3 Axiom 2 (Tabulation). Any relation has a tabulation. Such a tabulation is a set

together with two projections, similar to the way used in ETCS Theorem 6 for capturing a

relation. A relation is uniquely determined by its tabulation.

` ∀A B (R : A# B). ∃T p : T → A q : T → B.

(∀x y. Holds(R, x , y) ⇔ ∃r. App(p , r) � x ∧ App(q , r) � y) ∧
∀r s . App(p , r) � App(p , s) ∧ App(q , r) � App(q , s) �⇒ r � s

The first three axioms are already sufficient to prove the existence of a singleton set and an

empty set. We use the function specification with the fact that they are unique up to bijection

to create function symbols 1 and 0 for them. The only element of 1 is represented ?. A subset

of A is defined in SEAR as a relation from A to 1. The elements related to 1 are regarded as

belonging to the subset. Axiom 3 asserts the existence of the power set.

5.2.4 Axiom 3. For each set A, there exists a set P and a relation e : A # P with the

following property: for every subset of A, there exists a member of P such that for each element

a of A, the relation e holds between a and s if and only if a is in such a subset.

` ∀A. ∃P e : A# P. ∀S0 : 1# A. ∃!s ∈ P. ∀x ∈ A. Holds(S0 , ?, x) ⇔ Holds(e , x , s)

Although it asserts its existence, Axiom 3 does not choose any function symbol for it, so we

cannot write a Pow(A) for the power set of A for this moment. This gives us an example of

applying that function specification rule.

5.2.5 Example. We write isPow(P, e : A # P) as the statement “for every subset S : 1 #

of A, there exists a unique element s ∈ P such that for every a ∈ A, we have Holds(e , a , s)
iff a is a belongs to S”. The equivalence relation between two such pairs (P, e : A # P)
and (P′, e : A# P′) is the existence of isomorphism that preserves the membership relation,

i.e., isomorphism consists of functions i : P → P′ and j : P′ → P plus the condition

that asR(i) ◦R e � e′ and asR( j) ◦R e′ � e. This creates function symbols Pow(A) and
In(A) : A# Pow(A).

We write IN(a , s) :� Holds(In(A), a , s) for a ∈ A and s ∈ Pow(A).

Axiom 4 asserts the existence of a “pre-natural number set”.
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5.2.6 Axiom 4. There exists a set N0 with a distinguished element z0 and an injective

endomorphism such that z0 is not in its image.

` (∀n ∈ N0. App(s0 , n) , z0)) ∧ (∀n m. App(s0 , n) , App(s0 ,m) ⇔ n � m)

The set N0 is not the one we work with as the natural number object in ETCS. The axiom

asserts the existence of a zero and a successor function, but many useful facts do not necessarily

hold for N0, say, there is only one zero element, or an element of n0 is either a successor or

zero. The machinery of defining functions from N0 is neither stated in nor implied by Axiom

4. Later in Section 5.2.4, after we construct the automatic function for inductive rules, we will

be able to take out a set of natural numbers out of N0.

We leave the final axiom, the “collection schema”, to the end of this section.

The axioms do not give any of the chosen products, equalizers, and exponentials. The existence

of them are all proven from the first four axioms. Here we give a concrete example of the

application of our function specification rule declared in 2.3.

5.2.7 Example. We define the predicate isPr so its definition is identical to that in ETCS, as

in Section 5.1.1, and prove theorems:

{A, B} ` ∃X (p1 : X → A) (p2 : X → B). isPr(p1 , p2)
{A, B} ` ∀A B. ∃X (p1 : X → A) (p2 : X → B). >

The equivalence relation we use here is the existence of maps i , j, such that i ◦ j � 1X , j◦i � 1X′,

and all the triangles in the following diagram commutes.

X

A B

X′

p1 p2

i

p′1 p′2

j

The application of specification hence produces the theorem:

{A, B} ` isPr(π1(A, B) : A × B→ A, π2(A, B) : A × B→ B)

with the three function symbols ×, π1 , π2, stored as (ob, [A : ob, B : ob]), (A × B → A, [A :

ob, B : ob]), (A × B→ B, [A : ob, B : ob]) in the signature, that produces the chosen product

set with projections.
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5.2.2 Comprehension in SEAR

Comprehension in SEAR is much easier than the counterpart in ETCS. Thanks to formula

variables, we can directly instantiate formulas φ to a derived theorem schema to form from a

set X the subset {x ∈ X | φ(x)}. Our subset is constructed via a member of the power set

Pow(X), and ultimately, we can extract it as a term of set sort with an injection to X. This

construction is described by the following two theorems (following Shulman [7]). Such two

theorems, used intensively in the following sections, are also consequences of the first three

axioms only. First, we prove the existence of the member of the power set.

∃!s ∈ Pow(A). ∀a. IN(a , s) ⇔ F [a ∈ mem(A)](a)

We also have the existence of a set B and an injection from it into A:

∃B (i : B→ A). Inj(i) ∧ ∀(a ∈ A). F [a ∈ mem(A)](a) ⇔ ∃b ∈ B. a � i(b) (5.1)

This injection we construct from each predicate is unique up to respectful isomorphism. If

there are i : B → A and i′ : B′ → A, which are both injections and moreover, we have

∀a. P(a) ⇔ ∃b ∈ B. a � i(b) and ∀a. P(a) ⇔ ∃b ∈ B′. a � i′(b), then the relation between

pairs (B, i : B→ A) and (B′, i′ : B′→ A) defined by

∃( f : B→ B′) (g : B′→ B).
f ◦ g � Id(B) ∧ g ◦ f � Id(B′) ∧ i′ ◦ f � i ∧ i ◦ g � i′

holds. This is clearly an equivalence relation. Moreover, for all sets A, the existence of a set B

and a map B→ A is witnessed by the identity isomorphism. Therefore, once we instantiate

the P above into a concrete predicate without any formula variables, we have met all of the

specification rule’s antecedents, and we can use it to define two constants: the subset and

its inclusion into the ambient set. The sets of natural numbers, integers, lists, and co-lists

are all constructed in this way. More generally, given any member s ∈ Pow(A), we use the

specification rule to turn it into a “real set” via the constant m2s(s) of the set sort. This set is

injected into A by the map minc(s) : m2s(s) → A.

The following isset predicate, connecting a member (s) to a set (B, given implicitly in i’s sort)

is also occasionally useful:

isset(i : B→ A, s ∈ Pow(A))
def
⇔ Inj(i) ∧ image(i , B) � s
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5.2.3 Defining functions by cases in SEAR

Despite its power, SEAR is a set theory and is not designed for usage in a theorem prover.

This causes inconvenience but is mostly possible to overcome by developing automatic tools.

Here we present such a problem due to the lack of type theory in SEAR, as well as our solution.

Functions defined by “if ... else ...” statement plays an important role in formalization. Such a

function takes a conditional predicate and two expressions, and gives one of them according

to the truth value of the predicate. With simple types, it has the type bool→ α→ α→ α,

where the predicate has type bool and α is the type of the expression.

It is possible to recover such a statement without types if everything lives uniformly on the

same level. If the condition φ on elements of A is identified with the set s :� {a ∈ A | φ(a)},
as it can happen in some systems such as ZF, then the function “if φ then t else e” can be

constructed as the set f :� {(x , y)|(s , ∅ ∧ y � t) ∨ s � ∅ ∧ y � e}. Applying such a

function on x can be defined as apply( f , x) :� UCHOICE {y | (x , y) ∈ f }. Here the UCHOICE

is the unique choice operator that only singles out the only element of the set, as the set must

be singleton. No actual Axiom of Choice is used. But we cannot directly “if ... then ... else ...”

statement if the statement has to be captured by a formula. In such a case, such an expression

will mix formulas and terms at the same level.

However, we often want to state the conditions using formulas. Moreover, in many cases,

there is more than one case we are interested in. Effectively, we often want to define functions

f : A→ B with the behavior:

∀a ∈ A.

(φ1(a) �⇒ f (a) � t1(a)) ∧
(φ2(a) �⇒ f (a) � t2(a)) ∧
· · ·
(ELSE �⇒ f (a) � tn+1(a))

where φ1 , · · · , φn are any formula with or without the free variable a, considered as predicates

on a. Terms t1 , · · · , tn+1 may or may not involve a, but all of them are required to be a

member of the same set B.

We hence implement an automation that takes a formula ψ as above, proves that the function

described by the formula exists, and outputs the existential statement as a theorem, in the
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form of:
Vars(ψ)
` ∃! f : A→ B.

∀a ∈ A.

(φ1(a) �⇒ f (a) � t1(a)) ∧
(¬φ1(a) ∧ φ2(a) �⇒ f (a) � t2(a)) ∧
(¬φ1(a) ∧ ¬φ2(a) ∧ φ3(a) �⇒ f (a) � t3(a)) ∧
(¬φ1(a) ∧ · · · ∧ ¬φn(a) �⇒ f (a) � tn+1(a))

Our method uses the function-defining theorem:

{X, Y} ` (∀x ∈ X. ∃!y ∈ Y. R[x0 ∈ X, y0 ∈ Y](x , y)) �⇒
∃! f : X → Y. ∀x ∈ X. R[x0 ∈ X, y0 ∈ Y](x , f (x))

We present the following flow of constructions.

• Instantiate the X and Y in 5.2.3 above as A and B.

• Automatically prove a family of theorems, all in the same form:

Vars(ψ), φ1(a) ` ∃!b ∈ B. φ1(a) ∧ t1(a) � b

Vars(ψ), ¬φ1(a) ∧ φ2(a) ` ∃!b ∈ B. ¬φ1(a) ∧ φ2(a) ∧ t2(a) � b

Vars(ψ), ¬φ1(a) ∧ ¬φ2(a) ∧ φ3(a) ` ∃!b ∈ B. ¬φ1(a) ∧ ¬φ2(a) ∧ φ3(a) ∧ t2(a) � b

· · ·

Vars(ψ), ¬φ1(a) ∧ · · · ∧ ¬φn(a) ` ∃!b ∈ B. ¬φ1(a) ∧ · · · ∧ ¬φn(a) ∧ tn+1(a) � b

Their proofs are easy: as the terms tk(a) are all unique (explicitly, they are all special-

izations of ∀a ∈ A. ∃!a′ ∈ A. a′ � a), we simply move the assumptions into the “∃!”
quantifier.

• Taking the body of the conclusion of each theorem proved in the previous step, disjunct

them, and putting back the “∃!” quantifier yields the formula:

∃!b ∈ B.

φ1(a) ∧ t1(a) � b ∨
¬φ1(a) ∧ φ2(a) ∧ t2(a) � b ∨
· · · ∨
¬φ1(a) ∧ · · · ∧ ¬φn(a) ∧ tn+1(a) � b

(∗)

Then all the above theorems are still true if all their conclusion are replaced by this

big disjunction. This is easy to prove by proving the equivalence between their original
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conclusion and (∗) under each of their assumptions. Indeed, as all but one of the disjunct

in (∗) contains the negation of some conjunct in the original conclusion, precisely one

disjunct holds, and the other ones will be automatically turned into falsity.

• Now we have a family of theorems, all with the same conclusion. We can put them

together into one theorem by disjuncting their assumptions, yielding:

Vars(ψ), φ1(a) ∨ (¬φ1(a) ∧ φ2(a)) ∨ · · · ∨ (¬φ1(a) ∧ · · · ∧ ¬φn(a)) ` (∗)

• Prove the disjunction as the antecedent of the last step is equivalent to truth. Hence we

prove the theorem Vars(ψ) ` (∗). Now this theorem is in the form of the first half of the

implication, which appears in the conclusion of 5.2.3. We instantiate it by taking the

R[a ∈ A, b ∈ B] as the body of the quantification of (∗). Modens ponens immediately

proves:

Vars(ψ) ` ∃! f : A→ B.∀a ∈ A. (∗)

• The remaining task is to normalize the disjunction on the conclusion side of the above

theorem into a conjunction of implications. This is done by realizing the equivalence

(∗) ⇔ > �⇒ (∗) (5.2)

⇔ φ1(a) ∨ ¬φ1(a) ∧ φ2(a) ∨ · · · ∨ ¬φ1(a) ∧ · · · ∧ ¬φn(a) �⇒ (∗) (5.3)

⇔ (φ1(a) �⇒ (∗)) ∧ · · · ∧ (¬φ1(a) ∧ · · · ∧ ¬φn(a) �⇒ (∗)) (5.4)

• Each conjunct in the final step of the equivalence can be rewritten into a much simpler

form, where the right-hand side of each implication consists of an equation only. This

is done by simplifying away all the disjuncts in (∗) that involve the disjunction of any

conjunct of the antecedent and eliminating the conjunct that holds in both the antecedent

and the conclusion by simplifying it into >. Regarding the first conjunct φ1(a) �⇒ (∗),
assuming φ1(a), then all the disjuncts starting with ¬φ1(a) will be eliminated, and the

φ1(a) in the first disjunct will disappear as well because it is simplified into >. This

completes the normalization.

Such a tool is useful when we want to define a function by explicitly specifying where

the elements in the domain goes to. For instance, if we want to define the function

2 × 2→ 2, giving the

∀v. v � (⊥2 ,⊥2) �⇒ f (v) � ⊥2 ∧ ELSE �⇒ f (v) � >2

Gives us the disjunction operation on the two-element set.
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5.2.4 Inductive and Coinductive Definitions

We experiment with inductive definitions by mechanizing induction on natural numbers, finite

sets, and lists, and with coinductive definitions by constructing co-lists.

Natural Numbers, Finite Sets, and Lists

Our system implements a version of Harrison’s [24] inductive relation definition package. After

that implementation, to define an inductive subset, we just need to provide the inductive

clauses.

5.2.8 Example. As discussed in that last section, we should apply induction to extract the

set of natural numbers out of the set N0 provided by Axiom 4. By providing the clauses

(n � z0 �⇒ IN(n ,N)) ∧ ∀n0. IN(n0 ,N) ∧ n � s0(n0) �⇒ IN(n ,N)

the inductive tools find us a subset of N, as an element of Pow(N0), contains only z0, and

every iteration of successor function applied on it.

Using theorem 5.1 together with the specification rule, we extract the subset of N0, which

consists of elements in N, as a constant term N of the set sort. We call the lifted zero element

and successor map 0 and SUC respectively, with SUC obtained by specializing the following

lemma with the inclusion from N0:

∀A A0 (i : A→ A0) ( f0 : A0 → A0).
Inj(i) ∧ (∀a1.∃a2. f0(i(a1)) � i(a2)) �⇒
∃! f : A→ A. ∀a ∈ A. i( f (a)) � f0(i(a))

The constructed N then can be shown to satisfy the standard induction principle.

F [mem(N)](0) ∧ (∀n ∈ N. F [mem(N)](n) �⇒ F [mem(N)](SUC(n))) �⇒
∀n ∈ N. F [mem(N)](n)

By instantiating the formula variable F with concrete properties, we apply the above to

perform inductive proofs for ordering and natural number arithmetic. We later use such

theorems together with quotient lemmas to construct the set of integers. Recursion on N is

constructed with a further application of inductive relations. As we want to eventually define

a function N→ X, that application constructs a subset of N × X.

Also inductively, we define the predicate isFinite on members of some set X’s power set. The

empty subset Empty(X) is finite, and if s ∈ Pow(X) is finite, then the set Ins(x , s), which inserts

x into s, is finite for any x ∈ X. Similar to the counterpart of natural numbers, the principle
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of induction on the finiteness of a set is proved as:

F [mem(Pow(X))](Empty(X)) ∧
(∀x (xs0 ∈ Pow(X)). F [mem(Pow(X))](xs0) �⇒ F [mem(Pow(X))](Ins(x , xs0))) �⇒

∀xs ∈ Pow(X). isFinite(xs) �⇒ F [mem(Pow(X))](xs)

We define a relation Pow(X) # N relating a subset of X to its cardinality. By induction

on finiteness, we prove each subset is related to a unique natural number, which gives us a

function Pow(X) → N that sends a finite subset to its cardinality and sends any infinite subset

to 0. The output of the function applied on s ∈ Pow(X) is denoted as Card(s). To build lists

over a set X as an “inductive type”, we firstly define the subset of Pow(N×X) which encodes a

list, such sets are finite sets of the form {(0, x1), · · · , (n , xn)}. The base case of the induction

is the empty subset of Pow(N × X), and the step case inserts the set s started with by the

pair (Card(s), x). Using the same approach we constructed N, we form List(X). It is then

straightforward to prove the list induction principle and define the usual list operations like

taking the head, tail, n-th element of the list, and map, etc.

5.2.5 Co-lists

Following the HOL approach, we construct co-lists over sets X, by using maps N → X + 1

as representatives. The codomain is regarded as X option, whose members either have the

form SOME(x) for x ∈ X, or NONE(X). First, by dualizing the argument we used to define

inductive predicates, we define a coinductive predicate on members ( f ∈ (X + 1)N) expressing
that such a member captures a co-list, and we collect the subset where this predicate holds,

defining listc(X), just as we did for constructing inductive types. Every term of listc(X) has
a representative: it is either the constant function mapping to NONE(X), corresponding to

the empty co-list Nilc(X), or it is the function obtained by attaching an element x ∈ X to an

existing function encoding a co-list. Almost all the HOL4 definitions can be readily translated

into SEAR. The only exception is we cannot write expressions such as THE(Hdc(l)). Here Hdc

is the function that returns SOME(x) when l is a co-list with element x at its front. If l is the

empty co-list, then Hdc(l) � NONE. In HOL4, THE is the left-inverse of SOME; in SEAR, our

(set) parameter X may be empty, and so there is no general value (even if unspecified) for the

head of the co-list. So far, this has not been an obstacle in any of our proofs. The HOL proof

of the key co-list principle, which states that two co-lists l1 , l2 ∈ listc(X) are equal if and only
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if they are connected by a bisimulation relation R, translates into SEAR, yielding:

l1 � l2⇔
∃R : listc(X)# listc(X).

Holds(R, l1 , l2) ∧
∀l3 l4 ∈ listc(X). Holds(R, l3 , l4) �⇒

(l3 � Nilc(X) ∧ l4 � Nilc(X)) ∨
∃(h ∈ X) t1 t2. Holds(R, t1 , t2) ∧ l3 � Consc(h , t1) ∧ l4 � Consc(h , t2)

where Nilc(X) is the empty co-list over X, and Consc(h , t) is the co-list built by putting element

h ∈ X in front of co-list t. We can perform coinductive proofs on co-lists by the theorem

above. For instance, the above helps to prove that Mapc function, with the usual definition, is

functorial.

5.2.6 Quotients

We develop a machinery for constructing quotient sets, which correspond to quotient types

in type theory, in our SEAR system. The same approach is also formalized in ETCS. We

notice that the quotient package implemented in HOL with its description in [27] cannot

be re-implemented into either of these two systems. This treatment of quotient appeals to

representatives of equivalence classes, singled out by the choice operator. As every HOL type

is non-empty, the choice operator can return an arbitrary element on the input of the empty

set. The counterpart of a HOL type here is a SEAR set, and is not guaranteed to own an

element. Therefore, we cannot obtain the choice operator even if we assume the Axiom of

Choice. Another method, described by Paulson [40], avoids the Axiom of Choice by not using

any representative, but using the sets as equivalence classes directly. However, this method

requires the application of a form of iterated big union, which lacks a nice presentation in

SEAR without the set-builder syntax. We build our approach to avoid all these problems. We

only consider full equivalence relations, since partial equivalences become full by restricting

their domains. Our approach does not require any form of the Axiom of Choice. We present

the standard example of constructing the set of integers and transferring natural number

operations onto the counterpart of integers along with our introduction to the general method.

The formalization of the quotient group as in the next section also follows this construction.

Given a binary relation R on a set A, the function symbol application rsi(R, a) ∈ Pow(A) for
a ∈ A is called the relational image of a, it consists of elements a′ such that Holds(R, a , a′).
We will eventually form a term Q : set by extracting the subset of Pow(A) whose elements are

of form rsi(R, a). Such a Q will be injected into Pow(A) via an inclusion map. We want the

quotient map to send an element in A to its equivalence class in Q. For a map i : Q → Pow(A)
which does capture an inclusion from a quotient, the corresponding quotient map exists. We
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define “ i as a quotient of the relation R” by:

Quot(R : A# A, i : Q → Pow(A)) ⇔
Inj(i) ∧ ∀s ∈ Pow(A). (∃q ∈ Q. s � i(q)) ⇔ ∃a ∈ A. s � rsi(R, a)

That is, i injects to the set of relational images of R. Then the quotient map is obtained by

two steps: Take an element a ∈ A, we send it to rsi(R, a) ∈ Pow(A) (the function does this is

called Rsi(R)). This set is in the image of i, so there is a unique element in q sent to it. The

q can be found by applying the left inverse of the injection i. There is a HOL function that

takes a map and outputs its left inverse if it is an injection from a non-empty set, and outputs

a constant function sending everything to a fixed arbitrary place otherwise. As the same thing

happens to the choice operator, the exact same function cannot be constructed in SEAR. But

this is easy enough to fix by requiring another input, that is, an element in the domain of the

injection. For i from X to Y, and given an element x ∈ X, we define LINV(i , x)(y) to map

y ∈ Y to x0 if x0 is the unique element mapped to y, or to x otherwise, so it is the left inverse

of i being an injection. We write the quotient map Abs(R, i , q0), and denote the output of this

map applied to an element a ∈ A as abs(R, i , q0 , a).

5.2.9 Example. We construct the set of integer Z by quotient the set N ×N. The relation

RZ on N × N is (n1 , n2) ∼ (n3 , n4) iff n1 + n4 � n2 + n3. Using 5.1, we take out the subset of

Pow(N × N) consisting of equivalence classes of RZ as the set Z, and call the inclusion map

iZ : Z→ Pow(N × N). The integer zero 0Z is the element in Z injected into the equivalence

class of the natural number zero 0N. Then the quotient map is LINV(iZ , 0N) ◦ Rsi(RZ)

Now we consider lifting functions on the original set into a function on the quotient set. Such a

process is always done with the spirit that we can factor through a function through a quotient

once the factorization can be proved to be well-defined. We simply make the application of

this spirit explicit.

A function f : A → B respects to the relation R : A # A when we have f (a1) � f (a2) once
Holds(R, a1 , a2), denoted resp1( f , R). Write ER(R) for R an equivalence relation, we prove:

ER(R) ∧ resp1( f , R) ∧ Quot(R, i) �⇒
∀q0 ∈ Q. ∃! f : Q → B. ∀a ∈ A. f (abs(R, i , q0 , a)) � f (a)

This is exactly the “universal property of quotient”. The naive theorem already works well

for lifting functions with a single argument. By passing from a predicate to a function to

the two-element set (Called 2, as in ETCS, it has two elements >I and ⊥I), which can be

constructed in SEAR, it allows us to lift predicates as well.

5.2.10 Example. Consider lifting the inductively-defined argument Even(n), which means
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the natural number n ∈ N is even. We define N × N 7→ 2 using 5.2.3 by (n1 , n2) 7→ >I if

they have the same parity, and ⊥I otherwise. Specialize 5.2.6 with it gives a function Z→ 2,

expressing evenness of integers.

Functions such as negation has sort Z→ Z, we may just use 5.2.6 for lifting it as well, from

a function N × N→ Z. But for the sack of convenience and generality, we prefer to have a

theorem where we are only required to check conditions on the original set. This requires

us to consider functions that respect the relation on the domain and codomain. We define

resp( f : A → B, r1 , r2) as if Holds(r1 , a1 , a2), then Holds(r2 , f (a1), f (a2)). Given f : A → B

where A and B are quotiented into Q1 and Q2, we want the induced function Q1 → Q2 to

send an equivalence class that a belongs to the equivalence class f (a) belongs to. We say

these two equivalence classes are related by the relation rext( f , r1 , r2). The following theorem

addressing equivalence relations on both the domain and codomain is very helpful.

` ∀A B ( f : A→ B) (r1 : A# A) (r2 : B # B) Q1 Q2 (i1 : Q1 → Pow(A)) (i2 : Q2 → Pow(B)).
ER(r1) ∧ ER(r2) ∧ resp( f , r1 , r2) ∧ Quo(r1 , i1) ∧ Quo(r2 , i2) �⇒
∃!q f : Q1 → Q2. ∀q1 : mem(Q1). Holds(rext( f , r1 , r2),App(i1 , q1),App(i2 ◦ q f , q1))

The original quotient theorem 5.2.6 is realized as the case when r2 is the trivial equivalence

relation defined by equality.

5.2.11 Example. The function z 7→ −z on Z is defined from the function f0 : N×N→ N×N,
with (n1 , n2) 7→ (n2 , n1). We prove only on the level of elements of N, to get resp( f0 , RZ , RZ).
Specializing 5.2.6 directly gives us a function Z→ Z. This function is the negation operator.

There are, however, many functions with multiple arguments, and some of them have outputs

in a quotient. That suggests us to give a treatment to function from a product of quotients.

We reduce such cases into a case where 5.2.6 is applicable. This is achieved by realizing the

product of quotients as a quotient as well in the following way: Given two relations R1 on A

and R2 on B, we define their product relation as:

Holds(prrel(R1 , R2), (a1 , b1), (a2 , b2)) ⇔ Holds(R1 , a1 , a2) ∧ Holds(R2 , b1 , b2)

And given quotients i1 : Q1 → Pow(A), i2 : Q2 → Pow(B) of R1 and R2, we define a map

ipow2(i1 , i2) : Q1 ×Q2 → Pow(A × B) such that for every pair (a , b) ∈ Q1 ×Q2, we have:

IN((a , b), ipow2(i1 , i2)(q1 , q2)) ⇔ IN(a , i1(q1)) ∧ IN(b , i2(q2))

If R1 and R2 are both equivalence relations, the relation prrel(R1 , R2) and the inclusion map

ipow2(i1 , i2) form a new quotient. This would allow us to borrow the previous quotient

theorems.
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5.2.12 Example. The addition function on Z is obtained by lifting the function f : (N×N) ×
(N×N) → N×N with ((n1 , n2), (n3 , n4)) 7→ (n1+n3 , n2+n4). We have Quo(prrel(RZ , RZ), ipow2(iZ , iZ))
by the result above, and we already have Quo(RZ , iZ). It is easy to prove resp( f , prrel(RZ , RZ), RZ).
Note that the domain of ipow2(iZ , iZ) is Z × Z. Applying 5.2.6 with these conditions gives us

the addition function Z × Z→ Z.

The group operations in a quotient group, to be constructed in the next section, are also done

as above.

5.2.7 Group Theory

Many mathematical results look neater in theorem-provers based on dependent type theory

(DTT), since instead of assuming complicated predicates, we can internalize those predicates

as types, thereby shortening the statement. By formalizing some group theory, we demonstrate

that we can prove similarly neat versions of statements in our simple logic.

We encode a group with underlying set G as an element of Grp(G). Such a set is constructed

from the comprehension schema which injects to the subset of the product GG×G × GG × G

satisfying the usual group axioms. For a group g ∈ Grp(G), also by comprehension, we

construct the set of its subgroups sgrp(g) as injected into Pow(G), and the set of its normal

subgroups nsgrp(g) that injects to sgrp(g). The problem we mentioned as a pain point for

creating a function symbol producing an equalizer object happens here again. As groups are

encoded by members of sets, it is possible to compare if two groups are equal, e.g., g1 � g2,

with g1 , g2 ∈ Grp(G). However, if h1 ∈ sgrp(g1) and h2 ∈ sgrp(g2), we cannot write h1 � h2

because such an equality will not type check. But here, we hold this to be appropriate because

equality is not the correct way to compare abstract structures such as groups. Even if we

wanted to work with equality on groups g1 , g2, we should compare their representatives or

define transferring functions like the ones of sort sgrp(g1) → sgrp(g2), which map a subgroup

of g1 to a subgroup of g2.

Note that the sort mem(sgrp(g)) is a naturally occurring example for a top-level term, namely

g, to occur in a sort. That means we cannot instantiate a formula variable F [g0 ∈ Grp(G)](g)
to be a formula with a free variable of sort mem(sgrp(g)), because such a formula will become

ill-formed with the quantification on g.

For a normal subgroup N ∈ nsgrp(g), the underlying set of the quotient group qgrp(N) has
as its underlying set the set of all right cosets of N. The function symbol qgrp only needs

to take the group N as argument, since the group being quotiented is contained in the sort

information of N. The quotient homomorphism qhom(N) is a member of ghom(g , qgrp(g))
of all homomorphisms between the original group and the quotient. Its underlying function

homfun(qhom(N)) sends a group element to its coset.



Chapter 5. Two Structural Set Theories 94

By construction, each underlying function of a homomorphism respects the relation induced by

its kernel. Then the first isomorphism theorem can be obtained by instantiating the quotient

mapping theorem as in the last section, giving

∀G1 G2 g1 ∈ Grp(G1) g2 ∈ Grp(G2) f ∈ ghom(g1 , g2).
∃! f ∈ ghom(qgrp(ker( f )), g2).

Inj(homfun( f )) ∧ homfun( f ) ◦ qmap(ker( f )) � homfun( f )
(5.5)

This is a nice illustration of the strengths of the “DTT style”.

Discussion

Our approach to group theory is very different from its counterpart in HOL. Firstly, the HOL

type α group is inhabited by values that must record their underlying carrier set. Secondly,

the HOL quotient group function takes two α groups and outputs a term of (α→ bool) group,
which is proved to satisfy the group axioms if the first term satisfies the group axioms and

the second term is a normal subgroup. Further, as HOL types cannot depend on terms, we

certainly cannot construct the type of all homomorphisms between two groups. There is

actually a trade-off between choosing the HOL style and the DTT style of stating theorems.

Whereas the first isomorphism theorem is clearly better in DTT style (5.5), the second and

third isomorphism theorems in DTT style can look complicated, with a great deal of coercions

happening under the covers.2 Since the HOL quotient group only takes two groups of the same

type, we can use exactly the same term for the ambient group and its subgroup and do not

need to construct different terms to regard the same group as subgroups of an ambient group.

In this case, the convenience of the HOL style (using assumptions) is evident. We can choose

each style in our system, so users can try both approaches and compare them. To find the

best form of a statement, we may try combining the two approaches: we do not always have to

create a subset once we come up with a new property, but we may use them as assumptions

as well.

5.2.8 Modal Model Theory

In recent work, we developed a mechanization of some basic modal logic theory [51]. While

defining the notion of being preserved under simulation, we observed that if a property of a

modal formula is defined in terms of the behavior of the formula on all models, then such a

property cannot be faithfully captured by HOL. Such an issue can be resolved by choosing a

dependent sorted foundation and doing the proof in our logic. We demonstrate this here by

mechanizing the proof that characterizes formulas preserved under simulation as those are

equivalent to a positive existential formula in SEAR.
2Of course, DTT systems offer the ability to write statements in HOL’s predicate-heavy style as well.
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Using roughly the general method introduced at the end of Harrison [24], we first construct

the “type” (actually a set in SEAR) of modal formulas over variables drawn from the set V.

We then denote the set of modal formulas over V as form(V). A Kripke model on a set W

of such formulas is an element of Pow(W ×W) × Pow(V)W (written as model(W,V) in the

following paragraphs). The first component encodes the model’s reachability relation, while

the second encodes the variable valuation. Satisfaction of modal formulas can then be defined

in the standard way, and if φ is satisfied at w in the model M, we write M, w  φ.

The two key definitions of this proof are that of simulation, and of being preserved under

simulation (written as PUS below). A simulation between two models M1 and M2 with

underlying world sets W1 and W2 is a relation R : W1 #W2. It is a concept describing that

once we can make a transition from w1 in M1, a corresponding transition can be taken in

M2 from any element that w1 is related to. The is identical to its counterpart in HOL, and

the predicate is written Sim(R,M1 ,M2). The definition of “preserved under simulation” is

more interesting. This refers to the property for a formula’s truth value to be preserved in

any two models with a simulation between them. In the textbook description, the default

foundation is ZF, so there is no notion of the “type” of a model. However, in simple type

theory, the collection of all models ranges over all types. Therefore, the fact that we cannot

quantify over types in HOL does raise an issue. In our previous formalization, we did not have

any option but to encode a strictly weaker version by adding an extra type parameter, and

defining “preserved under simulation between models of a certain type”. Thankfully, due to

the fact that we are now allowed to quantify over sets in SEAR, we can state this definition

faithfully. As it is supposed to be, in SEAR, such a definition is a predicate symbol taking a

formula only as its argument.

∀V (φ ∈ form(V)).
PUS(φ) ⇔
∀W1 W2 (R : W1 #W2) (w1 ∈ W1) (w2 ∈ W2)
(M1 ∈ model(W1 ,A)) (M2 ∈ model(W2 ,A)).
Sim(R,M1 ,M2) ∧ Holds(R, w1 , w2) ∧ M1 , w1  φ �⇒ M2 ,w2  φ

Quantification over sets also makes the formalized notion of formula equivalence simpler: two

formulas are equivalent if their truth value agrees on all models. Again, now we are not

restricted to only being able to define “agree on a particular type of models”, but can simply

define the predicate on two formulas, denoted φ1 ∼ φ2. Under these definitions, the proofs of

both directions of theorem 2.78 in [16] can be faithfully translated, yielding the two formal
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statements:

∀V (φ ∈ form(V)) (φ0 ∈ form(V)). PE(φ0) ∧ φ ∼ φ0 �⇒ PUS(φ)

∀V (φ ∈ form(V)). PUS(φ) �⇒ ∃φ0 ∈ form(V). PE(φ0) ∧ φ ∼ φ0

Clearly, the two directions can be put together into an if-and-only-if, hence giving the full

form of the characterization theorem, which cannot even be stated in HOL.

∀V (φ ∈ form(V)). PUS(φ) ⇔ ∃ f0 ∈ form(V). PE(φ0) ∧ φ ∼ φ0)

Such a theorem can be stated in ETCS as well, but it does not mean that it is provable in

ETCS. As an intermediate step of the proof in [16], we are required to define the positive

consequence of a formula ψ, i.e., the set {φ | ψ � φ ∧ an extra condition}. The � here means

“semantical consequence”, which means φ is true if ψ is true, in any model. Again, this requires

quantification on models. But also not that this set requires the theorem 5.1 to construct, so

the quantification appears in the formula to be instantiated into the formula variable there.

Therefore, a translation from this proof does require unbounded comprehension, where ETCS

is not sufficient.

5.2.9 Existence of Large Sets

Whereas iterating the procedure of taking the power set by infinite times is impossible in

HOL due to foundational issues, the collection axiom schema in SEAR makes it possible. The

statement of the SEAR collection axiom is formalized as:

5.2.13 Axiom 5.

∃B Y (p : B→ A) (M : B # Y).
(∀S (i : S→ Y) (b ∈ B).

isset(i , {y | Holds(M, b , y)}) �⇒ F [a0 : mem(A),X0 : set](p(b), S))∧
(∀(a ∈ A) X. F [mem(A), set](a ,X) �⇒ ∃b. p(b) � a)

with F [a0 : mem(A),X0set] a formula variable, to be instantiated to be a predicate on an

element of A and a set.

Using this axiom, we will prove:

∀A. ∃P. ∀n ∈ N. ∃i : Pown(A) → P. Inj(i)

Here the Pown(A) is “the” n-th power set of A. Note that the induction principle on natural

numbers does not allow us to take a set as an argument, and does not allow the output to be
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a set as well. To create this function symbol, we start by defining a predicate nPow(n ,A, B),
which means B is an n-th power set of A. We then prove such B is unique up to bijection,

hence the specification rule applies. In the following, we write P(s) ∈ Pow(Pow(A)) for the set

of subsets of s ∈ Pow(A). For s1 ∈ Pow(A) and s2 ∈ Pow(B), we write |s1 | � |s2 | for s1 and s2
have the same cardinality. We write Whole(A) ∈ Pow(A) as the subset of A consisting of all

members of A.

We define nPow(n ,A, B) if there exists a set X and a function f : X → N such that | f −1(0)| �
|Whole(A)|, | f −1(n)| � |Whole(B)|, and for each n0 < n, | f −1(n+

0 )| � |P( f −1(n0))|. Such a

function f records a sequence of power set relations, in this case, we write nPowf(n ,A, B, f ).
By induction on n0, nPow(n ,A, B, f ), implies nPow(n0 ,A,m2s( f −1(n0)), f ) for each n0 ≤ n.

If nPow(n ,A, B1) and nPow(n ,A, B2), we can infer B1 and B2 have the same cardinality by

induction on n. The base case is trivial. Assume f1 : X1 → N witnesses nPow(n+ ,A, C1)
and f2 : X2 → N witnesses nPow(n+ ,A, C2), as n < n+, we have f1 , f2 witness that their

preimage at n is an n-th powerset of A, and hence by inductive hypothesis has the same

cardinality. Therefore, the cardinality of C1 and C2 are equal as power sets of sets with the

same cardinality.

Now we prove the existence of these iterated power sets. Suppose we have nPowf(n ,A, B, f0 :

X → N), we construct f ′ : Pow(X + 1) → N such that nPowf(n+ ,A,Pow(B), f ′). Define

f : X → N such that as if f0(x) ≤ n then f (x) � f0(x), else f (x) � n++, then we have

nPowf(n ,A, B, f : X → N), and n+ is not in the range of f . According to the definition of

nPow, there exists an injection B→ X, and thus an injection i : Pow(B) → Pow(X). We define

the function f ′ : Pow(X + 1) → N as:

f ′(s) �


f (x) if s � {SOME(x)}

n+ if ∃xs ∈ Pow(X). i(xs) � s0 ∧ s � {NONE(X)} ∪ s0

n++ else

It follows that | f ′−1(n0)| � | f −1(n0)| for n0 ≤ n, and the preimage of n+ is a copy of Pow(B),
so f ′ witnesses Pow(B) is the n+-th power set of A.

To prove the existence of the large set. By specializing the axiom of collection, we obtain a set

B, a function p : B→ N, a set Y, and a relation M : B # Y satisfying:

(∀S (i : S→ Y) (b ∈ B). isset(i , {y | Holds(M, b , y)}) �⇒ nPow(p(b),A, S)) ∧
(∀n ∈ N X. nPow(n ,A,X)) �⇒ ∃b ∈ B. p(b) � n)

The set Y is the large set we want to construct. For any n ∈ N, we have nPow(n ,A,Pown(A)),
and thus there exists a b ∈ B with p(b) � n. For this b, Let H(b) denote the set of
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elements y such that Holds(M, b , y), then minc(H(b)) gives an injection m2s(H(b)) → Y. As

nPow(n ,A,m2s(H(b))) and also nPow(n ,A,Pown(A)), by uniqueness proved above, there exists

a bijection j : Pown(A) → m2s(H(b)). The composition minc(H(b)) ◦ j is the desired injection.

Future work on Beth cardinals The above proves the existence of a super large set, which

already breaks the limitation in HOL. But SEAR is even more powerful than that. Actually, it

is equipped with the power to prove the minimal set that we can inject each iterated power set

of a set A exists and is unique up to unique structure-preserving isomorphism. The uniqueness

of such an isomorphism is critical. The minimal such subset cannot be obtained directly from

applying Axiom 5. We require a derived “replacement schema” for this task. Such a schema

is more meta-theoretic than those that can be captured in one statement within SEAR. We

cannot state a form of it within a theorem, even with the help of formula variables. This is

because it has a form for each well-formed dependency list ®v that can be used to quantify on

formulas, and hence have an instance, expressed with a formula variable F [®v], for each such

®v. Despite the fact that the general proof in [47] borrows a lot of category theory from the

meta-level, each instance of provable within the SEAR theory3.

The notion of context as in [47] is the same as us, except that it is a set in our logic and is a

list consisting of the elements in our set. The replacement schema says if for each element

a ∈ A, there is a context θ satisfies φ(a , θ), and moreover, such a context is unique up to

unique isomorphism, then there exists a minimal, universal context θ̃ such that each context

θ such that φ(a , θ) can be recovered from θ̃.

The recovery will rely on a map from the universal context to the set A. To avoid categorical

terminology, we say for each piece of information in the context, we associate it with an

element in A. For each a ∈ A, we can take out all the information from θ̃ that is associated

with it to form a new context, considered as “the fragment θa of θ over a”. Then the context

θa satisfies φ(a , θa). The universal context θ̃ is minimal because it does not contain any

redundant information. This is evident from the indexing map to the set A, which shows every

piece of information in θ̃ serves for consisting a part of the unique context for some element.

In what follows, we keep things simple by taking the set A to be N. The countably infinite

iterated power set of N is called the Beth number iω, already very interesting.

We formalize the proof of the unique existence of the structure-preserving isomorphism, which

is already quite involved. The first task is to present a definition to express that “the n-th

iterated power set of N is unique for each n ∈ N”. We define a predicate, that captures “the set

X is the disjoint union of the n-th iterated power set of N” by the predicate with four inputs:
3This is confirmed via personal communication
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∀n ∈ N X (p : X → N) (R : X # X) (z : N→ X).
Upows(n , p , R, z) ⇔
IM(p) � Les(n) ∧ Inj(z) ∧ IM(z) � Fib(p , 0N) ∧
(∀n0 ∈ N.

n0 < n �⇒
∃A (i : A→ X) (pi : Pow(A) → X).
Inj(i) ∧ Inj(pi) ∧ IM(i) � Fib(p , n0) ∧ IM(pi) � Fib(p , n0

+) ∧
(∀(a ∈ A) (s ∈ Pow(A)). Holds(R, i(a), pi(s)) ⇔ IN(a , s))) ∧

(∀x ∈ X s ∈ X. Holds(R, x , s) �⇒ p(x)+ � p(s))

The predicate indicates “the set X resembles a disjoint union of power sets N, Pow(N),
Pow(Pow(N)), · · · , Pown(N)”, The projection p : X → N, considered as an indexing map, sends

an element x ∈ X to n ∈ N if x belongs to the Pown(N) component of the disjoint union. We

use the notation Fib(p , n) to denote the preimage of p at a point n. The iteration starts with

N, whose copy in X is found as Fib(p , 0N). The relation R captures the disjoint union of all

the membership relations between these iterated power sets. The second-to-last conjunct says

for each number n0 below n, there is a pair of sets A and Pow(A) injected into the fiber of n0

and n0
+. Two elements in the image of i and pi are related if and only if they come from a

membership relation from A and Pow(A). The final clause says the relation R only holds for

elements that come from adjacent power sets.

We construct by induction on n, using the induction principle 5.2.4, that for each n, the

existence of X, p : X → N, R : X # X and z : N→ X such that Upows(n , p , R, z). The base

case is trivial by taking N itself. For the base case, assume Upows(n , p , R, z), for any injection

i : A→ X whose image is Fib(p , n), we use X + Pow(A) to capture the n + 1-th iteration, with

all of Pow(A) mapped to n + 1. The relation on X is the one from the previous step, and the

new relation on X + Pow(A) will just add the relation that relates the elements in the image

of i to the sets in Pow(A) it belongs to.

Given Upows(n , p1 : X1 → N, R1 : X1 # X1 , z1 : N → X1) and Upows(n , p2 : X2 → N, R2 :

X2 # X2 , z2 : N → X2), a structural preserving isomorphism consists of two functions

f1 : X1 → X2 and f2 : X2 → X1, satisfying the equations p2 ◦ f1 � p1, f1 ◦ z1 � z2,

p2 ◦ f2 � p1, f2 ◦ z1 � z2. Moreover, the relation R1 has to be the image of the relation R1

under f1, and vice versa. Given two such isomorphisms, we prove they coincide on every fiber

of p to prove they are equal on the whole domain. This is again an induction on n. The base

case is ensured by the equations on z1 and z2. For the step case, we assume they agree on the

fiber on n and prove they agree on the fiber on n+. We have by definition of Upows that there

exist injections i : A → X1 and pi : Pow(A) → X1 on the fiber of n and n+. The inductive

hypothesis says f1 ◦ i � f2 ◦ i, and it is sufficient to show f1 ◦ pi � f2 ◦ pi. We introduce
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another auxiliary lemma, saying for two pairs of inclusions i1 : A1 → X1, i2 : A2 → X1 inject

to Fib(p , n), and maps pi1 : Pow(A1) → X1, pi2 : Pow(A2) → X1 injects to Fib(p , n+), if they
both correspond to the membership relation, then there is an isomorphism k : A1 → A2 such

that i2 ◦ k � i1 and pi2 ◦ Image(k) � pi1. We take the i1 and i2 in this lemma to be

f1 ◦ pi and f2 ◦ pi. Then the isomorphism µ satisfies ( f2 ◦ i) ◦ k � f1 ◦ i and also

( f2 ◦ i) ◦ Image(k) � f1 ◦ k Recall f1 ◦ i � f2 ◦ i, so ( f2 ◦ i) ◦ k � f2 ◦ i. But f2 ◦ i is

a mono, so k � Id(A), immediately gives the result.

The existence of the isomorphism is proved by induction on n, using the embedding from the

meta-tuple satisfies Upows(n , p1 : X1 → N, R1 : X1 # X1 , z1 : N→ X1) into the one satisfies

Upows(n+ , p2 : X2 → N, R2 : X2 # X2 , z2 : N→ X2), and extend the bijection to cover the

extra n + 1-th power set of N.

5.2.10 The collapse of the λ-cube

A measurement of how powerful a type theory is can be measured by fitting it into the

λ-cube. From the origin representing the dependency “terms on terms”, there are three axes,

representing dependencies of terms on types, types on terms, and types on types. Here

“dependency” is universally conceived as “being able to construct a kind of thing out of another

kind of thing”. For instance, HOL includes terms depending on terms, through the mechanism

of function application; terms depending on types, such as the polymorphism in the term

“empty list”; and types depending on types, as seen in the polymorphic type of trees, where

different types detail the example. But HOL does not have types depending on terms, so this

dimension is missing. In contrast, Coq and Lean have all of the above, and in addition, allow

types to depend on terms. Indeed, this is what is understood by the term “dependent types”.

Such dependencies naturally occur in mathematical constructions. It is naturally thought of

as the application of meta-functions, they are “functions” that may not exist in the theory, and

do not have to be representable by a function term As we have already seen, we can construct

the set of all groups with a fixed underlying set, this can be regarded as a function in the

meta-level, from the collection of sets to the collection of groups. Such a function does not

exist in the SEAR theory but is a function symbol.

It is clear that all these constructions can be done through the use of complicated sets in

ZF set theory. But then, ZF does not provide any formal support on type checking. Being

able to type check is important because it makes sure we are writing down statements that

express interesting mathematical facts. Whereas we can represent in dependent type theory,

the type checking is complicated and takes a longer time to perform. By providing a “type

check” just in four kinds of things, capturing four interesting kinds of object that are sufficient

to do mathematics, SEAR provide a sweet spot on this balance.
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We now claim that whereas it is clear that the origin, which represents the dependency “terms

on terms”, is simply function applications and can certainly be captured by function symbols

in first-order logic since our machinery allows constructing function symbols 4 out of functions,

it is moreover, possible to simulate all the remaining three dimensions in SEAR with function

symbols as well. In SEAR, the λ-cube collapses to the point of “function application” only. It

is witnessed by the following examples.

Terms depend on types (polymorphism) Polymorphism means that we can construct

different terms with the same role for different types. This is doable in SEAR with the obvious

witnesses of the empty (co-)list. We write Nil(A) to denote the empty list with elements taken

from the set A, for any A. This is done by imposing the constraint on the sort of output, due

to the fact that our function symbols are sort-checked by pattern-matching.

Types depend on other types In SEAR, the role of a type as in type theory is played

by sets, we can apply function symbols on set terms and produce a set. The analog of the

standard example of creating trees for each type is already presented in modal model theory

section, where we create the set of formulas with propositional symbols from each set A.

Types depend on terms We enable our types to depend on terms as a primitive feature

in our logic. Differing from DTT logics, the dependency in our logic must happens in a certain

way restricted by the signature. We are not allowed to build an arbitrary sort out of a given

term. But what the signature requires is just making sure which role will a term play. Standard

constructions can be easily carried out. Let us take a favorite example on the dependent type

of “vectors of length n” on a type A:

5.2.14 Example. We can use our dependent sort to capture the list-appending map. In

DTT systems, let A be the type where the items of lists come from, the append map has type

list(A, n1) → list(A, n2) → list(A, n1+n2). In SEAR, for a set A, we can create the set list(A, n)
of lists of length n for each n, with a canonical inclusion map iLn(A, n) : list(A, n) → List(A).
For each l ∈ list(A, n), we then have Length(iLn(A, n)(l)) � n. Trivially, by abbreviating

RepLn(l) :� iLn(A, n)(l), we can prove theorems like:

∀A (n1 ∈ N) (n2 ∈ N) (l1 ∈ list(A, n1)) (l2 ∈ list(A, n2)).
RepLn(l1) � RepLn(l2) �⇒ n1 � n2

We have that appending a list with length n1 with a list of length n2 yields a list of length n1+n2.

This theorem can be lifted into the dependent sort. We prove for each pair of list l1 ∈ list(A, n1)
4Note that there is no notion of “function symbols” in type theory
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and l2 ∈ list(A, n2), we have a unique list in list(A, n1 + n2). This gives us a function symbol

for appending, allows us to produce the function term. Appendn(l1 , l2) : list(A, n1 + n2).

As above, the canonical way for “types depend on terms” in SEAR is arguably “term depends

on terms”.

In conclusion, although we do not obtain the layering through type theory, we do not lose

any aspect of its power. This is done by choosing powerful axioms, indicating various of type

theories are not the only ways to layer in computer formalization of mathematics.
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Chapter 6

Mechanizing CCAF

The category of categories as a mathematical foundation, given by Colin McLarty [33], is

an attempt at axiomatizing category theory. It is the only existing publication of such an

axiomatization besides Lawvere’s ETCC, that has already been pointed out to be flawed, at

present. However, by mechanizing it, we catch an error in CCAF as well. The two sorts of

this system are that of the categories and that of the functors, which depend on the source

and the target category. Categories are usually denoted as letters A, B, C, · · · . A functor f

(also g, h, . . . ) from A to B is written f : A→ B. Higher dimensional information, a natural

transformation, say, is given by a functor to a functor category. Equalities are only allowed

between functor terms. Table 6.1 presents primitive symbols from McLarty [33].

In what follows, as the translations are mostly straightforward, we are not going to present

all the formalized statements but focus on explaining the parts that are less straightforward

to understand. In particular, the critical choices we made, and the differences between

our formalization and the original paper. The section titles in this chapter follow those of

McLarty [33]. This allows this chapter to be read in parallel with the original paper.

6.1 The categories 1 and 2

Axiom 1 imposes selected products, coproducts, and exponentials to the system. This is done by

defining the predicates isPr etc. by their universal property and declaring the primitive function

symbols accordingly. They have the definition that precisely looks like what we did before for

ETCS and SEAR. Then we state as axioms that the terms constructed by the application of

these function symbols satisfy the desired properties. However, whereas these notions are on

sets in the two set theories, now the notions are on categories, so π1(A, B) : A × B→ A means

the projection on the first component is a functor.

6.1.1 Axiom CC1. The meta-category CAT (not a term in our logic) is a cartesian closed

category with all finite limits and colimits, where the initial object ∅ is not isomorphic to the
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Symbol Input Output Source Predicate/Function
◦ [ f : A→ B, g : B→ C] g ◦ f : A→ C signature Function
Id [A : Cat] Id(A) : A→ A signature Function
× [A : Cat, B : Cat] A × B : Cat CC1 Function
π1 [A : Cat, B : Cat] π1(A, B) : A × B→ A CC1 Function
π2 [A : Cat, B : Cat] π2(A, B) : A × B→ B CC1 Function
+ [A : Cat, B : Cat] A + B : Cat CC1 Function
i1 [A : Cat, B : Cat] i1(A, B) : A→ A + B CC1 Function
i2 [A : Cat, B : Cat] i2(A, B) : B→ A + B CC1 Function
Exp [A : Cat, B : Cat] BA : Cat CC1 Function
ev [A : Cat, B : Cat] ev(A, B) : A × BA → B CC1 Function
∅ [] ∅ : Cat CC1 Function
1 [] 1 : Cat CC1 Function
2 [] 2 : Cat CC2 Function
0 [] 0 : 1→ 2 CC2 Function
1 [] 1 : 1→ 2 CC2 Function
E [] E : Cat Comment after CC3 Function
ε1 [] ε1 : 2→ E Comment after CC3 Function
ε2 [] ε2 : 2→ E Comment after CC3 Function
3 [] 3 : Cat CC4 Function
α [] α : 2→ 3 CC4 Function
β [] β : 2→ 3 CC4 Function
γ [] γ : 2→ 3 CC4 Function

isop [A : Cat, B : Cat] - CC7 Predicate
isopf [ f : A→ B, f ′ : A′→ B′] - CC7 Predicate

Table 6.1: Primitive symbols required by CCAF
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terminal object 1.

` ∀A B. isPr(π1(A, B), π2(A, B))

` ∀A B. iscoPr(i1(A, B), i2(A, B))

` ∀X H ( f : X → H) Y (g : Y → H). ∃P (p : P → X) (q : P → Y). isPb( f , g , p , q)

` ∀H X ( f : H → X) Y (g : H → Y). ∃P (p : X → P) (q : Y → P). isPo( f , g , p , q)

` intl(∅) ∧ tml(1) ∧ ∅ � 1

` ∀A B. isExp(ev(A, B))

Also as before, we denote the exponential object BA, and ev(A, B) is of sort A × BA → B.

The unique transposition X → BA for a functor f : A × X → B is created by the function

specification rule as Tp( f ). Conversely, given an h : X → BA, we denote by h the corresponding

functor A ×X → B. Also, note that the notion of isomorphism in above refers to isomorphism

between categories, that is, refers to composition of functors instead of arrows within a category.

Each functor f : A→ B induces a functor X f : XB → XA defined by the term Tp(ev(B,X) ◦
〈 f ◦ π1(A,XB), π2(A,XB)〉). This functor is regarded as sending a functor B → X to a

functor A→ X via composition by f . Note that this function symbol takes two arguments: a

category X, where there is no notion of equality, and a functor, where equality can be written.

Here are two ways to prove X f � X g for f � g. The first way is to use congruence between

formula variables, which immediately gives the result: the formula ∀ f : A→ B. X f � X g is

well-formed, so from f � g, we have X f � X g ⇔ X g � X g, where the right-hand side is true.

But we actually recommend the second way: we expand the definition to give the result. This

uses the fact that despite we do not have equality between categories, function symbols applied

to the same category can be equated if they look exactly the same. This is by reflexivity

between equations. Therefore, we have π1(A,XB) � π1(A,XB), with the equality f � g we

can derive the intended equation. Note this proof is entirely syntactical, we do not even need

to check the output of the functors is always the same.

The categories 1 and ∅ as in Axiom 1 are to be thought of as the categories with a single

object and only the identity arrow on it and an empty category, respectively. Again, we use !A

to denote the only functor A→ 1. An important idea to keep in mind when reading theorems

in CCAF (and actually, in category theory in general) is that a functor embeds the shape

from the source category as a possibly distorted copy into the target category. A first example

is that an object in a category A is defined in CCAF as a functor 1→ A, by analogy with

ETCS, where an arrow from the singleton set to a set A selects an element. With the same

idea, an arrow in A should be an embedding of the shape · → · to A. Axiom CC2 gives the

existence of such a category.
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6.1.2 CC2. There are constants 0, 1 : 1→ 2 such that the identity two on 2, zero :� 0 ◦ !2
and one :� 1 ◦ !2 are distinct and the only endofunctors of 2. Moreover, the object 2 is a

generator: any pair of parallel functors are either equal or differ at some functor from 2.

` zero , one ∧ zero , two ∧ one , two (0)

` ∀ f : 2→ 2. f � zero ∨ f � one ∨ f � two (1)

` ∀A B f g : A→ B. f , g �⇒ ∃a : 2→ A. f ◦ a , g ◦ a (2)

Although not directly obtainable from the only two axioms here, with the later axiom 6.3.1,

we will eventually prove (0) and (1) are distinct in the sense that the pullback of these arrows

is the initial category (for the terminology, a pullback of two functors can be thought as how

much they overlap). That is, 2 has exactly two objects and a non-identity arrow, hence three

arrows in total. We will abbreviate 0 and 1 as exact3(zero, one, two). An arrow in a category

A is a functor f : 2→ A. Its domain and codomain are given by f ◦ 0, f ◦ 1 : 1→ A, and

denoted as dom( f ) and cod( f ) respectively. We define the identity id(a) on an object a : 1→ A

as a ◦ !2. As a fact that admits an ETCS (or SEAR) counterpart, we point out that we can

later prove every non-initial category has an arrow. But the counterpart of well-pointedness

is now different in CCAF. Since a set consists of elements, which in structural set theory

have no internal structure, a category has arrows, which link between objects. Therefore, the

“extensionality” of functors requires that two functors are equal if they agree on all the arrows,

i.e., agree on all the functors from 2. This implies two equal functors agree over all objects,

which can be expressed as: for F,G : A→ B, we have F � G �⇒ ∀a : 1→ A. F ◦ a � G ◦ a.

This makes 2 a generator. To prove this, the axiom

6.1.3 CC3. The coproduct 1 + 1 : 1 + 1→ 2 is not an epimorphism.

` ¬Epi(1 + 1)

is added. Moreover, we can prove 2 is up to isomorphism the only generator.

6.2 Composition

Whereas we automatically get the notion of composition of functors in the signature, with

effective type-checking, the notion of composition within a category is not primitive in CCAF.

We now investigate how would we derive such a notion. From now on, we write for arrows

f , g : 2→ A the “composable” predicate cpsb(g , f ) to mean dom(g) � cod( f ).

A composition in a category A will give a commutative triangle in A, with the idea “functors

as shapes”, we then require a triangle-shaped category, provided by CC4.
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6.2.1 CC4. The category 3 is the pushout below, with an arrow γ : 2→ 3 such that γ ◦ 0 �

α ◦ 0 and γ ◦ 1 � β ◦ 1

1 2

2 3

1

0 α

β

` isPo(1, 0, α, β) ∧ dom(γ) � dom(α) ∧ cod(γ) � cod(β)

A pushout is regarded as a gluing. In our case, we glue together two copies of the category 2

by putting them in a line and gluing a head and a tail from these two copies together. The

resulting category 3 hence has a “longer” arrow, obtained by connecting two copies of the

arrow two of 2. Before having functor comprehension schema, we cannot prove 3 is exactly a

commutative triangle, but actually it is, pictured as:

cod(α) � dom(β)

dom(α) cod(β)

βα

γ

This is sufficient for us to define composition. Once we have cpsb(g , f ), the universal property

of a pushout will give us a functor 3→ A representing the composed triangle. By composing

with α, β, and γ, we take parts from the triangle as arrows in A. The original arrows f and

g are taken out by composing with α and β respectively. The composition is obtained by

composing with γ.

We now want a function symbol that takes two composable arrows and gives the composition.

Formally, we will prove:

∀ f g : 2→ A.∃!t : 3→ A.(cpsb( f , g)∧ t ◦ α � f ∧ t ◦ β � g) ∨ (¬cpsb( f , g)∧ t � dom( f ) ◦ !3)

By specification, we create a function symbol such that ∆( f , g) : 3→ A gives the composing

triangle of the two arrows once they are composable. When the two inputs are not composable,

we still need an output, but the result would be an uninteresting trivial arrow. We define the

composition g ◦A f as ∆( f , g) ◦ γ. The domain and codomain information dom(g ◦A f ) �
dom( f ) and cod(g ◦A f ) � cod(g) are immediate by the pushout, and so is the fact that

composing with identity preserves the arrow.

The sorts of the inputs and the composed arrow are hence all the same and the composition

is a total function symbol. Since the domain and codomain of an arrow are not intrinsic,
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composibility has to be declared via predicates. The sort information only supports type-

checking between functors. We will later put natural transformation in the same layer as

functors, so the type-checking is not helpful there either.

Composing any functor A→ B with a functor 3→ A will give a functor 3→ B. In other words,

commutative triangles are preserved by functor application. This gives “functor preserves

composition” for free. We prove it as a theorem:

` ∀A f g : 2→ A. cpsb(g , f ) �⇒ ∀B k : A→ B. k ◦ (g ◦A f ) � (k ◦ g) ◦B (k ◦ f ) (6.1)

The compositions in 2 will play an important role afterward.

6.2.2 Theorem 4.

` one ◦2 two � two ∧ two ◦2 zero � two

We want to prove the associativity of the composition of arrows. This requires techniques to

manipulate commutative squares and explore the connection between commutative squares in

the intuitive sense and arrows in the arrow category. We observe that 2 × 2 consists of four

objects and nine arrows, as pictured below.

〈0, 0〉 〈1, 0〉

〈0, 1〉 〈1, 1〉

〈two,zero〉

〈zero,two〉
〈two,two〉

〈one,two〉

〈two,one〉

A commutative square in A is then a functor c : 2 × 2→ A. The edges of c are obtained by

composing with the corresponding arrows of 2× 2. For instance, the left edge is c ◦ 〈zero, two〉 :
2→ A. We write csT(c), csB(c), csL(c), csR(c) to denote the top, bottom, left and right edges

respectively. Equivalently, such a functor is an arrow s : 2→ A2. The domain and codomain

of such an arrow will be the top and bottom edges of the corresponding commutative square.

The edges of its transpose are given by:

csT(s) � 2 2 × 1 A
〈two,!2〉 dom(s)

csB(s) � 2 2 × 1 A
〈two,!2〉 cod(s)

csL(s) � 2 A2 A1 As A0 �

csR(s) � 2 A2 A1 As A1 �
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Under the above definition, the commutativity of a square is proved as:

` ∀A s : 2 × 2→ A. csR(s) ◦A csT(s) � csB(s) ◦A csL(s)

Conversely, every two compositions that agree give a commutative square.

6.2.3 Theorem 7. For composable pairs f , g and f ′, g′ such that g ◦A f � g′ ◦A f ′, there

exists a corresponding commutative square.

` ∀A f g f ′ g′ : 2→ A. cpsb(g , f ) ∧ cpsb(g′, f ′) ∧ g ◦A f � g′ ◦A f ′ �⇒
∃q : 2 × 2→ A. csT(q) � f ∧ csR(q) � g ∧ csL(q) � f ′ ∧ csB(q) � g′

The final ingredient we need is that commutative squares can be pasted together side by side

to form a new commutative square. The pasted square will have as top and bottom arrows

the composition of the arrows in the component squares.

Theorem 6.2.1.

` ∀A c1 c2 : 2 × 2→ A. csR(c1) � csL(c2) �⇒
∃c : 2 × 2→ A. csL(c) � csL(c1) ∧ csR(c) � csR(c2) ∧

csT(c) � csT(c2) ◦A csT(c1) ∧ csB(c) � csB(c2) ◦A csB(c1)

Now we are equipped to prove associativity.

6.2.4 Theorem 8.

` ∀A f g h : 2→ A.cpsb(g , h) ∧ cpsb( f , g) �⇒ ( f ◦A g) ◦A h � f ◦A g ◦A h

Proof. By Theorem 7, there exist commutative squares
· ·

· ·

h

h g
g

and
· ·

· ·

g

g f
f

. By 6.2.1,

we then obtain a commutative square
· ·

· ·

h◦A g

h f
g◦A f

. The result follows by commutativity. �

6.3 Functorial comprehension

Like the axiom of specification in terms of set theory, there is also a comprehension schema

in CCAF, declared as an axiom. There is no existing comprehension schema for forming

new categories. Nevertheless, given two categories, we have a helpful comprehension schema

constructing functors between them. Here is the axiom CC5.
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6.3.1 CC5. If R is a functorial relation between arrows of A and arrows of B, then R defines

a functor A→ B.

{A, B}
` (∀ f : 2→ A. ∃!g : 2→ B. R[ f0 : 2→ A, g0 : 2→ B]( f , g)) ∧
(∀ f : 2→ A g : 2→ B. R[ f0 : 2→ A, g0 : 2→ B]( f , g) �⇒
R[ f0 : 2→ A, g0 : 2→ B](id(dom( f )), id(dom(g))) ∧
R[ f0 : 2→ A, g0 : 2→ B](id(cod( f )), id(cod(g)))) ∧

(∀ f g : 2→ A h : 2→ B.

cpsb(g , f ) ∧ R[ f0 : 2→ A, g0 : 2→ B](g ◦A f , h) �⇒
∀ f ′ g′ : 2→ B.

R[ f0 : 2→ A, g0 : 2→ B]( f , f ′) ∧ R[ f0 : 2→ A, g0 : 2→ B](g , g′) �⇒ h � g′ ◦A f ′)
�⇒
∃F : A→ B. ∀a : 2→ A b : 2→ B. R[ f0 : 2→ A, g0 : 2→ B](a , b) ⇔ F ◦ a � b

The first clause captures functionality; the second clause captures the preservation of identity

and the third clause forces the arrow related to the composite of g and f to be the composite

of the one related to g and the one related to f . If F1 and F2 are both determined by R, then
the conclusion of CC5 says they agree on arrows from 2, so they are the same because 2 is

a generator. Now we are allowed to define functors directly by establishing the association

via predicates, by instantiating the formula variable R[ f0 : 2 → A, g0 : 2 → B]. An easy

application of CC5 will be proving isomorphisms are precisely mono-epis F : A → B by

explicitly defining an inverse B→ A using the relation associating an arrow f : 2→ B to the

unique arrow g : 2→ A such that F ◦ f � g.

We can now treat adjoint functors, an important topic in category theory. We start introducing

the notions required. Firstly, we have to define natural transformations. These “live” in another

dimension above functors, but do not use a separate sort, instead, they are captured by functors

η : A→ B2. The functors Bzero , Bone : B2 → B (by abuse of notation, using B1 � B) take the

domain and codomain of an arrow. We define Dom(η) :� Bzero ◦ η and Cod(η) :� Bone ◦ η,
then η is a natural transformation from F and G iff F and G are its domain and codomain, in

which case we write Nt(η, F,G). The identity natural transformation is I(F) :� Tp(π2(2, B)) ◦F.

On each object a : 1→ A, the component ηa is η ◦ a ◦ 〈Id(2), !2〉. Under such a realization,

each f : 2→ A will give a commutative square in A.
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Theorem 6.3.1. The naturality square is arranged as:

F1(A1) F2(A1)

F1(A2) F2(A2)

ηA1

F1( f ) F2( f )
ηA2

` ∀F1 F2 (η : A→ B2) ( f : 2→ A).
Nt(η, F1 , F2) �⇒
csT(η ◦ f ) � ηdom( f ) ∧ csB(η ◦ f ) � ηcod( f ) ∧
csL(η ◦ f ) � F1 ◦ f ∧ csR(η ◦ f ) � F2 ◦ f

Natural transformations also satisfy extensionality: if two of them agree on all the components

then they are equal. This roots from functor extensionality as in CC2-2. To compose natural

transformations, we dualize the pushout square as in CC4 into a pullback square.

B3 B2

B2 B

Bβ

Bα B0

B1

The pullback implies for F1 , F2 : A→ B2 satisfy Dom(F2) � Cod(F1), then there is a functor

v : A→ B3. The composition of F2 · F2 is then Bγ ◦ v. Associativity, naturality, components,

domain and codomain of compositions are straightforward to check. By specializing CC5, we

can construct natural transformations by comprehension.

Theorem 6.3.2.

{C, D}
` ∀(F1 : C→ D) (F2 : C→ D).
(∀(c : 1→ C) (cpc : 2→ D).
R[c0 : 1→ C, cpc0 : 2→ D](c , cpc) �⇒ dom(cpc) � F1 ◦ c ∧ cod(cpc) � F2 ◦ c) ∧
(∀c : 1→ C. ∃!cpc : 2→ D. R[c0 : 1→ C, cpc0 : 2→ D](c , cpc)) ∧
(∀( f : 2→ C) (c1 : 1→ C) (c2 : 1→ C) (cpc1 : 2→ D) (cpc2 : 2→ D).

dom( f ) � c1 ∧ cod( f ) � c2 ∧
R[c0 : 1→ C, cpc0 : 2→ D](c1 , cpc1) ∧ R[c0 : 1→ C, cpc0 : 2→ D](c2 , cpc2) �⇒
(F2 ◦ f ) ◦ cpc1 � cpc2 ◦ (F1 ◦ f )) �⇒
∃η : C→ D2. Nt(η, F1 , F2) ∧ ∀c : 1→ C. R[c0 : 1→ C, cpc0 : 2→ D](c , ηc)

Proof. The relation between f : 2→ C and g : 2→ D2 is given by

R(dom( f ), csT(g)) ∧ R(cod( f ), csB(g)) ∧ csL(g) � F1 ◦ f ∧ csR(g) � F2 ◦ f
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That is, f is sent to g iff g is the commutative square for the arrow f . �

The next required ingredient is whiskering, which amounts to composing a functor with a

natural transformation. Precomposing a functor H : X → A with a natural transformation

η : A→ B2 gives a natural transformation X → B2 with components (η ∗L H)x � ηH ◦ x . This

is called left whiskering. As for post-composition, consider the covariant exponentiation map

H2 : B2 → C2 induced by H : B → C, then we have H2 ◦ η is called right whiskering. The

components are (H ∗R η)x � H ◦ ηx.

McLarty’s paper takes the following triangular identity definition of adjunction:

6.3.2 Adjunction.

` ∀A X (L : X → A) (R : A→ X) (η : X → X2) (ε : A→ A2).
Adj(L, R, η, ε) ⇔

Nt(η, Id(X), R ◦ L) ∧ Nt(ε, L ◦ R, Id(A)) ∧
ε ∗L L · L ∗R η � I(L) ∧ R ∗R ε · η ∗L R � I(R)

Theorem 13 characterizes adjunctions alternatively, as families of universal arrows. A family

of universal arrows from a functor F : X → A to an object a : 1 → A consists of pairs

(x : 1→ X, f : 2→ A) such that for any x′ : 1→ X and f ′ : 2→ A from F ◦ x′ and to a, it

factorizes uniquely as f ′ � f ◦ F( f̂ ) for some f̂ . We write UFrom(F, a , x , f ) in that case.

6.3.3 Theorem 13. If the pairs such that U(x , f ) form a family of universal arrows from

F to the (common) codomain of all these f , and each object a of A uniquely determines a

pair (x , f ) such that f has codomain a and U(x , f ), then F admits a right adjoint G with unit

η : X → X2 and count ε : A→ A2. On each object a, the component εa is the unique arrow

with codomain a such that U(G ◦ a , εa). Moreover, the adjunction is strictly (as the contrast

to uniqueness up to isomorphism) uniquely determined.

` ∀X A (F : X → A).
(∀(x : 1→ X) ( f : 2→ A). U[x0 : 1→ X, f0 : 2→ A](x , f ) �⇒ UFrom(F, cod( f ), x , f )) ∧
(∀(a : 1→ A). ∃(x : 1→ X) ( f : 2→ A). cod( f ) � a ∧ U[x0 : 1→ X, f0 : 2→ A](x , f )) ∧
(∀(a : 1→ A) (x1 : 1→ X) (x2 : 1→ X) ( f2 : 2→ A).

cod( f1) � a ∧ U[x0 : 1→ X, f0 : 2→ A](x1 , f1) ∧
cod( f2) � a ∧U[x0 : 1→ X, f0 : 2→ A](x2 , f2) �⇒

∃!(G : A→ X) (η : X → X2) (ε : A→ A2).
Adj(F,G, η, ε) ∧ ∀a : 1→ A.cod(εa) � a ∧ U[x0 : 1→ X, f0 : 2→ A](G ◦ a , εa)
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6.4 Duals

The difference between McLarty [33] and our formalization is most evident when it comes to

the topic of dual categories.

In McLarty’s approach, there is declared as primitive a function symbol −op such that Aop is

a chosen opposite for the category A. It is taken as an axiom that (Aop)op � A. From here,

we already note that this is not possible in our setting, because we do not have equality on

categories. The next axiom is even more problematic. It imposes that for F : A→ B, Fop is of

sort Aop → Bop and (Fop)op � F. We are not allowed to state such an axiom in our system,

even if we allow equalities between categories, because it will not “sort check”: the functor F

has sort A→ B whereas (Fop)op has sort Aopop → Bopop.

We choose to take an approach using a predicate. Such a predicate has to be primitive because

there is in general no functor from a category to its dual. In particular, there does not exist

a functor sending an arrow to its opposite. We take as primitive the predicate isop(A,A′)
expressing that the category A′ is the opposite of A, and isopf( f : A → B, f ′ : A′ → B′) as
expressing the functor f ′ is the one corresponding to f under the duality. We impose an

axiom on isopf( f : A→ B, f ′ : A′→ B′) only when given isop(A,A′) and isop(B, B′). It would
be more uniform to add the condition that the duality between the categories is implied by

the duality of functors, but it is not required for any of these proofs, hence we leave it out.

Given the lack of the function symbol, our proofs in this part largely rely on uniqueness: the

proof of a � b, where isopf(b0 , b) is given, usually done by proving isopf(b0 , a).

Our axiomatization of duality is given as:

6.4.1 CC7.

` ∀A. ∃A′.isop(A,A′)
` ∀A A′. isop(A,A′) �⇒ isop(A′,A)
` ∀A A′ B B′. isop(A,A′) ∧ isop(B, B′) �⇒ ∀(F : A→ B). ∃!(F′ : A′→ B′). isopf(F, F′)
` ∀(F : A→ B) (F′ : A′→ B′). isopf(F, F′) �⇒ isopf(F′, F)
` ∀A B ( f : A→ B) A′ B′ ( f ′ : A′→ B′) C (g : B→ C) C′ (g′ : B′→ C′).

isopf( f , f ′) ∧ isopf(g , g′) �⇒ isopf(g ◦ g , g′ ◦ f ′)
` ∀A A′. isop(A,A′) �⇒ isopf(Id(A), Id(A′))

By the one-to-one of the opposite functor between a pair of opposite categories, we can easily

check the opposite of a discrete category is discrete and the opposite of a monic functor is

monic.
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Theorem 6.4.1.

` ∀D D′. Disc(D) ∧ isop(D ,D′) �⇒ Disc(D′)
` ∀A B ( f : A→ B) A′ B′ ( f ′ : A′→ B′).
Mono( f ) ∧ isop(A,A′) ∧ isop(B, B′) ∧ isopf( f , f ′) �⇒ Mono( f ′)

Since our axiomatization differs from McLarty’s paper, we will spell out more details for the

proofs in this chapter so a reader can be convinced that we are capturing the same idea as

McLarty’s original work.

Preservation of opposite arrows under composition will not be given as primitive but be proved

as a consequence, as we assume, in addition:

6.4.2 Duality of 1, 2 and 3.

` isop(1, 1) ∧ isop(2, 2) ∧ isop(3, 3) ∧ isopf(0, 1)

Note that then the opposite of an object again gives an object and the opposite of an arrow

again gives an arrow, both live in the opposite category. This allows us to write when given

isop(A,A′), statements such as isopf(a : 1→ A, a′ : 1→ A′) and isopf( f : 2→ A, f ′ : 2→ A′)
when talking about the corresponding objects and arrows in the following proofs.

Before we arrive at the conclusion on the composition of arrows, we prove the following lemmas

consecutively.

Theorem 6.4.2.

` ∀A A′ (a : 2→ A) (a′ : 2→ A′). isop(A,A′) ∧ isopf(a , a′) �⇒
isopf(dom(a), cod(a′)) ∧ isopf(cod(a), dom(a′))

` isopf(α, β) ∧ isopf(β, α) ∧ isopf(dom(α), cod(β) ∧ isopf(γ, γ)
` ∀A ( f : 2→ A) (g : 2→ A). cpsb(g , f ) �⇒

∀A′ ( f ′ : 2→ A) (g′ : 2→ A). isop(A,A′) ∧ isopf( f , f ′) ∧ isopf(g , g′) �⇒
cpsb( f ′, g′) ∧ isopf(∆( f , g),∆(g′, f ′))

Proof. By definition of domain and codomain, proving isopf(dom(a), cod(a′)) amounts to

proving isopf(a ◦ 0, a′ ◦ 1). Then (1) follows by CC7-5 and the fact that isopf(0, 1).

To obtain isopf(α, β) and isopf(β, α), we use the fact that whenever we have two non-identity

arrows t1 , t2 in 3 such that t2 ◦3 t1 � γ, we must have t2 � β and t1 � α. As the identity

arrows in 3 are the only ones that have the same domain and codomain, the proof is completed

by checking the domain and codomain using (1). We then get isopf(dom(α), cod(β)) from (1).
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To prove γ is its own opposite, we use the fact that it is the only arrow from dom(α) to cod(β).
If isopf(γ, f ′), we deduce isopf(dom(α), cod( f ′)) and isopf(cod(β), dom( f ′)) from (1), then we

are done because isopf(dom(α), cod(β)).

Given cpsb(g , f ), then we get cpsb( f ′, g′) because cod(g′) is the opposite of dom(g) and
dom( f ′) is the opposite of dom( f ), where the opposite of dom(g) � cod( f ) is unique. Assuming

isopf(∆( f , g), t), to check t � ∆(g′, f ′) we check t ◦ α � g′ and t ◦ β � f ′. As α and β are the

inverse of each other, we prove both of them obtained by applying CC7-5 on ∆( f , g) ◦ β � g

and ∆( f , g) ◦ α � f .

�

Theorem 6.4.3.

` ∀A ( f : 2→ A) (g : 2→ A). cpsb(g , f ) �⇒
∀A′ ( f ′ : 2→ A) (g′ : 2→ A). isop(A,A′) ∧ isopf( f , f ′) ∧ isopf(g , g′) �⇒

isopf(g ◦A f , f ′ ◦A′ g′)

Proof. By definition of arrow composition, we aim to show isopf(∆( f , g) ◦ γ,∆(g′, f ′) ◦ γ).
The result is followed by the lemmas above and CC7-5. �

Instead of stating it as an extra axiom, we can prove the dualized version of CC5 as the

comprehension schema of defining functors from an opposite category.

6.4.3 Theorem 18.

{A, B}
` (∀( f : 2→ A). ∃!(g : 2→ B). R′[ f0 : 2→ A′, g0 : 2→ B]( f , g)) ∧
(∀( f : 2→ A) (g : 2→ B). R′[ f0 : 2→ A′, g0 : 2→ B]( f , g) �⇒
R′[ f0 : 2→ A′, g0 : 2→ B](id(dom( f )), id(cod(g)))∧
R′[ f0 : 2→ A′, g0 : 2→ B](id(cod( f )), id(dom(g)))) ∧

(∀( f : 2→ A) (g : 2→ A) (h : 2→ B).
cpsb(g , f ) ∧ R′[ f0 : 2→ A′, g0 : 2→ B](g ◦A f , h) �⇒
∀( f ′ : 2→ B) (g′ : 2→ B).
R′[ f0 : 2→ A′, g0 : 2→ B]( f , f ′) ∧ R′[ f0 : 2→ A′, g0 : 2→ B](g , g′) �⇒ h � g′ ◦A f ′)

�⇒
∀A′. isop(A,A′) �⇒
∃F : A′→ B.

∀(a : 2→ A) (a′ : 2→ A′).
isopf(a , a′) �⇒ ∀ b : 2→ B. R′[ f0 : 2→ A′, g0 : 2→ B](a , b) ⇔ F ◦ a � b
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Proof. Instantiate CC5 with the relation R[ f0 : 2 → A′, g0 : 2 → B] with ∃ f1 : 2 →
A. isopf( f1 , f0) ∧ R′( f1 , g0) and use 6.4.3 to check the functoriality clause on composition.

�

The next theorem states that each category has a unique opposite category up to isomorphism

(not merely categorical equivalence). As for the original approach in the paper, it is captured by

declaring two operations that give Aop and Aop′ as opposite categories of A, and regarding the

assignments op1 : A 7→ Aop f 7→ f op and op2 : A 7→ Aop′ , f 7→ f opf′ as functors CAT→ CAT.

For each A, we consider the unique functor Aop → Aop′ specified by f opf 7→ f opf′. Each of

such a functor can be regarded as the component of a natural transformation from op1 to op2.

However, the domain and codomain of the op1 and op2 here are CAT, so they are meta-functors.

Therefore, instead of using the notion of natural transformation as we used in the definition of

adjunction, this time we have to state this condition separately. Another notable difference is

that we choose not to use any operation but merely predicates, to axiomatize duality between

categories. As a result, instead of formulating the theorem between a pair of chosen operations,

we are only able to state it for any two opposite categories of the same category.

Given a category A, we write isDiso(A, i : A1 → A2) when A1 and A2 are both duals of A and

i is an isomorphism building the correspondence between copies of the same arrow from A.

` ∀A A1 A2 (i : A1 → A2). isDiso(A, i) ⇔
(isop(A,A1) ∧ isop(A,A2) ∧ Iso(i) ∧
(∀( f : 2→ A) ( f1 : 2→ A1) ( f2 : 2→ A2). isopf( f , f1) ∧ isopf( f , f2) ⇔ i ◦ f1 � f2))

Our formulation of Theorem 19, as displayed below, is actually a stronger version than the

counterpart in the paper.

6.4.4 Theorem 19.

` ∀A A1 A2 (iA : A1 → A2) B B1 B2 (iB : B1 → B2).
isDiso(A, iA) ∧ isDiso(B, iB) �⇒
∀( f : A→ B) ( f1 : A1 → B1) ( f2 : A2 → B2).

isopf( f , f1) ∧ isopf( f , f2) �⇒ f2 ◦ iA � iB ◦ f1
` ∀A A1 A2. isop(A,A1) ∧ isop(A,A2) �⇒ ∃!i : A1 → A2. isDiso(A, i)

Proof. The naturality equation is proved by extensionality. By definition of iB, checking

iB ◦ f1 ◦ a � f2 ◦ iA ◦ a for a : 2 → A1 amounts to checking the arrow opposite to

f2 ◦ iA ◦ a is the arrow opposite to f1 ◦ a. As the opposite of arrows always exists, it

suffices to give an arrow that is the opposite of both. Take the unique arrow b : 2→ B such

that isopf( f1 ◦ a , b) is the witness, we prove we also have isopf(b , f2 ◦ iA ◦ a). This is by two
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applications of the fact that opposites are preserved by composition: We have b � f ◦ a0 where

a0 is the opposite of a0 in A, and the result follows because isopf( f , f2) and isopf(a0 , iA ◦ a).

The uniqueness part of the unique existence is trivial. To establish existence, we apply Theorem

18 by taking the relation R( f : 2→ A, g : 2→ A2) to be isopf( f , g). This gives our desired
functor from, in particular, the opposite category A1 of A to A2. �

6.5 Internal categories

Given two categories C1 and C0, with functors i : C0 → C1, d0 , d1 : C1 → C0, we can regard

C0 as resembling a collection of objects and C1 as resembling a collection of arrows, with the

given functors specifying the identity, domain, and codomain. If in addition, we have a functor

giving the “composition” of arrows, plus some conditions are satisfied, then all the information

intuitively specifies a category, which we call an internal category. In summary, an internal

category consists of the information as displayed in the following diagram:

C1 ×C0 C1 C1 C0
r d1

d0

i

Here the object C1 ×C0 C1 is the pullback of the “codomain” functor d1 and the “domain”

functor d0. The composition functor r is from this pullback, which means that it only composes

pairs of internal arrows with matching domain and codomain.

To formalize the definition of an internal category, we expect to define a predicate given the

four arrows above. However, to specify the r, we need to fix the pullback first. There are two

options: carrying the projection arrows in the pullback as inputs as well or fixing a canonical

choice of the pullback, so the definition only takes the above four inputs. As the latter makes

the definition look simpler, we take it as our choice.

This in turn requires us to create function symbols (relying on the specification rule, as before)

that produce a pullback. The pullback of functors F1 : X → Z and F2 : Y → Z consists of

three pieces of information, given by function symbols Pbo, Pba1, and Pba2. The left square

below is the pullback square using our notations whereas the right square uses the usual

textbook notations.

Pbo(F1 , F2) Y

X Z

Pba2(F1 ,F2)

Pba1(F1 ,F2) F2

F1

X ×Z Y Y

X Z

p2

p1 F2

F1

By construction, we have isPb( f , g ,Pba1( f , g),Pba2( f , g)) for any functor f and g once they

are functors to the same category. Some defining clauses for being an internal category, written
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as Icat(d0 , d1 , i , r), are trivial to express. These are:

Domain of identity : d0 ◦ i � Id(C0) (6.2)

Codomain of identity : d1 ◦ i � Id(C0) (6.3)

Domain of composition : d0 ◦ r � d0 ◦ Pba1(d1 , d0) (6.4)

Codomain of composition : d1 ◦ r � d1 ◦ Pba2(d1 , d0) (6.5)

The remaining ones are the identity laws and the associativity of internal composition. In

diagrams with mathematical language, the identity law for pre-composition is expressed as:

C0 ×C1 C1 C1 ×C1 C1

C1

i×Id(C1)

p2 r

The object C0 ×C1 C1, regarded as object-arrow pairs such that the first entry is the domain

of the second entry, is formalized as the pullback Pbo(Id(C0), d0). The functor i × Id(C1) is
the unique arrow induced by the “internal identity" functor and the identity functor, the

factorization through the pullback does exist because of 1.5. However, we are not able to use

this mathematical notation to formalize this arrow by applying a function symbol to the two

arguments.

Creating function symbols to capture such induced arrows might seem to be possible, as we

have done this for the composition of arrows. But in contrast with what we did for defining the

∆ function symbol in Section 1.2, here we do not have a universally applicable machinery to

associate each pair of arrows from any category to a pullback object. The heart of the difference

is that even the precondition as in the definition of ∆ does not hold, we are guaranteed the

existence of the arrow of the sort 3→ A when given a 2→ A. However, it is no longer true

for pullback objects: before checking the commutativity condition, there is no way to make

sure that there exists an arrow to the pullback. As a consequence, the function specification

rule does not apply here.

The only remaining solution is to use equations to characterize the top arrow, which results in

the definition below:
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6.5.1 identity law for pre-composition.

` ∀C0 C1 (d0 : C1 → C0) (d1 : C1 → C0) (i : C0 → C1) (r : Pbo(d1 , d0) → C1).
IidL(d0 , d1 , i , r) ⇔
∀ci1 : Pbo(Id(C0), d0) → Pbo(d1 , d0).

Pba1(d1 , d0) ◦ ci1 � i ◦ Pba1(Id(C0), d0) ∧ Pba2(d1 , d0) ◦ ci1 � Pba2(Id(C0), d0)
�⇒ r ◦ ci1 � Pba2(Id(C0), d0)

By the universal property of the pullback, despite the quantification, the functor ci1 satisfying

the equations is unique. If we replace the right-hand side with

∃ci1 : Pbo(Id(C0), d0) → Pbo(d1 , d0).
Pba1(d1 , d0) ◦ ci1 � i ◦ Pba1(Id(C0), d0) ∧ Pba2(d1 , d0) ◦ ci1 � Pba2(Id(C0), d0) ∧
r ◦ ci1 � Pba2(Id(C0), d0)

The definition does not change.

The advantage of the “chosen pullback” function symbol is evident when it comes to the

formalization of the associativity clause. Below, the top diagram is the diagrammatic definition

using formalized function symbols and the corresponding diagram in the mathematical symbols

is on the bottom.

Pbo(d1 ◦ r, d0) Pbo(d1 , d0 ◦ r)

Pbo(d1 , d0) Pbo(d1 , d0)

C1

�

lr rr

r r

(C1 ×C0 C1) ×C0 C1 C1 ×C0 (C1 ×C0 C1)

C1 ×C0 C1 C1 ×C0 C1

C1

�

lr rr

r r

Using the same strategy of capturing the unique induced arrow with characterizing equations,

internal associativity is formalized as:
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6.5.2 Internal Associativity.

` Iassoc(d0 , d1 , i , r) ⇔
∀lr : Pbo(d1 ◦ r, d0) → Pbo(d1 , d0)
aiso : Pbo(d1 ◦ r, d0) → Pbo(d1 , d0 ◦ r)
rr : Pbo(d1 , d0 ◦ r) → Pbo(d1 , d0).
Pba1(d1 , d0) ◦ l � r ◦ Pba1(d1 ◦ r, d0) ∧ Pba2(d1 , d0) ◦ l � Pba2(d1 ◦ r, d0) ∧
Pba1(d1 , d0) ◦ rr � Pba1(d1 , d0 ◦ r) ∧ Pba2(d1 , d0) ◦ rr � r ◦ Pba2(d1 , d0 ◦ r) ∧
Pba1(d1 , d0 ◦ r) ◦ aiso � Pba1(d1 , d0) ◦ Pba1(d1 ◦ r, d0) ∧
Pba1(d1 , d0) ◦ Pba2(d1 , d0 ◦ r) ◦ aiso � Pba2(d1 , d0) ◦ Pba1(d1 ◦ r, d0) ∧
Pba2(d1 , d0) ◦ Pba2(d1 , d0 ◦ r) ◦ aiso � Pba2(d1 ◦ r, d0)
�⇒ r ◦ l � r ◦ rr ◦ aiso

As before, the definition above admits an equivalent characterization using existential quantifiers

instead.

Conjuncting the former 4 clauses with the above completes the definition of internal category.

Between two internal categories, we have the notion of internal functors. Let C0 , C1 and

D0 ,D1 and functors below form internal categories, a pair of functors f0 : C0 → D0 and

f1 : C1 → D1 form an internal functor if the two diagrams:

C1 ×C0 C1 D1 ×D0 D1

C1 D1

f1× f1

r r′

f1

C1 C0 C1

D1 D0 D1

d0

d1
f1 f0

i

f1d′0

d′1

i′

commutes. The right diagram expresses the preservation of identity and domain and codomain

of internal arrows, expressing the clauses:

Preservation of domain : d′0 ◦ f1 � f0 ◦ d0 (6.6)

Preservation of codomain : d′1 ◦ f1 � f0 ◦ d1 (6.7)

Preservation of identity : i′ ◦ f0 � f1 ◦ i (6.8)

The left diagram expresses the preservation of internal composition, with the top arrow

captured by quantification. It holds if and only if:

∀ff : Pbo(d1 , d0) → Pbo(d′1 , d′0).
Pba1(d′1 , d′0) ◦ ff � f1 ◦ Pba1(d1 , d0) ∧ Pba2(d′1 , d′0) ◦ ff � f1 ◦ Pba2(d1 , d0)
�⇒ r′ ◦ ff � f1 ◦ r
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is true.

The proof of theorems in this section mostly boils down to unwinding and checking the definition

of internal categories and internal functors. As their definition uses chosen pullback instead of

arbitrary pullback, when we are given an assumption of having an internal category/functor,

the clauses that immediately appear only work to a particular pullback, and when a proof

of being an internal category/functor is required, we are required to prove it for a particular

pullback instead of an arbitrary pullback. We address such an issue and enable full flexibility

by proving an alternative version of each clause that refers to a composition, using a predicate

stating “is the internal composition”.

6.5.3 “Is the internal composition".

` ∀C0 C1 (d0 : C1 → C0) (d1 : C1 → C0) C1C1 (p1 : C1C1 → C1) (p2 : C1C1 → C1) (r : C1C1 → C1)
A ( f : A→ C1) (g : A→ C1) (gf : A→ C1).
isio(d0 , d1 , p1 , p2 , r, g , f , gf ) ⇔
isPb(d1 , d0 , p1 , p2) ∧ d0 ◦ r � d0 ◦ p1 ∧ d1 ◦ r � d1 ◦ p2 ∧ d0 ◦ g � d1 ◦ f ∧
∃fg0 : A→ C1C1. p1 ◦ fg0 � f ∧ p2 ◦ fg0 � g ∧ r ◦ fg0 � gf

It is natural to define such a predicate. As we discussed before, we are not able to create a

function symbol that produces the factorization through the pullback. Note that instead of

only regarding “elements”, which are generally regarded as functors from 1, of C1, we use A

as the source of f and g. This is required by the commutative clauses, and replacing the A

with 1 will weaken the definition. But using the fact that 2 is the generator, one can prove an

equivalent version with A replaced by 2. Taking terminology from topos theory, we call the

functors A→ C1 “generalized internal arrows”.

This notion of internal composition takes the pullback information as a part of the input.

Once we have assumptions about one pullback and want to move to another choice of pullback,

we use the following lemma to transfer.

6.5.4 Compatibility of internal composition respects to a different choice of pull-

backs. For two pullbacks and the canonical isomorphism between them, the composition of

two generalized internal arrows is the same with respect to the same internal composition.

` ∀C0 C1 (d0 : C1 → C0) (d1 : C1 → C0)
C1C1 (p1 : C1C1 → C1) (p2 : C1C1 → C1) Pb (p′1 : Pb → C1) (p′2 : Pb → C1)
i : Pb → C1C1.

isPb(d1 , d0 , p1 , p2) ∧ isPb(d1 , d0 , p′1 , p′2) ∧ p1 ◦ i � p′1 ∧ p2 ◦ i � p′2 �⇒
∀r A ( f : A→ C1) (g : A→ C1) (gf : A→ C1).

isio(d0 , d1 , p1 , p2 , r, g , f , gf ) ⇔ isio(d0 , d1 , p′1 , p′2 , r ◦ i , g , f , gf )
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Therefore, our decision to pick one pullback to state the definitions does not result in any real

inflexibility.

Using the predicate for “being the composition", we can now reformulate the commutative

clauses of all of the previous diagrams into a more workable version in terms of generalized

internal arrows.

• Given the composition has the correct domain and codomain and the identity has the

correct codomain, the identity law for post composition holds if and only if for every

generalized internal object c and generalized internal arrow a, the internal composition

of a and the generalized identity on c is a itself.

∀C1 C0 (d0 : C1 → C0) (d1 : C1 → C0) (i : C0 → C1) r.

d1 ◦ i � Id(C0) ∧ d0 ◦ r � d0 ◦ Pba1(d1 , d0) ∧ d1 ◦ r � d1 ◦ Pba2(d1 , d0) �⇒
(IidL(d0 , d1 , i , r) ⇔
∀T (c : T → C0) (a : T → C1).

d0 ◦ a � c �⇒ isio(d0 , d1 ,Pba1(d1 , d0),Pba2(d1 , d0), r, a , i ◦ c , a))

• If the internal composition gives the correct domain and codomain, then internal associa-

tivity is satisfied if, for all generalized internal arrows, there exists a common arrow that

is the composition of the generalized internal arrows obtained by internal composition in

either order.

` ∀C1 C0 (d0 : C1 → C0) (d1 : C1 → C0) (i : C0 → C1) (r : Pbo(d1 , d0) → C1).
d0 ◦ r � d0 ◦ Pba1(d1 , d0) ∧ d1 ◦ r � d1 ◦ Pba2(d1 , d0) �⇒
(Iassoc(d0 , d1 , i , r) ⇔
∀T (t3 : T → C1) (t2 : T → C1) (t1 : T → C1).
d0 ◦ t2 � d1 ◦ t1 ∧ d0 ◦ t3 � d1 ◦ t2 �⇒ ∃t321 t32 t21 : 2→ C1.

isio(d0 , d1 ,Pba1(d1 , d0),Pba2(d1 , d0), r, t2 , t1 , t21) ∧
isio(d0 , d1 ,Pba1(d1 , d0),Pba2(d1 , d0), r, t3 , t2 , t32) ∧
isio(d0 , d1 ,Pba1(d1 , d0),Pba2(d1 , d0), r, t32 , t1 , t321) ∧
isio(d0 , d1 ,Pba1(d1 , d0),Pba2(d1 , d0), r, t3 , t21 , t321))

• Given two internal categories and a pair of functors such that the internal domain

and codomain are preserved. Internal composition is preserved if and only if for every

composable pair of generalized internal arrows, the composition of their image is the
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image of their composition.

∀C0 C1 (d0 : C1 → C0) (d1 : C1 → C0) (i : C0 → C1) r

D0 D1 (d′0 : D1 → D0) (d′1 : D1 → D0) (i′ : D0 → D1) r′ ( f0 : C0 → D0) ( f1 : C1 → D1).
Icat(d0 , d1 , i , r) ∧ Icat(d′0 , d′1 , i′, r′) ∧ d′0 ◦ f1 � f0 ◦ d0 ∧ d′1 ◦ f1 � f0 ◦ d1 �⇒
(Ipreso(d0 , d1 , i , r, d′0 , d′1 , i′, r′, f0 , f1) ⇔
∀T ( f : T → C1) (g : T → C1). d0 ◦ g � d1 ◦ f �⇒
∃gf : T → C1.

isio(d0 , d1 ,Pba1(d1 , d0),Pba2(d1 , d0), r, g , f , gf ) ∧
isio(d′0 , d′1 ,Pba1(d′1 , d′0),Pba2(d′1 , d′0), r′, f1 ◦ g , f1 ◦ f , f1 ◦ gf ))

The first standard example where internal category naturally occurs is that each actual category

A gives an internal category. The category of internal arrows is given by A2. We write this

fact as Icat(Id0(A), Id1(A), Ii(A), Ir(A)), where Id0(A) and Id1(A) are functors A0 ,A1 : A2 → A

as in Section 1.3, the internal identity is Tp(π2(2,A)) and the internal composition is given by

composing Aγ with the canonical isomorphism Pbo(Id0(A), Id1(A)) � A3.

A functor F : A→ B then induces a functor between their corresponding internal categories.

The effect on arrows of A is simply composition, which suggests that the corresponding

Sq(F) : A2 → B2 is given by Tp(F ◦ ev(2,A)). This correspondence is actually one-to-one:

Existence amounts to checking the conditions for being an internal functor. As for uniqueness,

it is elegantly proved as the following neat result:

6.5.5 Theorem 24. If two functors F : A → B and G : A2 → B2 form an internal functor

between internal categories of actual categories, then G is the functor Sq(F).

` ∀A B (F : A→ B) (G : A2 → B2).
IFun(Id0(A), Id1(A), Ii(A), Ir(A),

Id0(B), Id1(B), Ii(B), Ir(B), F,G) �⇒ G � Sq(F)

Remark on Theorem 27 We formalize 26 out of 27 theorems that appear in McLarty [33].

Theorem 27 is about comprehension of categories, i.e., forming a new category out of existing

categories. In private communication, McLarty and I determined that the theorem statement

is flawed. The theorem is attempting to describe situations in which an internal category

corresponds to an existing external category but turns out to be more subtle than expected,

as many versions of the comprehension schema in many foundations. Now we are not even

sure what would even be the correct statement of this statement. Therefore, our formalization

catches an important error to be fixed as a piece of future work.
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Chapter 7

Conclusion and Future Work

We end the thesis by summarizing our work and pointing to future directions that could lead

to more interesting research.

7.1 Conclusion

We review the path we travel along: We begin by setting our goal as designing a theorem-proving

system that is suitable for experimenting with traditional-style mathematical foundations,

followed by an argument convincing the reader that this is a desirable goal.

Before we work on designing a new system, we make sure that we indeed need a new one by

examining existing systems. We highlighted their advantages, but draw the conclusion that

none of them are suitable for our particular purpose.

We develop the kernel of our system in Chapter 2. The syntax is constructed by three layers:

sorts, terms, and formulas. We highlight our usage of formula variables, which allows us

to present axiom schemata in a readable manner, and the context, which prevents us from

performing proofs with non-existing terms. Moreover, we provide our function specification

rule, which equips users to create function symbols according to any equivalence relation they

like, and which could serve as a Skolemization rule. Along with the presentation of our logic,

we give some examples showing how various mathematical foundations are captured in our

logic, showing our system is versatile.

The implementation of the theorem prover based on our system is introduced in Chapter 3.

We explain how we implement the primitive rules on terms and formula instantiation. Our

parser is also specially designed, where the type-inference appeals to a unification algorithm.

In Chapter 4, we address possible concerns about the apparent higher-orderness of formula

variables. In this chapter, we describe the formalization of our system in the theorem prover

HOL4. We formally verify that the well-formedness of our syntax is preserved by operations

we have implemented, and hence our theorem prover only produces well-formed theorems.
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Eventually, we reach the goal that formula variables could be effectively eliminated. They do

not add any extra power to our system and are no more than a convenience.

The rest of the thesis consists of examples. Two structural set theories are formalized in

Chapter 5. The first one is the very classic example, namely Lawvere’s ETCS. By automating

the establishment of internal logic, we make proving theorems in ETCS a smooth procedure.

We could hence use ETCS as simply as proving theorems in HOL since its internal logic equips

it with such power. Meanwhile, we maintain the syntactical simplicity of first-order logic since

the higher-order is a derived notion. A foundation in a completely different flavor, which is the

so-called “categorical foundation”, is formalized in Chapter 6. Despite the fact that the section

on dual categories in McLarty’s original paper does not admit a direct translation to our

system due to the “type”(sort) issue, our re-axiomatization provides a reasonable alternative

that captures all the theorems in that section.

As an overall summary, our system is simple yet powerful enough to formalize a significant

amount of mathematics. Our system encodes mathematical presentations naturally. In

particular, it is possible to work with axiom schemata just as we do when writing a paper proof.

Formula variables enable such expressions and are safe to use. By exploring mathematical

foundations for theorem proving, we discover that their usage could fix some problems arising

due to the lack of expressiveness of simpler systems. Moreover, their complexity is certainly

far below dependently typed systems, suggesting that using DTT and its extensions is not

the only way to get the desired power. In conclusion, by choosing suitable mathematical

foundations, our system can be specialized into theorem-proving systems that sit at a sweet

spot between simplicity and expressiveness.

7.2 Future Work

From here, more interesting work could be done pursuing many angles. We list some options.

Library Construction Certainly, for a new theorem prover, we need to catch up with the

pioneers, whose libraries are already rich, so we can compare proofs in our systems and in

others. In other words, we would like more mechanization to be done. The Formalizing 100

Theorems list [4] might be taken as a to-do list.

Formalization could take place in the existing foundation DiaToM/SEAR. It would also be

interesting to develop new systems in DiaToM, following the approach laid out in Chapter 2.

More proof tools, such as derived rules and tactics that are possibly specific to a particular

system, could be developed alongside formalizations. For instance, we could develop decision

procedures for natural numbers/integer arithmetics, fully automated quotients, induction, and
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co-induction packages, as well as those for record types. Another broad topic is the transfer of

proofs from other systems. Some mathematical systems have much similarity in the sense that

one notion in one system has a counterpart in the other. As we saw in our formalization of

ETCS and SEAR, some proofs in one of them could be copied and pasted into another one to

directly work. It would be ideal if we instead had an algorithm to transfer all the theorems, so

we guarantee the uniformness of the transfer and avoid repeating the same proof twice.

In addition to transferring proofs within the DiaToM prover, it should be possible to develop

programs that migrate proofs from other systems into ours, and ours into others, as well.

For instance, all the proofs we have done so far in all these three theories should be able

to be transferred into a dependently typed system such as Lean. In the other direction, if

the constructors and types that are specific to dependent type theory are not used, we could

transfer a DTT theorem into our setting.

It would be also interesting to investigate different approaches for constructing a proof. For

instance, it would be possible to complete the construction of Beth cardinals as mentioned in

Section 5.2.9 either by proving a restricted version of structural replacement theorem within

SEAR, or, according to the following paragraphs, prove the full structural replacement theorem

using CCAF, and then develop a mechanism of applying this CCAF axiom to SEAR and get

the set of Beth numbers.

Variants and Enrichment of the Logic Whereas all the current formalization in DiaToM

is done in classical logic, variants for FOL are of mathematical interest when they are put

together with foundations as well. Mild modification to the kernel to support, say intuitionistic

logic, could be adopted for formalizing foundations with the same axioms but different available

logical operations.

According to the discussion at the end of Chapter 2, we might change the implementation of

formula variable instantiation to support syntax checking before instantiation.

Putting Theories Together We would like to investigate applying a theory as a meta-

theory to reasoning about another theory. The picture is motivated by [2], where CCAF serves

as the meta-theory and ETCS as the object-theory. CCAF is a theory about inter-category

reasoning, whereas the whole workspace of ETCS is an instance of a category. Such a category

could be captured by a CCAF term. As CCAF can prove general statements starting with

the quantification “for every category...”, after proving say, every monomorphism is injective

on elements, we could apply it to a category satisfying ETCS: The application will ask us to

prove that the definition of a monomorphism in ETCS coincide with the notions specified in

CCAF, and we could capture the concept “elements” properly in CCAF. Once it is proved, we

should be able to instantiate the “for every” to be the category we work in for ETCS and take
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the conclusion. The interesting problem is determining how the procedure would be carried

out formally.

More Verification We outline many possible extensions above. Each of them should be

carried out carefully. We then suggest that before each adjustment is added, we should do

some verification to make sure it does not break the current system. Apart from that, as the

current formalization in HOL is only up to the elimination of formula variables, it would be

helpful to also verify our type-inference algorithm and the further step of translation to sorted

FOL. And also the backward transfer, answering which part of sorted FOL does our logic

capture. Even when it is not in the kernel, formalizing will also be helpful for us to implement

more tactics and simplification tools, to make sure they are working effectively. As far as we

have experimented, HOL is a sufficiently good candidate for further formalization, and we

expect more verification to take place from there.
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Appendix A

Installing and Using DiaToM

A.1 Installation

A potential user might be interested in install the program and run the proofs interactively. The

source code for this implementation is available from https://github.com/u5943321/DiaToM

Firstly, install the most recent version of Poly/ML from polyml.org. In this directory, build

the system with make. It will build an executable called vscore. Executing vscore starts a

Poly/ML REPL. Various logical formalisations can then be loaded. For example, in the SEAR

directory, run

1 ../ vscore

and then

1 > use "SEARmaster.ML";

Similarly, use the ETCSmaster.ML file, having started vscore in the ETCS directory.

A.2 User Interface

Even before we formally introducing the logic, it makes sense to demonstrate how the theorem

prover works. In the following example we consider the structural set theory SEAR, and

we want to prove for every two elements x , y of the set A and B respectively, there exists

an element in the product set A × B that projects to x and y. The goal displayed in the

implemented theorem prover looks as follows:

https://github.com/u5943321/DiaToM
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The “#” symbol after a variable indicates that it is bound. After stripping the quantifier, we

store the free variables that appears in the list of context above the assumption list, as:

We use tactics to put relevant theorems into the assumption list and expand the definition of

existential quantifier, yields:

There is a tactic allowing us to specialize assumptions. Here we specialize the bound x and y

into the free variables x and y in the context. This gives us an r satisfies two equations.

We feed the free variable r on the end of the context list to be the witness of the the existential

quantifier. The goal then becomes:
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from where we can apply the assumptions to finish the proof.
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