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Abstract7

We describe a new meta-logical system for mechanising foundations of mathematics. Using dependent8

sorts and first order logic, our system (implemented as an LCF-style theorem-prover) improves on the9

state-of-the-art by providing efficient type-checking, convenient automatic rewriting and interactive10

proof support. We assess our implementation by axiomatising Lawvere’s Elementary Theory of11

the Category of Sets (ETCS) [5], and Shulman’s Sets, Elements and Relations (SEAR) [17]. We12

then demonstrate our system’s ability to perform some basic mathematical constructions such as13

quotienting, induction and coinduction by constructing integers, lists and colists. We also compare14

with some existing work on modal model theory done in HOL4 [20]. Using the analogue of type-15

quantification, we are able to prove a theorem that this earlier work could not. Finally, we show16

that SEAR can construct sets that are larger than any finite iteration of the power set operation.17

This shows that SEAR, unlike HOL, can construct sets beyond Vω+ω.18
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1 Introduction26

Mathematicians claim to work with set theory all the time, but many do so without really27

having to, or trying to, grapple with set theory’s axioms. Moreover, this attitude is not28

unreasonable: it is not clear that standard ZF set theory should be mathematicians’ foundation29

of choice. Few people are particularly happy with a foundation insisting that, for example,30

1 ∈ 2. It is not surprising then that a number of different foundations have been proposed31

in the literature. Considering variants of set theory, some famous examples are Lawvere’s32

ETCS [5], Shulman’s SEAR [17], Quine’s New Foundation [14], Tarski-Grothendieck set33

theory [18] and von Neumann–Bernays–Gödel set theory (see, for example, Mendelson’s34

presentation [11]) . Category theory has also been proposed as a mathematical foundation,35

in McLarty’s CCAF [8] and Lawvere’s ETCC [6], with the former having been shown capable36

of capturing many non-trivial results. And, though ETCC is known to be flawed, people37

have never lost interest in fixing it, and are continuing to work on similar systems.38

Axiomatising a foundation for all of mathematics is a project that must be approached39

with the utmost care. Our belief is that this care should include mechanical support. That40

is, we should develop a theorem-proving system to serve as a tool for checking proofs in these41

foundations.42

Our second goal is expressiveness: we want our system to be flexible enough to capture43

a variety of systems. At the same time, it is readily apparent that a significant amount of44
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13:2 Dependently Sorted Theorem Proving For Mathematical Foundations

work on mathematical foundations concentrates on first-order logic. Certainly, in all of the45

examples above, first-order logic is enough. We’re quite happy to live with this constraint:46

a richer logic can conceal foundational decisions that we’d prefer to make apparent in our47

axioms. In the following, we present a first-order system that gains its expressiveness through48

a simple notion of dependent sort. Despite its simplicity, our system captures three of the49

foundational systems mentioned above, and is capable of fairly involved constructions in50

them all.51

Contributions52

We develop a logical system that is able to express various first order axiomatic systems,53

where sorts can depend on terms. We specialise this ambient logical system so as to54

capture the foundational systems ETCS and SEAR.55

Building on these foundations, we demonstrate that our system can handle common56

mathematical constructions such as the development of the algebraic and co-algebraic57

lists.58

In one example, we also demonstrate SEAR’s set-theoretic power by extending an existing59

example in model theory (done in HOL), and prove a theorem impossible to capture in60

HOL.61

We provide a proof-of-concept implementation that makes logical developments practical62

through the development of a number of important, though basic tools. For example,63

in ETCS, where proofs greatly rely on internal logic, we build a tool to automatically64

construct the internal logic predicates corresponding to “external” predicates. In both65

ETCS and SEAR, we automate inductive definitions, and provide tools to help with the66

construction of quotients.67

The paper is structured as follows: we first introduce our fundamental logic, which is68

used for all three foundations. Then we briefly introduce the two structural set theories,69

ETCS and SEAR. After discussing the automation of comprehension in ETCS, for reasons70

of space, we present the remaining proofs in SEAR only. We note that with the exception of71

the modal model theory result (where the bounded comprehension schema is not sufficient)72

and the construction of the large set, all these formalised SEAR results can be formalised in73

ETCS as well. The proofs of a SEAR statement and its ETCS counterpart are often identical,74

in the sense that a proof in one system can be cut and pasted into the other. At the end of75

the paper, we compare our work with some existing logics developed for related purposes.76

2 Logical System77

We begin with the syntax of our logical system, which is “three-layered”, consisting of sorts,78

terms, and formulas.79

2.1 Sorts and Terms80

Every sort depends on a (possibly empty) list of terms. The sorts are all of the form81

s(t0, · · · , tn), where t0, · · · , tn are terms of some pre-existing sorts and s is the name of the82

sort. A term is either a variable or a function application:83

t := Var(n, s) | Fun(f, s, t⃗)84

That is, a variable consists of a name and a sort, and a function term consists of the name85

of the function symbol, the sort, and the arguments, which is a list of terms. A constant86
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is a nullary function. Each term has a unique sort, carried as a piece of information as an87

intrinsic property. A sort which does not depend on any term is called a ground sort. A term88

with a ground sort is called a ground term.89

2.2 Formulas90

We are working with a classical logic, and can afford to be minimal with our syntax: a91

formula Φ is either falsity, a predicate, an implication, a universally quantified formula, or a92

formula variable.93

Φ ::= ⊥ | Pred(P, t⃗) | ϕ1 =⇒ ϕ2 | ∀n : s. ϕ | fVar(F , s⃗, t⃗)94

In the above, P is a predicate name, and F is the name of a formula variable. Boolean95

operators ∧,∨,¬ can hence be built from the implication. We write ⊤ as an abbreviation96

⊥ =⇒ ⊥. In the ∀ case, the n and s carry the name and sort of the quantified variable.97

A formula Pred(P, t⃗) is a concrete predicate symbol applied to the argument list t⃗. Such a98

predicate symbol is either primitive, which comes together with the axiomatic setting or is99

defined by the user. A formula variable fVar(F , s⃗, t⃗) is analogous to a higher-order lambda100

expression taking an argument list t⃗ with sorts s⃗. We provide an inference rule to instantiate101

them below in Section 2.3.1. In the following, we will write a predicate formula as P (⃗t). For102

a formula variable with name F on arguments of sorts s⃗ applied on t⃗, we write F [s⃗](⃗t).103

The only primitive predicate embedded in the system is equality between terms of the104

same sort. However, we need not allow equalities between terms just because they have the105

same sort. We cannot, for example, write equality between objects in ETCS, or equality106

between sets in SEAR. Thus, each foundation must record (along with function symbols,107

predicates symbols and axioms), the list of sorts supporting equality.108

2.3 Theorems109

A theorem consists of a set of variables Γ, called the context, a finite set A of formulas110

(the assumptions), and a formula ϕ as the conclusion. A theorem Γ, A ⊢ ϕ reads “for all111

assignments σ of variables in Γ to terms respecting their sorts, if all the formulas in σ(A)112

hold, then we can conclude σ(ϕ)”.113

The context is the set of variables we require for the conclusion to be true given the114

assumptions: it contains at least all the free variables appearing in the assumptions or the115

conclusion. It can be regarded as a special form of assumption, asserting the existence of116

terms of certain sorts. We need the context to make sure we cannot use terms before either117

constructing them or assuming their existence. For instance, there is no arrow from the118

terminal object 1 to the initial object 0 in either ETCS or SEAR. Using a context, it can be119

proved that: {f : 1 → 0} ⊢ ∃f : 1 → 0. ⊤, but ⊢ ∃f : 1 → 0. ⊤ is easily proved to be false.120

2.3.1 Proof System121

We now introduce the primitive rules. Rules for the propositional connectives are standard,122

as in Figure 1. The quantifier rules take some extra care of the sort information. When123

specialising a universal by a term, we need to put all the free variables of such a term into124

the context. Let Vars(t) denote the set of variables occurring in the term t, then:125

Γ, A ⊢ ∀x : s.ϕ(x)
∀-E, t is of sort s

Γ ∪ Vars(t), A ⊢ ϕ(t)
126

ITP 2023
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Assume Vars(ϕ), {ϕ} ⊢ ϕ
Ax ϕ is an axiom

Vars(ϕ) ⊢ ϕ

Γ, A ∪ {¬ϕ} ⊢ ⊥
CContr Γ, A ⊢ ϕ

ExF Vars(A ∪ {ϕ}), A ∪ {⊥} ⊢ ϕ

Γ, A ⊢ ϕ
Disch Γ ∪ Vars(ψ), A \ {ψ} ⊢ ψ =⇒ ϕ

Γ1, A1 ⊢ ϕ =⇒ ψ Γ2, A2 ⊢ ϕ
MP Γ1 ∪ Γ2, A1 ∪A2 ⊢ ψ

Refl Vars(a) ⊢ a = a
Γ, A ⊢ a = bSym
Γ, A ⊢ b = a

Γ1, A1 ⊢ a = b Γ2, A2 ⊢ b = c
Trans Γ1 ∪ Γ2, A1 ∪A2 ⊢ a = c

Γ, A ⊢ ϕ
InstTM σ is a well-formed map

σ(Γ), σ(A) ⊢ σ(ϕ)

Γ1, A1 ⊢ t1 = t′1, · · · , Γn, An ⊢ tn = t′nFVCong ⋃n

i=1 Γi,
⋃n

i=1 Ai ⊢ F [s⃗](⃗t) ⇔ F [s⃗](t⃗′)

Figure 1 Natural Deduction style presentation of our sorted FOL

To apply generalisation (∀-I) with a variable a : s(t1, · · · , tn), we require that (i) a does not127

occur in the assumption set; (ii) there is no term in the context depending on a; (iii) all the128

variables of sort s must also be in Γ \ {x}, and (iv) a does not appear in the sort list of any129

formula variable appearing in the conclusion. Once all these conditions are satisfied, we have130

Γ, A ⊢ ϕ(x)
∀-I Γ \ {x : s}, A ⊢ ∀x : s. ϕ(x)

131

We define (∃x.ϕ) = ¬(∀x.¬ϕ). The instantiation rule for formula variables is given as:132

Γ, A(F [s⃗]) ⊢ ϕ(F [s⃗])
Form-Inst Γ ∪ Vars(ψ), A[F [s⃗] 7→ ψ] ⊢ ϕ[F [s⃗] 7→ ψ]

133

Instantiating a formula variable F [s⃗] is to replace each occurrence of F [s⃗] into a concrete134

formula on an argument list with sorts s⃗, and apply this predicate on t⃗. This is done by135

providing a map sending each such formula variable to a formula. This formula may or may136

not contain more formula variables, and is encoded by a pair consisting of a variable list137

v1, · · · , vn of sort s⃗ and a formula ϕ, such that ∀v1, · · · , vn.ϕ is a well-formed formula. We138

rely on the term instantiation rule to make changes to the sort list, and then instantiate the139

formula variable when required.140

When defining a new foundation we assume the existence of a signature recording that141

foundation’s sorts, function symbols and predicate symbols. We extend the signature with142

new predicate symbols using the predicate specification rule.143

Pred-spec P does not occur in ϕ
Vars(⃗t) ⊢ P (⃗t) ⇔ ϕ(⃗t)144

Applying such a rule will define a new predicate with the name P. The defined predicate145

will be polymorphic, where each tuple whose sort is matchable with the list t⃗ can be taken146

as the arguments. Here the argument of the new predicate symbol is not required to be all147

of Vars(ϕ), we only require the whole set of free variables involved can be recovered from the148

arguments. For instance, if {a1 : s1, a2 : s2(a1)} exhausts the free variables involved, then149

the predicate can just take the single argument a2 instead of both a1 and a2.150
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2.3.1.1 Function specification rule151

The specification rule for new function symbols is the most complicated. Given a theorem152

Γ, A ⊢ ∃a1 : s1, · · · an : sn.Q(a1, · · · , an), if the existence of the tuple (a1, · · · , an) is unique153

up to any sense which is accepted as suitable by the foundation, we define function symbols154

f1, · · · , fn such that their output tuple satisfies Q. To define a new function symbol, we155

provide a theorem stating the unique existence of some terms up to some relation, a theorem156

stating the relation is an equivalence relation, and a theorem guaranteeing non-emptiness of157

the relevant sorts.158

In general, an equivalence must be captured by a predicate on two lists of variables,159

representing the two entities being related. As the built-in logic does not have a notion of160

tuples, we cannot define an equivalence relation to be a subset of the set consisting pairs of161

tuples of a certain form. Instead, we require theorems of the form:162

⊢ R(⟨a1 : s1, ..., an : sn⟩, ⟨a1 : s1, ..., an : sn⟩)

⊢ R(⟨a1 : s1, ..., an : sn⟩, ⟨a′
1 : s′

1, ..., a
′
n : s′

n⟩)
=⇒ R(⟨a′

1 : s′
1, ..., a

′
n : s′

n⟩, ⟨a1 : s1, ..., an : sn⟩)

⊢ R(⟨a1
1 : s1

1, ..., a
1
n : s1

n⟩, ⟨a2
1 : s2

1, ..., a
2
n : s2

n⟩) ∧R(⟨a2
1 : s2

1, ..., a
2
n : s2

n⟩, ⟨a3
1 : s3

1, ..., a
3
n : s3

n⟩)
=⇒ R(⟨a1

1 : s1
1, ..., a

1
n : s1

n⟩, ⟨a3
1 : s3

1, ..., a
3
n : s3

n⟩)

163

If the three theorems all hold for a concrete property R, then R is an equivalence relation164

(abbreviated as eqth(R) in the rest of the discussion). If R is used as the equivalence relation165

above, the unique existential theorem is required to be of the form:166

167

∃ai : si. Q(⟨a1 : s1, ..., an : sn⟩) ∧168

∀a′
i : s′

i. Q(⟨a′
1 : s′

1, ..., a
′
n : s′

n⟩) =⇒ R(⟨a1 : s1, ..., an : sn⟩, ⟨a′
1 : s′

1, ..., a
′
n : s′

n⟩)169
170

We abbreviate the formula above as ∃!Rai : si. Q(⟨a1 : s1, ..., an : sn⟩). The sorts of the171

two argument lists are not required to be equal, and they are generally not equal because172

the sorts of the latter variables often depend on the previous ones. The rule is expressed as:173

Γ0, ∅ ⊢ ∃ai : si.⊤ Γ′, A′ ⊢ eqth(R) Γ, A ⊢ ∃!Rai : si.Q(⟨a1 : s1, ..., an : sn⟩)
Γ, A ⊢ Q(⟨f1(Γ′), ..., fn(Γ′)⟩)

174

where175

Q and R do not contain any formula variables; and176

Γ0 ⊆ Γ, Γ′ ⊆ Γ, and A′ ⊆ A.177

Our rule’s leftmost premise requires the existence of terms of the required (output) sorts,178

given the existence of variables in the context corresponding to the sorts of the arguments.179

In this way, the rule guarantees that terms built using the new function symbol will always180

denote values in the output sort. For the equivalence relation, we can take R to be equality,181

meaning we are specifying new function symbols according to unique existence. If we take R182

to be the everywhere-true relation we have imported the Axiom of Choice into our system.183

The choice of which R’s to allow is up to the designer of the object logic.184

2.3.2 Semantics via Translation to Sorted FOL185

In work that is not further described here, we have mechanised the proof that formula186

variables and their proof rules represent a conservative extension and can be eliminated.187

Subsequently, the term-instantiation rule (InstTM in Figure 1) can be derived from ∀-I and188

ITP 2023



13:6 Dependently Sorted Theorem Proving For Mathematical Foundations

∀-E and can also be removed from the list of primitive rules. As a result, our semantics189

below ignores them (meaning that our formulas come in just four forms: ⊥, implications, the190

universal quantifier and predicate symbols). Our logic can be translated into non-dependent191

sorted FOL, which is equivalent to FOL. Given a list of sorts s1, · · · , sn, such that sk only192

depends on terms with sorts occurring earlier in the list for each 1 ≤ k ≤ n, we create193

non-dependent sorts s1, · · · , sn. These sorts are thought of as the non-dependent versions of194

s1, · · · sn. We can think of the set of terms of sort si as the union of all terms of sort si(⃗t)195

for all possible tuples t⃗ of terms.196

{a | a : si} =
⋃
t⃗k

{a | a : si(t⃗k)}197

For example, the ETCS terms f : A → B and g : C → D are of different arrow sorts,198

but their translation both have sort ar. For a function symbol f taking a list of terms199

[t1 : s1, · · · , tn : sn], we create a non-dependent sorted function symbol f , such that its200

argument term list has the corresponding sort list s1, · · · , sn. We do the same for predicate201

symbols. Translation from terms of sk into those of FOL sort sk is done by forgetting sort202

dependency:203

JVar(x, sk(t1, · · · tm))Kt = Var(x, sk)204

JFun(f, sk(t1, · · · , tm), (a1, · · · , an))Kt = Fun(f, sk, (Ja1Kt, · · · , JanK))205

For sorts s depending on terms t1 : s1, · · · , tm : sm, we create function constants ds,1, · · · ,206

ds,m. For 1 ≤ i ≤ m, ds,i takes an argument of sort s and outputs a term of sort si. If a207

function symbol f takes arguments (t1 : s1, · · · , tn : sn), and outputs a non-ground sort s,208

where s depends on terms r1, · · · , rn, and each sk depends on terms qk,i, then we add an axiom209

to regulate the dependency information of its sort when translated into non-dependent-sort210

FOL:211 ∧
k

∧
i

dsk,i(JvkKt) = Jqk,iKt =⇒
∧
j

ds,j(Jf(v1, · · · , vn)Kt) = JrjKt212

As an example, the composition function symbol in ETCS takes g : B → C and f : A → B,213

and outputs g ◦ f : A → C. The corresponding axiom is:214

∀(A : ob) (B : ob) (C : ob) (f : ar) (g : ar).
dar,1(f) = A ∧ dar,2(f) = B ∧ dar,1(g) = B ∧ dar,2(g) = C =⇒
dar,1(g ◦ f) = A ∧ dar,2(g ◦ f) = C

215

For an arbitrary function symbol f , although its arguments can include ground terms, the216

axiom only needs to state information about the dependently sorted argument, where the217

functions dk, as shown above, exist. If the output of a function symbol is a ground sort, we218

do not need such an axiom for it.219

Translation of formulas only makes sense under the translation of some context that220

contains at least all of its free variables. Defining the translation of a context amounts to221

translating sort judgments of variables. We translate the sort judgment of any ground sort222

into ⊤. As for a variable a : sk(t1, · · · , tn), we write223

Ja : sk(t1, · · · , tn)Kts =
∧

i

dk,i(JaKt) = JtnKt224

to denote the translation of a context element (J· · ·Kts calculates the denotation of a term’s225

sorting assertion). An entire context Γ is translated into the conjunction of the translation226

of its elements.227
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As we do for function symbols, we create for each dependent sorted predicate symbol228

P a corresponding non-dependent sorted one, written as P. We define the translation of229

formulas by induction as:230

JP(t1 : s1, · · · , tn : sn)Kf = P(Jt1Kt, · · · , JtnKt)231

Jϕ =⇒ ψKf = JϕKf =⇒ JψKf232

J∀x : s. ψKf = ∀x : s. JxKts =⇒ JψKf233

Finally, a theorem Γ, A ⊢ ψ translates into234

∀v1 . . . vn.
∧

(vi:si)∈Γ

Jvi : siKts ∧ JAKf =⇒ JψKf235

It is routine to check that the rules are valid under the translation and hence have the236

intended sense. As an example, consider ∀-I. Assume Γ, {a : s(t1, · · · , tn)}, A ⊢ ϕ(a) and the237

variable a appears in neither Γ nor A. The theorem translates into238

JΓKts, Ja : s(t1, · · · , tn)Kts,
∧

JAKf ⊢ Jϕ(a)Kf239

(where we overload J· · ·Kts and J· · ·Kf to include the versions mapping sets to conjunctions240

of translations). The fact that a does not appear in Γ translates into the corresponding241

variable a : s not appearing in JAKf , and the requirement that no variable depends on a242

translates to the requirement that Ja : s(. . . )Kts does not appear in JΓKts either. Therefore,243

we can discharge JaKts from the assumption and deduce from the FOL universal elimination244

rule that JΓKts, JAKf ⊢ ∀a : JsKs. Ja : sKts =⇒ Jϕ(a)Kf . This is the translation of Γ, A ⊢ ∀a :245

s(t1, · · · , tn).ϕ(a), as required.246

Implementation247

Our implementation is a proof-of-concept written in SML. It provides a simple REPL similar248

to those provided by HOL4 and HOL Light. The kernel (core syntax and proof rules) is249

implemented in 2443 lines of code; user-level parsing (including a simple type inference250

algorithm) and printing is a further 1633 lines of code. Additional core libraries (goal stack251

package, common tactics including the rewriting tactic) take 4386 lines.252

The source code for this implementation is available from https://github.com/u5943321/253

DiaToM254

3 ETCS and SEAR255

ETCS [5] and SEAR [17] are both structural set theories. With each, we work within a256

well-pointed boolean topos. In particular, they both have products, coproducts, exponentials,257

an initial object 0 and a terminal object 1. Whereas the existence of all of these are given as258

primitive axioms in ETCS, we can construct them in SEAR.259

ETCS has two sorts: objects (A, B, . . . ; a ground sort) and arrows (e.g., A → B), where260

an arrow sort depends on two object terms. Equality can only hold between arrows. An object261

is to be considered as a set in the usual sense: an arrow 1 → X is regarded as an element of262

the set X. As per Shulman’s original construction, SEAR has three sorts: sets (A, B, . . . ; a263

ground sort); members (_ ∈ A, depending on a set term); and relations (A↬ B, depending264

on two set terms). SEAR also adds a primitive predicate Holds(R : A ↬ B, a ∈ A, b ∈ B),265

declaring that the relation R relates a and b.Equality can hold between relations with the266

same domain and codomain, and elements of the same set.267
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In SEAR, a relation R is called a function if ∀a.∃!b. Holds(R, a, b). In practice, we want to268

be able to write f(a) as the result of applying a function to an argument, but we cannot do269

this if we are restricted to just the relation sort. A first thought might be to create a function270

symbol Eval, that takes a relation and a member of A, so the term Eval(R : A↬ B, a ∈ A)271

is a member of B. However, such a function symbol breaks soundness, as the term Eval(R, a)272

can be expressed for every a of the correct sort before checking the function condition on R.273

In particular, we can write a term Eval(R : 1 ↬ 0, ∗), nominally producing an element of 0.274

Rather, we introduce a function sort which is a “proper subsort” of the relation sort.1 A275

function f from A to B is written f : A → B, and we add the following axiom describing276

terms of function sorts:277

isFunction(R) =⇒
∃!f : A → B. ∀(a ∈ A) (b ∈ B).Eval(f, a) = b ⇔ Holds(R, a, b)278

The isFunction predicate embodies the definition above, and we also have a new Eval function279

symbol that takes a function term from A to B and an element term of A, and outputs an280

element term of B.281

We will write Eval(f, a) simply as f(a) in the rest of paper. The Eval symbol is typed so282

that only functions terms can be its first argument. It is clear that this is a conservative283

extension, as any theorems involving Eval can be expressed using just Holds and uses of the284

isFunction hypothesis if desired.285

Subsets are handled differently in ETCS and SEAR. Using the SEAR axioms, it is286

straightforward to show that for each formula ϕ on members x ∈ X, we can form the subset287

{x | ϕ(x)}. In what follows, F is an arbitrary formula variable, and we are defining a288

comprehension schema. Our subset is constructed via a member of the power set Pow(X),2289

and ultimately as a term of set sort with an injection to X. This construction is described290

by the following two theorems (following Shulman [17]). First, we prove the existence of291

the member of the power-set. Given that A is a set, then IN requires two arguments of sort292

_ ∈ A and _ ∈ Pow(A). Then:293

∃!s ∈ Pow(A). ∀a. IN(a, s) ⇔ F [mem(A)](a)294

We also have the existence of a set B, and an injection from it into A:295

∃B (i : B → A). Inj(i) ∧ ∀(a ∈ A). F [mem(A)](a) ⇔ ∃b ∈ B. a = i(b) (1)296

The combination of i and B can be seen as identifying the subset of A satisfying predicate P .297

The following isset predicate, connecting a member (s) to a set (B, given implicitly in i’s298

sort) is also occasionally useful:299

isset(i : B → A, s ∈ Pow(A)) def⇔ Inj(i) ∧ image(i, B) = s300

The “subset story” in ETCS is more restrictive. There we can only form subsets from301

predicates on elements of X which can be captured by an arrow p : X → 2, where 2 is defined302

to be the coproduct 1 + 1. Such arrows are turned into elements of the power object 2X by303

taking transposes. We regard 2 as the set of truth values, where ⊤I ,⊥I : 1 → 2 denote truth304

1 Shulman (personal communication) agrees that the resulting system is still effectively SEAR as he
conceives it.

2 The existence of the powerset function is easy to establish from the function specification rule: power
set of each set is unique up to isomorphism that respects the membership relation.
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and falsity respectively. Our arrow p gives rise to a separate object as characterised by the305

theorem:306

∀A (p : A → 2). ∃B (i : B → A). Inj(i) ∧ ∀a : 1 → A. p ◦ a = ⊤I ⇔ ∃b. a = i ◦ b307

The existence of i is witnessed by the pullback of the map ⊤I along p. Note that this method308

only shows the existence of subsets for arrows p : X → 2. We do not achieve the generality309

of SEAR, where the construction starts with an arbitrary formula variable. ETCS does310

allow for the construction of subsets using something resembling set comprehension, but this311

requires a detour via its internal logic (see Section 4 below).312

Another notable difference between the two logics is that ETCS comes with the axiom of313

choice in the form of the statement that any epimorphism has a section, whereas this is not314

given in SEAR. In fact, if we change SEAR by adding the axiom of choice, and also requiring315

that the input formula of our comprehension schema be bounded, then the resulting system316

has the same strength as ETCS.317

For both ETCS and SEAR, the injection we construct from each predicate is unique up to318

respectful isomorphism. This allows us to use the specification rule to obtain new constants319

without the full form of choice. In SEAR, for example, we can prove if there are i : B → A and320

i′ : B′ → A, which are both injections, and moreover, we have ∀a. P (a) ⇔ ∃b ∈ B. a = i(b)321

and ∀a. P (a) ⇔ ∃b ∈ B′. a = i′(b), then the relation between pairs (B, i : B → A) and322

(B′, i′ : B′ → A) defined by323

∃(f : B → B′) (g : B′ → B).
f ◦ g = Id(B) ∧ g ◦ f = Id(B′) ∧ i′ ◦ f = i ∧ i ◦ g = i′

324

holds. This is clearly an equivalence relation. Moreover, for all sets A, the existence of a325

set B and a map B → A is witnessed by the identity isomorphism. Therefore, once we326

instantiate the P above into a concrete predicate without any formula variables, we have327

met all of the specification rule’s antecedents, and we can use it to define two constants:328

the subset and its inclusion into the ambient set. In SEAR, the sets of natural numbers,329

integers, lists and co-lists are all constructed in this way. More generally, given any member330

s ∈ Pow(A), we use the specification rule to turn it into a “real set” via the constant m2s(s)331

of set sort. This set is injected into A by the map minc(s) : m2s(s) → A.332

4 Internal logic in ETCS333

As discussed in the last section, an arrow p : X → 2 corresponds to a predicate on X in334

the sense that if x : 1 → X, then p ◦ x = ⊤I means p is true for x. An ETCS formula is335

bounded precisely when all quantified variables are elements (i.e., arrows with domain 1). Let336

us call the formulas of our logic (all formulas seen so far) external formulas. If an external337

formula is bounded with all free variables also elements, we can automatically construct338

a corresponding internal formula as a term of the logic. When the external formula is on339

variables with sorts (1 → X1), (1 → X2), . . . , then the internal formula will be an arrow of340

sort ΠXi → 2. For an external formula Φ[x1 : 1 → X1, . . . ], then let p : ΠXi → 2 be the341

corresponding formula. We require342

∀a : 1 → ΠXi. p ◦ a = ⊤I ⇔ Φ[(πi ◦ a)/xi]343

where Φ[t/x] is the substitution of term t for variable x. This could be regarded as an axiom,344

one rather like Separation in ZF. However, we can instead prove all results of this form345
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automatically. This is simply by rewriting with all the theorems with relevant definitions346

and properties of the internal logic operators as explained below.347

We have implemented an automatic translation (a “derived rule”) that generates an348

internal logic formula given a list of variables, considered as the arguments, and the formula.349

The translation produces an internal logic predicate and proves that it gives the value ⊤I if350

and only if the formula is true when applied to the arguments. We illustrate our algorithm351

with an example over N, the natural number object, the arrow SUC : N → N, and the function352

symbol _+, such that n+ def= SUC ◦ n. Then, the pair ([n],m+ − n+ = m − n) encodes a353

simple unary predicate on n. In this case, the output of our derived rule is an arrow term354

p : N → 2 satisfying:355

∀n : 1 → N. p ◦ n = ⊤ ⇔ m+ − n+ = m− n356

If the list of arguments is [m,n] instead, the produced arrow p : N × N → 2 will satisfy:357

∀m,n : 1 → N. p ◦ ⟨m,n⟩ = ⊤ ⇔ m+ − n+ = m− n358

Operator Sort Defining Property
∧I 2 × 2 → 2 ∧I ◦ ⟨p1, p2⟩ ⇔ p1 = ⊤I ∧ p2 = ⊤I

∨I 2 × 2 → 2 ∨I ◦ ⟨p1, p2⟩ ⇔ p1 = ⊤I ∨ p2 = ⊤I

⇒I 2 × 2 → 2 ⇒I ◦⟨p1, p2⟩ ⇔ p1 = ⊤I =⇒ p2 = ⊤I

¬I 2 → 2 ¬I ◦ p = ⊤I ⇔ p = ⊥I

∀X 2X → 2 ∀X ◦ p ◦ y = ⊤I ⇔ ∀x.p ◦ ⟨x, y⟩ = ⊤I

∃X 2X → 2 ∃X ◦ p ◦ y = ⊤I ⇔ ∃x : 1 → X.p ◦ ⟨x, y⟩ = ⊤I

Table 1 Operators of the Internal Logic

To convert formulas into internal formulas, we need to first convert terms into ‘internal359

terms’. In particular, function symbols will map into arrows of an appropriate sort. For360

example, if our ‘external formula’ is on variables [x : 1 → N, y : 1 → N], then any ‘internal361

term’ built as part of this translation will be from N × N. In our N-example, the arrow362

corresponding to y+ will be SUC ◦ π2(N,N). In most circumstances, the connection between363

the function symbol and the arrow will simply be that symbol’s definition. For generality’s364

sake, our implementation stores the external-internal correspondence of function and predicate365

symbols in a simple dictionary data structure.366

Our formula-converting function is recursive on the structure of formula, using the367

semantics of the various connectives and quantifiers given in Table 1. The only built-in368

predicate, equality, corresponds to the characteristic map of the diagonal monomorphism. For369

user-defined predicates, such as < over natural numbers, users can store the correspondences370

manually. The induction steps for the connectives are straightforward. For quantifiers, for371

example, consider the formula ∀a : 1 → A. a = a0. Begin by converting the body a = a0372

into a predicate on [a, a0]; and then transpose the output and post-compose with the internal373

logic operator ∀A. The existential case is similar.374

5 Quotients in ETCS and SEAR375

In both ETCS and SEAR, we can make a number of definitions, and prove theorems about376

quotienting by equivalence relations. Here we present our approach in the terminology of377

SEAR. We only consider full equivalence relations, since partial equivalences become full by378
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restricting their domains. Our approach does not require any form of the Axiom of Choice.379

Given a binary relation R on a set A, we say a map i : Q → Pow(A) is a quotient with respect380

to R if it injects Q into the set of relational images of R (which is the set of equivalence381

classes if R is an equivalence relation). That is,382

Quot(R : A↬ A, i : Q → Pow(A)) ⇔
Inj(i) ∧ ∀s ∈ Pow(A). (∃q ∈ Q. s = i(q)) ⇔ ∃a ∈ A. s = {b | Holds(R, a, b)}383

In contrast to HOL, where any injection has an inverse, constructing an inverse of an injection384

requires an element witnessing that the domain is non-empty. For an injection i from X to385

Y , and given an element x ∈ X, we define LINV(i, x)(y) to map y ∈ Y to x0 if i(x0) = y, or386

to x otherwise. This is then a left inverse of i. If i : Q → Pow(A) is a quotient of R, then387

given any q0 ∈ Q, the composition of the map a 7→ {b | Holds(R, a, b)} and LINV(i, q0) is the388

quotient map A → Q. We denote the output of this map applied to an element a ∈ A as389

abs(R, i, q0, a). We write resp1(f,R) if f agrees on elements related by R and ER(R) for R390

an equivalence relation. Then we prove:391

ER(R) ∧ resp1(f,R) ∧ Quot(R, i) =⇒
∀q0 ∈ Q. ∃!f : Q → B. ∀a ∈ A. f(abs(R, i, q0, a)) = f(a)392

This does not only allow us to lift functions at the level of elements related by R, but also393

supports lifting predicates, which can be regarded as maps to 2. For instance, lifting the394

definition of evenness of a natural number to that of an integer amounts to lifting a map395

N → 2 into Z → 2.396

A function into a quotient can be defined by composing with the inverse of the inclusion397

map and hence is easy to define. The interesting case is when we want to define a function398

from a product of quotients. In such cases, we realise the product of quotients as a quotient399

as well in the following way: Given two relations R1 on A and R2 on B, we define their400

product relation as:401

Holds(prrel(R1, R2), (a1, b1), (a2, b2)) ⇔ Holds(R1, a1, a2) ∧ Holds(R2, b1, b2)402

And given quotients i1 : Q1 → Pow(A), i2 : Q2 → Pow(B) of R1 and R2, we define a map403

ipow2(i1, i2) : Q1 ×Q2 → Pow(A×B) such that for every pair (a, b) ∈ Q1 ×Q2, we have:404

IN((a, b), ipow2(i1, i2)(q1, q2)) ⇔ IN(a, i1(q1)) ∧ IN(b, i2(q2))405

If R1 and R2 are both equivalence relations, we have Quot(prrel(R1, R2), ipow2(i1, i2))406

Application of this result allows us to define maps such as integer addition and multiplication,407

and more generally, the group operation in a quotient group.408

6 Group Theory409

Many mathematical results look neater in theorem-provers based on dependent type theory410

(DTT), since instead of assuming complicated predicates, we can internalise those predicates411

as types, thereby shortening the statement. By formalising some group theory, we demonstrate412

that we can prove similarly neat versions of statements in our simple logic.413

We encode a group with underlying setG as an element of Grp(G). Such a set is constructed414

from the comprehension schema which injects to the subset of the product GG×G ×GG ×G415

satisfying the usual group axioms. For a group g ∈ Grp(G), also by comprehension, we416

construct the set of its subgroups sgrp(g) as injected into Pow(G), and set of its normal417

ITP 2023



13:12 Dependently Sorted Theorem Proving For Mathematical Foundations

subgroups nsgrp(g) that injects to sgrp(g). As groups are encoded by members of sets, it is418

possible to compare if two groups are equal, e.g., g1 = g2, with g1, g2 ∈ Grp(G). However,419

if h1 ∈ sgrp(g1) and h2 ∈ sgrp(g2), we cannot write h1 = h2 because such an equality will420

not type check. We hold this to be appropriate because equality is not the correct way to421

compare abstract structures such as groups. Even if we wanted to work with equality on422

groups g1, g2, we should compare their representatives or define transferring functions like423

the ones of sort sgrp(g1) → sgrp(g2), which map a subgroup of g1 to a subgroup of g2.424

For a normal subgroup N ∈ nsgrp(g), the underlying set of the quotient group qgrp(N)425

has as its underlying set the set of all right cosets of N . The function symbol qgrp only needs426

to take the group N as argument, since the group being quotiented is contained in the sort427

information of N . The quotient homomorphism qhom(N) is a member of ghom(g, qgrp(g))428

of all homomorphisms between the original group and the quotient. Its underlying function429

homfun(qhom(N)) sends a group element to its coset.430

By construction, each underlying function of a homomorphism respects the relation431

induced by its kernel. Then the first isomorphism theorem can be obtained by instantiating432

the quotient mapping theorem as in the last section, giving433

∀G1 G2 g1 ∈ Grp(G1) g2 ∈ Grp(G2) f ∈ ghom(g1, g2).
∃! f ∈ ghom(qgrp(ker(f)), g2).

Inj(homfun(f)) ∧ homfun(f) ◦ qmap(ker(f)) = homfun(f)
(2)434

This is a nice illustration of the strengths of the “DTT style”.435

6.1 Discussion436

Our approach to group theory is very different from its counterpart in HOL. Firstly, the HOL437

type α group is inhabited by values that must record their underlying carrier set. Secondly,438

the HOL quotient group function takes two α groups and outputs a term of (α → bool)439

group, which is proved to satisfy the group axioms if the first term satisfies the group axioms440

and the second term is a normal subgroup. Further, as HOL types cannot depend on terms,441

we certainly cannot construct the type of all homomorphisms between two groups.442

There is actually a trade-off between choosing the HOL style and the DTT style of stating443

theorems. Whereas the first isomorphism theorem is clearly better in DTT style (2), the444

second and third isomorphism theorems in DTT style can look complicated, with a great445

deal of coercions happening under the covers.3 Since the HOL quotient group only takes446

two groups of the same type, we can use exactly the same term for the ambient group447

and its subgroup, and do not need to construct different terms to regard the same group448

as subgroups of an ambient group. In this case, the convenience of the HOL style (using449

assumptions) is evident. We can choose each style in our system, so users can try both450

approaches and compare them. To find the best form of a statement, we may try combining451

the two approaches: we do not always have to create a subset once we come up with a new452

property, but we may use them as assumptions as well.453

7 Inductive and Coinductive definitions454

We experiment with inductive definitions by mechanising induction on natural numbers,455

finite sets and lists, and with coinductive definitions by constructing co-lists.456

3 Of course, DTT systems offer the ability to write statements in HOL’s predicate-heavy style as well.
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7.1 Natural numbers, Finite sets and Lists457

Our system implements a version of Harrison’s [3] inductive relation definition package. To458

define an inductive subset, we just need to provide the inductive clauses.459

For example, there is no primitive natural number object in SEAR. We are given only a460

set N0 with an element z0 and an injection s0 : N0 → N0, where z0 is not in the range of s0.461

To apply our induction tool to cut down N0 into a natural number object, we firstly define a462

subset, i.e., a member of the power set Pow(N0), of N0, by giving two clauses saying that z0463

is in N and if n0 is in N , then s0(n0) is in N . Using theorem 1 in Section 3 together with the464

specification rule, we extract the subset of N0, which consists of elements in N , as a constant465

term N of set sort. We call the lifted zero element and successor map 0 and SUC respectively,466

with SUC obtained by specialising the following lemma with the inclusion from N0:467

∀A A0 (i : A → A0) (f0 : A0 → A0).
Inj(i) ∧ (∀a1.∃a2. f0(i(a1)) = i(a2)) =⇒

∃!f : A → A. ∀a ∈ A. i(f(a)) = f0(i(a))
468

The constructed N then can be shown to satisfy the standard induction principle.469

F [mem(N)](0) ∧ (∀n ∈ N. F [mem(N)](n) =⇒ F [mem(N)](SUC(n))) =⇒
∀n ∈ N. F [mem(N)](n)470

By instantiating the formula variable F with concrete properties, we apply the above to471

perform inductive proofs for ordering and natural number arithmetic. We later use such472

theorems together with quotient lemmas to construct the set of integers.473

Also inductively, we define the predicate isFinite on members of some set X’s power set.474

The empty subset Empty(X) is finite, and if s ∈ Pow(X) is finite, then the set Ins(x, s), which475

inserts x into s, is finite for any x ∈ X. Similar to the counterpart of natural numbers, the476

principle of induction on the finiteness of a set is proved as:477

F [mem(Pow(X))](Empty(X)) ∧
(∀x (xs0 ∈ Pow(X)). F [mem(Pow(X))](xs0) =⇒ F [mem(Pow(X))](Ins(x, xs0))) =⇒

∀xs ∈ Pow(X). isFinite(xs) =⇒ F [mem(Pow(X))](xs)

478

We define a relation Pow(X) ↬ N relating a subset of X to its cardinality. By induction479

on finiteness, we prove each subset is related to a unique natural number, which gives us480

a function Pow(X) → N that sends a finite subset to its cardinality and sends any infinite481

subset to 0. The output of the function applied on s ∈ Pow(X) is denoted as Card(s). To482

build lists over a set X as an “inductive type”, we firstly define the subset of Pow(N ×X)483

which encodes a list, such sets are finite sets of the form {(0, x1), · · · , (n, xn)}. The base484

case of the induction is the empty subset of Pow(N ×X), and the step case inserts the set s485

started with by the pair (Card(s), x). Using the same approach we constructed N, we form486

List(X). It is then straightforward to prove the list induction principle and define the usual487

list operations like taking the head, tail, n-th element of the list, and map, etc.488

7.2 Co-lists489

Following the HOL approach, we construct co-lists over sets X, by using maps N → X + 1490

as representatives. The codomain is regarded as X option, whose members either have the491

form SOME(x) for x ∈ X, or NONE(X). First, by dualising the argument we used to define492

inductive predicates, we define a coinductive predicate on members (f ∈ (X+1)N) expressing493

that such a member captures a co-list, and collect the subset where this predicate holds,494
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defining listc(X), just as we did for constructing inductive types. Every term of listc(X) has495

a representative: it is either the constant function mapping to NONE(X), corresponding to496

the empty co-list Nilc(X), or it is the function obtained by attaching an element x ∈ X to an497

existing function encoding a co-list. Almost all the HOL4 definitions can be readily translated498

into SEAR. The only exception is we cannot write expressions such as THE(Hdc(l)). Here499

Hdc is the function that returns SOME(x) when l is a co-list with element x at its front. If l is500

the empty co-list, then Hdc(l) = NONE. In HOL4, THE is the left-inverse of SOME; in SEAR,501

our (set) parameter X may be empty, and so there is no general value (even if unspecified)502

for the head of the co-list. So far, this has not been an obstacle in any of our proofs. The503

HOL proof of the key co-list principle, which states that two co-lists l1, l2 ∈ listc(X) are504

equal if and only if they are connected by a bisimulation relation R, translates into SEAR,505

yielding:506

l1 = l2 ⇔
∃R : listc(X) ↬ listc(X).

Holds(R, l1, l2) ∧
∀l3 l4 ∈ listc(X). Holds(R, l3, l4) =⇒

(l3 = Nilc(X) ∧ l4 = Nilc(X)) ∨
∃(h ∈ X) t1 t2. Holds(R, t1, t2) ∧ l3 = Consc(h, t1) ∧ l4 = Consc(h, t2)

507

where Nilc(X) is the empty co-list over X, and Consc(h, t) is the co-list built by putting508

element h ∈ X in front of co-list t. We can perform coinductive proofs on co-lists by the509

theorem above. For instance, the above helps to prove that Mapc function, with the usual510

definition, is functorial.511

8 Modal Model Theory512

In recent work, we developed a mechanisation of some basic modal logic theory [20]. While513

defining the notion of being preserved under simulation, we observed that if a property of a514

modal formula is defined in terms of the behaviour of the formula on all models, then such a515

property cannot be faithfully captured by HOL. Such an issue can be resolved by choosing a516

dependent sorted foundation and doing the proof in our logic. We demonstrate this here by517

mechanising the proof that characterises formulas preserved under simulation as those are518

equivalent to a positive existential formula in SEAR.519

Using roughly the general method introduced at the end of Harrison [3], we first construct520

the “type” (actually a set in SEAR) of modal formulas over variables drawn from the set521

V . We then denote the set of modal formulas over V as form(V ). A Kripke model on a set522

W of such formulas is an element of Pow(W ×W ) × Pow(V )W (written as model(W,V ) in523

the following paragraphs). The first component encodes the model’s reachability relation,524

while the second encodes the variable valuation. Satisfaction of modal formulas can then be525

defined in the standard way, and if ϕ is satisfied at w in the model M , we write M,w ⊩ ϕ.526

The two key definitions of this proof are that of simulation, and of being preserved under527

simulation (written as PUS below). The former is identical to its counterpart in HOL, and528

we write Sim(R,M1,M2) to indicate that R is a simulation from M1 to M2. The latter is529

more interesting. Unlike in HOL, where we can only express a formula being preserved under530

simulation between models of certain HOL types, forcing the definition to take an extra type531
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parameter, the definition in SEAR is purely a predicate on formulas:532

∀V (ϕ ∈ form(V )).
PUS(ϕ) ⇔
∀W1 W2 (R : W1 ↬W2) (w1 ∈ W1) (w2 ∈ W2)
(M1 ∈ model(W1, A)) (M2 ∈ model(W2, A)).
Sim(R,M1,M2) ∧ Holds(R,w1, w2) ∧ M1, w1 ⊩ ϕ =⇒ M2, w2 ⊩ ϕ

533

This convenience is brought about by the fact that our logic allows for quantification over sets,534

whereas HOL does not allow for quantification over types. Thus, the notion of equivalence of535

modal formulas only takes two modal formulas as arguments and requires no extra ‘type536

parameter’. Under these definitions, the proofs of both directions of theorem 2.78 in [1] can537

be faithfully translated, yielding the two formal statements:538

∀V (ϕ ∈ form(V )) (ϕ0 ∈ form(V )). PE(ϕ0) ∧ ϕ ∼ ϕ0 =⇒ PUS(ϕ)

∀V (ϕ ∈ form(V )). PUS(ϕ) =⇒ ∃ϕ0 ∈ form(V ). PE(ϕ0) ∧ ϕ ∼ ϕ0
539

Clearly, the two directions can be put together into an if-and-only-if, hence giving the full540

form of the characterisation theorem, which cannot even be stated in HOL.541

∀V (ϕ ∈ form(V )). PUS(ϕ) ⇔ ∃f0 ∈ form(V ). PE(ϕ0) ∧ ϕ ∼ ϕ0)542

9 Existence of Large Sets543

Whereas iterating the procedure of taking the power set by infinite times is impossible in544

HOL due to foundational issues, the collection axiom schema in SEAR makes it possible.545

The statement of the SEAR collection axiom is formalised as:546

∃B Y (p : B → A) (M : B ↬ Y ).
(∀S (i : S → Y ) (b ∈ B).

isset(i, {y | Holds(M, b, y)}) =⇒ F [mem(A), set](p(b), S))∧
(∀(a ∈ A) X. F [mem(A), set](a,X) =⇒ ∃b. p(b) = a)

547

with F [mem(A), set] a formula variable, to be instantiated to be a predicate on an element548

of A and a set.549

Using this axiom, we will prove:550

∀A. ∃P. ∀n ∈ N. ∃i : Pown(A) → P. Inj(i)551

Here the Pown(A) is “the” n-th power set of A. Note that the induction principle on natural552

numbers does not allow us to take a set as an argument, and does not allow the output to be553

a set as well. To create this function symbol, we start by defining a predicate nPow(n,A,B),554

which means B is an n-th power set of A. We then prove such B is unique up to bijection,555

hence the specification rule applies. In the following, we write P(s) ∈ Pow(Pow(A)) for the556

set of subsets of s ∈ Pow(A). For s1 ∈ Pow(A) and s2 ∈ Pow(B), we write |s1| = |s2| for s1557

and s2 have the same cardinality. We write Whole(A) ∈ Pow(A) as the subset of A consisting558

of all members of A.559

We define nPow(n,A,B) if there exists a set X and a function f : X → N such560

that |f−1(0)| = |Whole(A)|, |f−1(n)| = |Whole(B)|, and for each n0 < n, |f−1(n+
0 )| =561

|P(f−1(n0))|. Such a function f records a sequence of power set relation, in this case, we write562

nPowf(n,A,B, f). By induction on n0, nPow(n,A,B, f), implies nPow(n0, A,m2s(f−1(n0)), f)563

for each n0 ≤ n.564
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If nPow(n,A,B1) and nPow(n,A,B2), we can infer B1 and B2 have the same cardinality565

by induction on n. The base case is trivial. Assume f1 : X1 → N witnesses nPow(n+, A,C1)566

and f2 : X2 → N witnesses nPow(n+, A,C2), as n < n+, we have f1, f2 witness that their567

preimage at n is an n-th powerset of A, and hence by inductive hypothesis has the same568

cardinality. Therefore, the cardinality of C1 and C2 are equal as power sets of sets with the569

same cardinality.570

Now we prove the existence of these iterated power sets. Suppose we have nPowf(n,A,B, f0 :571

X → N), we construct f ′ : Pow(X + 1) → N such that nPowf(n+, A,Pow(B), f ′). Define572

f : X → N such that as if f0(x) ≤ n then f(x) = f0(x), else f(x) = n++, then we have573

nPowf(n,A,B, f : X → N), and n+ is not in the range of f . According to the definition of574

nPow, there exists an injection B → X, and thus an injection i : Pow(B) → Pow(X). We575

define the function f ′ : Pow(X + 1) → N as:576

f ′(s) =


f(x) if s = {SOME(x)}
n+ if ∃xs ∈ Pow(X). i(xs) = s0 ∧ s = {NONE(X)} ∪ s0

n++ else
577

It follows that |f ′−1(n0)| = |f−1(n0)| for n0 ≤ n, and the preimage of n+ is a copy of Pow(B),578

so f ′ witnesses Pow(B) is the n+-th power set of A.579

To prove the existence of the large set. By specialising the axiom of collection, we obtain580

a set B, a function p : B → N, a set Y and a relation M : B ↬ Y satisfying:581

(∀S (i : S → Y ) (b ∈ B). isset(i, {y | Holds(M, b, y)}) =⇒ nPow(p(b), A, S)) ∧
(∀n ∈ N X. nPow(n,A,X)) =⇒ ∃b ∈ B. p(b) = n)582

The set Y is the large set we want to construct. For any n ∈ N, we have nPow(n,A,Pown(A)),583

and thus there exists a b ∈ B with p(b) = n. For this b, Let H(b) denotes the set of584

elements y such that Holds(M, b, y), then minc(H(b)) gives an injection m2s(H(b)) → Y . As585

nPow(n,A,m2s(H(b))) and also nPow(n,A,Pown(A)), by uniqueness proved above, there586

exists a bijection j : Pown(A) → m2s(H(b)). The composition minc(H(b)) ◦ j is the desired587

injection.588

10 Conclusion589

Our work aims to enable the direct encoding of first-order mathematical foundations based590

on axioms, while keeping the underlying logic as simple as possible.591

We have already seen that it is useful to explore various mathematical foundations:592

by experimenting with SEAR, we overcome two well-known shortcomings of HOL. Firstly,593

because it allows us to quantify over types, SEAR enables us to prove the full version of our594

previous theorem in modal model theory. Secondly, using the collection axiom of SEAR, we595

overcome the cardinality shortcoming of types in HOL. We are unaware of any other work596

addressing this issue.597

10.1 Related Work598

Quantification of types in HOL has been addressed in work by Melham [10] and Homeier [4].599

Both pieces of work propose to extend the HOL logic, but neither goes so far as to introduce600

dependencies linking terms to types or sorts.601

There is much existing work on logical systems with dependent sorts. All of them are602

designed with an aim different from ours. For instance, FOLDS (Makkai [7]) is designed to603
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only be able to capture mathematical theories where truth is invariant under a certain notion604

of isomorphism, and hence its expressive power is meant to be more restrictive. In particular,605

in its standard presentation, FOLDS works only with predicate symbols but not function606

symbols. DFOL (Rabe [15]) does not support expressing axiom schemata at the object level,607

and is constructed within LF’s dependently typed environment. Compared with both, our608

work is customized for directly embedding axiomatic systems. Our system is simple, and can609

be easily implemented, not relying on an ambient implementation of dependent types.610

When investigating a particular mathematical foundation, one approach is to implement611

the logic in a domain-specific manner. For instance, Cáccamo and Winskel [2], and New612

and Licata [12], both present logics addressing formalisation of proofs in category theory613

by designing particular type theories. In contrast, our system is a generic theorem-prover,614

making it easier to compare multiple systems, and to reuse proofs.615

Isabelle (Paulson [13]) was famously designed as a generic theorem-proving system,616

and one of the sample object logics distributed with it is MLTT (Martin-Löf Type Theory).617

Nonetheless, as the ambient types of the Isabelle meta-level are those of simple type theory,618

working with dependent types in Isabelle requires the interesting type structures and typing619

judgements to appear at the level of terms. Once this compromise has been made, handling620

equalities, for example, becomes quite tedious; our system’s restrictive handling of equality621

gains us a great deal of pragmatic power: simple rewriting, and a straightforward notion of622

matching.623

10.2 Future Work624

In future work, we will publish our formalisation of McLarty’s CCAF [8] and our mechanisation625

of the proof theory of the system.626

The existence of large sets is a consequence of the SEAR collection axiom, and is already627

stronger than what is possible in HOL, but there is still more that is possible in SEAR. In628

particular, from its collection axiom, we can follow Shulman [16] to derive the replacement629

schema, and get a minimal set from amongst these large sets. This would enable more630

transfinite constructions, such as that of Beth cardinals, which we plan to work on next.631

Moreover, we are interested in implementing a uniform approach of applying an axiomatic632

foundation as a metatheory, and hence developing the ‘two-layered’ workspace discussed by633

McLarty and Rodin [9]. We are also looking forward to mechanising some of the theorems634

in the list “Formalising 100 Theorems” [19] in either SEAR or ETCS. Finally, it would be635

interesting to support the usage of different ambient logics, so people might, in particular,636

choose to do intuitionistic proofs as well.637
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