
Mechanised Modal Model Theory

Yiming Xu1,3 and Michael Norrish2,1[0000−0003−1163−8467]

1 Australian National University
2 michael.norrish@data61.csiro.au

Data61, CSIRO
3 u5943321@163.com

Abstract. In this paper, we discuss the mechanisation of some funda-
mental propositional modal model theory. The focus on models is novel:
previous work in mechanisations of modal logic have centered on proof
systems and applications in model-checking. We have mechanised a num-
ber of fundamental results from the first two chapters of a standard
textbook (Blackburn et al. [1]). Among others, one important result, the
Van Benthem characterisation theorem, characterises the connection be-
tween modal logic and first order logic. This latter captures the desired
saturation property of ultraproduct models on countably incomplete ul-
trafilters.

1 Introduction

The theory of modal logic has long been a fruitful area when it comes to mechani-
sation. The proof systems are appealing, and the applications in model-checking
are of clear real-world interest. It helps also that the subject domain (proof cal-
culi and automata) are well-suited to “standard” theorem-proving technology
(rule inductions and interesting data types).

There has been much less work on the model theory behind modal logic; in-
deed even in first order logic, most developments concern themselves only with
model theory inasmuch as it is required to show completeness of an accompany-
ing proof system. As our experience demonstrates, it is also clear that modern
theorem-proving systems are not necessarily so well-suited to the mathematics
behind model theory. Harrison [5] complained in 1998 that the very notion of
validity is awkward to capture in HOL, and our own work shows up further
failings in simple type theory.

Nonetheless, there is much interesting mathematics to be found even in the
early chapters of a standard text such as Blackburn et al. [1]. The fact that
mechanising only as far as [1, Chapter 2] requires what we believe to be the
first mechanisation of the notion of ultraproduct (ultimately leading to Loś’s
theorems and other results), is a strong suggestion that we are exploring novel
mathematical ground for interactive theorem-proving systems.

Contributions This paper presents the first mechanised proofs of a number of
basic results from the first two chapters of Blackburn et al. [1] (e.g., bounded

morphisms, bisimulations and the finite model property via selection), as well
as

– Two versions of Loś’s theorem on the saturation of ultraproduct models;
– modal equivalence as bisimilarity between ultrafilter extensions; and
– a close approximation of Van Benthem’s Characterisation Theorem.

We also discuss where HOL’s simple type theory lets us down: some standard
results (including the best possible statement of Van Benthem’s Characterisation
Theorem) seem impossible to prove in our setting.

HOL4 Notation All of our theorems have been pretty-printed to LATEX from the
HOL theory files. We hope that most of the basic syntax is easy to follow. In a
few places we use CHOICE s to denote the arbitrary choice of an element from
set s (appealing to the Axiom of Choice). The power-set of a set s is written
P s. In a number of places, we use HOL’s “itself” type to allow us to explicitly
mention a type via a term. The type α itself has just one value inhabiting it
for any given choice of α; that value is written (:α).

Source Availability Our HOL4 sources are available from GitHub at

https://github.com/u5943321/Modal-Logic

The sources build under HOL4 commit with SHA 03829d8986f.

2 Syntax, Semantics and the Standard Translation

In our mechanisation, we consider the basic modal language, in which the only
primitive modal operator is the ‘♦’. A modal formula is either of form Vm p, where
p is of type num, enumerating all the possible variable symbols, a disjunction
DISJ φ ψ (pretty-printed to φ ∨m ψ in most places), the falsity ⊥m, a negation
¬m φ, or, finally, of the form ♦φ. We define a data type called form to represent
the formulas of this modal language.

Definition 1. [1, Definition 1.9]

form = Vm num | DISJ form form | ⊥m | ¬m form | ♦ form

If we wanted to consider modal operators with any arity, we should change the
last constructor of modal formulas so it takes two parameters: a natural number
indexing the modal operator, and a list of modal formulas. This would in turn
require a well-formedness predicate to be defined over formulas to make sure
that modalities were applied to the right number of arguments.

A model where these formulas can be interpreted consists of a frame and a
valuation, where a β frame is a β-set with a relation on it, and a model adds
valuations for the variables present at each world:

Definition 2. [1, Definition 1.19]

β frame = 〈〈 world : β → bool; rel : β → β → bool 〉〉
β model = 〈〈 frame : β frame; valt : num → β → bool 〉〉

In the rest of the paper, the field M .valt of a model M will be called the valuation,
and MW , MR and M V are used to denote the world set, the relation, and the
valuation of M respectively. The interpretation of modal formulas on a model is
given by the predicate satisfaction. We read ‘M ,w
 φ’ as ‘φ is satisfied at the
world w in M ’.

Definition 3. [1, Definition 1.20]

M ,w
 Vm p
def
= w ∈ MW ∧ w ∈ M V p

M ,w
 ⊥m
def
= F

M ,w
 ¬m φ
def
= w ∈ MW ∧ M ,w 6
 φ

M ,w
 (φ1 ∨m φ2)
def
= M ,w
 φ1 ∨ M ,w
 φ2

M ,w
 ♦φ
def
= w ∈ MW ∧ ∃ v . MR w v ∧ v ∈ MW ∧ M , v
 φ

By requiring w ∈ MW in various clauses above, we ensure that models’ world
sets must be non-empty if they are to satisfy any formulas.

Two worlds w1 ∈ MW
1 and w2 ∈ MW

2 are modal equivalent (written
M1,w1! M2,w2) if they satisfy the same set of modal formulas. If φ1 , φ2 are
modal formulas, we say they are equivalent over β models (written φ1 ≡(:β) φ2)
if they are satisfied in the same worlds in every model:

Definition 4 (Notions of equivalence).

M ,w ! M ′,w ′
def
= ∀φ. M ,w
 φ ⇐⇒ M ′,w ′
 φ

(φ1 : form) ≡(:β) (φ2 : form)
def
=

∀ (M : β model) (w : β). M ,w
 φ1 ⇐⇒ M ,w
 φ2

We cannot omit the type parameter (:β) in the definition, as there would oth-
erwise be a type, namely the type of the underlying set of the models we are
talking about, that only appears on the right-hand side but not on the left-
hand side of the definition. HOL forbids such definitions for soundness reasons.
Also, HOL does not permit quantification over types, so it is impossible to write
∀µ. φ1 ≡µ φ2 , with µ a type. Therefore, this definition is not exactly encoding
the equivalence in the usual sense: when we mention equivalence of formulas in
usual mathematical language, we are implicitly referring to the class of all mod-
els, but the constraint here bans us from talking about all models of all possible
types at once.

A modal formula can be translated into a first-order formula via the standard
translation. To mechanise this translation, we build on Harrison’s construction
of first-order logic [5]. The first-order connectives are decorated with an f. A first
order model M is a set M .Dom with interpretation of function symbols M .Fun

and predicate symbols M .Pred. A valuation σ of M is a function that maps all
the natural numbers into the domain of M . If a first-order formula φ is satisfied
in a first-order model M with σ a valuation assigning free variables of φ elements
in the domain of M , we write M , σ � φ.

For a modal formula φ, STx φ is the standard translation of φ using x as the
only free variable that may occur:

Definition 5. [1, Definition 2.45 (Standard Translation)]

STx (Vm p)
def
= Pf p (Vf x)

STx ⊥m
def
= ⊥f

STx (¬m φ)
def
= ¬f (STx φ)

STx (φ ∨m ψ)
def
= STx φ ∨f STx ψ

STx (♦φ)
def
= ∃f (x + 1) (Rf (Vf x) (Vf (x + 1)) ∧f STx + 1 φ)

As one would expect, we translate ♦φ into an existential formula. To ensure we
use a fresh variable, we use x+ 1 as our new variable symbol in this clause. The
standard translation gives a first-order reformulation of satisfaction of modal
formulas:

Proposition 1. [1, Theorem 2.47 (i)]

` M ,w
 φ ⇐⇒ mm2folm M , (λn. w) � STx φ

Here mm2folm is the function that turns a modal model into a first-order model,
defined as:

mm2folm M
def
=

〈〈Dom := MW ; Fun := (λn l . CHOICE MW);
Pred :=

(λ p zs.
case zs of

[] ⇒ F

| [w1] ⇒ w1 ∈ MW ∧ M V p w1

| [w1; w2] ⇒ p = 0 ∧ MR w1 w2 ∧ w1 ∈ MW ∧ w2 ∈ MW

| w1 :: w2 :: w3 :: ws ⇒ F)〉〉

That is, the model obtained by converting a modal model M has domain MW ,
maps every term Fnf f l into an arbitary world, maps each propositional letter to
distinct predicates on worlds, and uses one binary predicate (the “0th predicate”)
to encode the frame relation.

3 Basic Results

We discuss some highlights of mechanised results from Blackburn at al. [1, §2.1–
§2.3] below.

3.1 Tree-like property

A tree-like model is a model whose underlying frame is a tree. If Tr , a frame, is
also a tree with root r, we write tree Tr r :

Definition 6. [1, Definition 1.7]

tree Tr r
def
=

r ∈ Tr .world ∧ (∀w . w ∈ Tr .world ⇒ Tr .rel |Tr .world
∗ r w) ∧

(∀w . w ∈ Tr .world ⇒ ¬Tr .rel w r) ∧
∀w . w ∈ Tr .world ∧ w 6= r ⇒ ∃!w0. w0 ∈ Tr .world ∧ Tr .rel w0 w

The tree-like property says each satisfiable modal formula can be satisfied in a
tree-like model:

Proposition 2. [1, Proposition 2.15]

` (M : β model), (w : β)
 (φ : form) ⇒
∃ (M ′ : β list model) (r : β list). tree M ′.frame r ∧ M ′, r
 φ

The world set of the tree-like model constructed from M is a set of lists of worlds
in M (such lists are effectively paths from the root to various positions within
the tree). Thus, passing to a tree-like model does not preserve the model type.
The tree-like lemma is used to prove the finite model property via selection
afterwards.

3.2 Bisimulation

Though apparently verbose, the definition of bisimulation in HOL is straightfor-
ward.

Definition 7. [1, Definition 2.16 (Bisimulations)]

M1

Z

- M2
def
=

∀w1 w2.
w1 ∈ MW

1 ∧ w2 ∈ MW
2 ∧ Z w1 w2 ⇒

(∀ p. M1,w1
 Vm p ⇐⇒ M2,w2
 Vm p) ∧
(∀ v1.

v1 ∈ MW
1 ∧ MR

1 w1 v1 ⇒
∃ v2. v2 ∈ MW

2 ∧ Z v1 v2 ∧ MR
2 w2 v2) ∧

∀ v2.
v2 ∈ MW

2 ∧ MR
2 w2 v2 ⇒

∃ v1. v1 ∈ MW
1 ∧ Z v1 v2 ∧ MR

1 w1 v1

M ,w - M ′,w ′
def
= ∃Z . M

Z

- M ′ ∧ w ∈ MW ∧ w ′ ∈ M ′W ∧ Z w w ′

It is trivial to prove by induction that bisimilar worlds are modal equivalent. As
the most significant theorem on the basic theory of bisimulations, we proved the
Hennessy-Milner theorem, which states that modal equivalence and bisimulation
on image finite models are the same thing. An image-finite model is a model
where every world can only be related to finitely many worlds. In HOL, we get:

Theorem 1. [1, Theorem 2.24 (Hennessy-Milner Theorem)]

` image-finite M1 ∧ image-finite M2 ∧ w1 ∈ MW
1 ∧ w2 ∈ MW

2 ⇒
(M1,w1! M2,w2 ⇐⇒ M1,w1 - M2,w2)

Bisimulation is an interesting topic in modal logic. Three other significant
theorems on bisimulations (including an approximation of Van Benthem Char-
acterisation theorem) are discussed later.

3.3 Finite model property

There are two classical approaches to constructing finite models using model
theory, namely via selection and via filtration. The complicated one is the former:
Given M1,w1
 φ, where φ has degree k, we can construct M2, M3, M4 and M5

comsecutively, such that M5 is the finite model we want, where:

– M2 is the tree-like model obtained from Proposition 2 with root w2 such that
M2,w2
 φ.

– M3 is the restriction of M2 to height k.
– M4 is obtained from M3 by modifying the valuation into λ p v . if p ∈

prop-letters φ then M3
V p v else F, where prop-letters φ is the set of all

propositional letters used by φ.

The construction of M5 requires a lemma:

Lemma 1. [1, Proposition 2.29]

` FINITE (Φ : num → bool) ∧ INFINITE U(:β) ⇒
∀ (n : num). FINITE { φ | DEG φ ≤ n ∧ prop-letters φ ⊆ Φ } /≡(:β)

The proof of Lemma 1 further relies on the following fact: Given a set A of
modal-formulas that is finite up to equivalence, if we combine the elements of
A using only connectives other than ♦, then we get only finitely many non-
equivalent formulas. To show this, we prove that there is an injection from the
set of equivalence classes of such combinations to a finite set. For the antecedent
of Lemma 1, we require the assumption that the universe of β is infinite since we
rely on the fact that two modal formulas ♦φ1 and ♦φ2 are equivalent if and only
if φ1 and φ2 are equivalent. This would be easy to prove in set theory. However,
in simple type theory, the proof of φ1 ≡(:β) φ2 iff ♦φ1 ≡(:β) ♦φ2 requires us
(in the right-to-left direction) to be able to construct a model with a new world
inserted, something only sure to be possible if the β universe is infinite. As the
construction used Proposition 2, we change the type of the model by passing to
a finite model via selection:

Theorem 2. [1, Theorem 2.34 (Finite model property, via selection)]

` (M1 : β model), (w1 : β)
 (φ : form) ⇒
∃ (M : β list model) (v : β list). FINITE MW ∧ v ∈ MW ∧ M , v
 φ

We also mechanised the filtration approach, but omit the details for lack of
space. The advantage of filtration is that the resulting finite model is over worlds
of the same type as in the starting model.

All the results proved above can be captured using num models everywhere.
If one takes β to be num (or any infinite type) in Theorem 2, one can also exploit
the fact that numbers and lists of numbers have the same cardinality to derive
a finite model result that preserves the “input type”.

4 Mechanising Ultrafilters and Ultraproducts

A number of results in Blackburn et al. [1, §2.5–§2.7] rely on theorems about
ultrafilters and ultraproducts.

4.1 Ultrafilters

Given a non-empty set J , a set L ⊆ P J is a filter if it contains J itself, is
closed under binary intersection, and is closed upward.

Definition 8. [1, Definition A.12 (Filters)]

filter L J
def
=

J 6= ∅ ∧ L ⊆ P J ∧ J ∈ L ∧
(∀X Y . X ∈ L ∧ Y ∈ L ⇒ X ∩ Y ∈ L) ∧
∀X Z . X ∈ L ∧ X ⊆ Z ∧ Z ⊆ J ⇒ Z ∈ L

We call L a proper filter if L is not the whole power set. An ultrafilter is a filter
U such that for every X ⊆ J , exactly one of X or J \ X is in U . Intuitively,
subsets X ⊆ J in an ultrafilter U are considered as ‘large’ subsets of J .

The ultrafilter theorem states that every proper filter is contained in an
ultrafilter:

Theorem 3. [1, Fact A.14, first half]

` proper-filter L J ⇒ ∃U . ultrafilter U J ∧ L ⊆ U

(The proof uses Zorn’s Lemma.)
A subset A of the power set on J has finite intersection property if once

we take the intersection of a finite, nonempty family in A, the resultant set is
nonempty.

Definition 9. [1, Definition A.13 (Finite Intersection Property)]

` FIP A J ⇐⇒
A ⊆ P J ∧ ∀B . B ⊆ A ∧ FINITE B ∧ B 6= ∅ ⇒ ⋂

B 6= ∅

As a corollary of ultrafilter theorem, a set with finite intersection property is
contained in an ultrafilter.

4.2 Ultraproducts

The notion of ultraproducts is defined for sets, modal models, and first-order
models.

Ultraproduct of sets A family of sets indexed by J is a function As in HOL.
For j ∈ J , As j is the set indexed by j . Given a family As indexed by a non-
empty set J such that each As j is non-empty, the ultraproduct of As is defined
as a quotient of the cartesian product of the family.

Definition 10. [1, Page 495 (Cartesian product)]

Cart-prod J As def
= { f | ∀ j . j ∈ J ⇒ f j ∈ As j }

If U is an ultrafilter on J , for two functions f, g in the Cartesian product
Cart-prod J As, we say f and g are U -equivalent (notation: f ∼As

U g) if the set
{ j | j ∈ J ∧ f j = g j } (where the values of f and g agree) is in U . The
ultraproduct of As modulo U is the quotient of Cart-prod J As by ∼As

U .

Definition 11. [1, Definition 2.69 (Ultraproduct of Sets)]

ultraproduct U J As def
= Cart-prod J As/ ∼As

U

We write fU to denote the equivalence class that f belongs to. In the case where
As j = A for all j ∈ J , the ultraproduct is called the ultrapower of A modulo
U .

Ultraproduct for modal models Given a family M s of modal models in-
dexed by J and an ultrafilter U on J , the ultraproduct model of M s modulo U
(notation: ΠU M s) is described as follows:

– The world set is the ultraproduct of world sets of M s modulo U .
– Two equivalence classes fU , gU of functions are related in ΠU M s iff there

exist f0 ∈ fU , g0 ∈ gU , such that { j ∈ J | (M s j)R (f0 j) (g0 j) } is in U .
– A propositional letter p is satisfied at fU in ΠU M s iff there exists f0 ∈ fU

such that { j | j ∈ J ∧ f0 j ∈ (M s j)V p } is in U .

Definition 12. [1, Definition 2.70 (Ultraproduct of Modal Models)]

ΠU M s def
=

〈〈frame :=
〈〈world := ultraproduct U J (λ j . (M s j)W);

rel :=
(λ fU gU .
∃ f0 g0.

f0 ∈ fU ∧ g0 ∈ gU ∧
{ j | j ∈ J ∧ (M s j)R (f0 j) (g0 j) } ∈ U)〉〉;

valt :=
(λ p fU . ∃ f0. f0 ∈ fU ∧ { j | j ∈ J ∧ f0 j ∈ (M s j)V p } ∈ U)〉〉

As ∼A
U is an equivalence relation, if one element in an equivalence class

satisfies the required condition, then all the elements in the equivalence class
will satisfy the condition. Therefore, if we replace all the existential quantifiers
with universal quantifiers in the above definition, the construction is still valid,
and will give the same model as the current definition.

The critical result we need about ultraproducts of modal models is a modal
version of the fundamental theorem of ultraproducts, also known as Loś’s theo-
rem.

Theorem 4 (Loś’s theorem, Modal version).

` ultrafilter U J ∧ fU ∈ (ΠU M s)W ⇒
(ΠU M s, fU
 φ ⇐⇒
∃ f0. f0 ∈ fU ∧ { j | j ∈ J ∧ M s j , f0 j
 φ } ∈ U)

According to our intuition about ultrafilters, we can gloss this theorem to mean
that the ultraproduct of a family of modal models satisfies a modal formula if
and only if ‘most of’ the models in the family satisfy the formula. Though it is
possible to derive this result from Loś’s theorem of first-order models using the
standard translation, our proof is direct, by structural induction on φ.

Ultraproducts for first-order models Given a family M s of first-order mod-
els indexed by J and an ultrafilter U on J , the ultraproduct model of M s modulo
U (notation: fΠU M s) is given by:

– The domain is the ultraproduct of the domains of M s over U on J .

– A function named by symbol (natural number) n sends a list zs of equiv-
alence classes to the equivalence class of a function that sends j ∈ J to
(M s j).Fun n l , where the k-th member of the list l is a representative of the
k-th member (which is an equivalence class) of zs.

– A predicate named by symbol p will hold for a list zs of equivalence classes if
and only if when we have a list zr , where k-th member is a representative of
the k-th member of zs, the set of elements j ∈ J such that (M s j).Pred p zr
is in U .

Definition 13. [1, Definition A.18 (Ultraproduct of First-Order Models)]

fΠU M s def
=

〈〈Dom := ultraproduct U J (λ j . (M s j).Dom);
Fun :=
(λn zs.
{ y |
(∀ j . j ∈ J ⇒ y j ∈ (M s j).Dom) ∧
{ j | j ∈ J ∧ y j = Fun-component M s n zs j } ∈ U });

Pred := (λ p zs. { j | j ∈ J ∧ Pred-component M s p zs j } ∈ U)〉〉

Here we fix the representative of each equivalence class fU to be CHOICE fU .
Therefore, as described above, the functions Fun-component and Pred-component

are:

Fun-component M s n fs i
def
= (M s i).Fun n (MAP (λ fU . CHOICE fU i) fs)

Pred-component M s p zs i
def
= (M s i).Pred p (MAP (λ fU . CHOICE fU i) zs)

The semantic behavior of ultraproduct models is characterised by Loś’s theo-
rem: for the ultraproduct of a family M s of first-order models over an ultrafilter
U on J , a formula φ is satisfied under a valuation σ if and only if the set
indexing the models M s j in the family where φ is true under the valuation
λ v . CHOICE (σ v) j is in the ultrafilter U .

Theorem 5. [1, Theorem A.19 (Loś’s theorem)]

` ultrafilter U J ∧ valuation (fΠU M s) σ ∧
(∀ j . j ∈ J ⇒ wffm (M s j)) ⇒

(fΠU M s, σ � φ ⇐⇒
{ j | j ∈ J ∧ M s j , (λ v . CHOICE (σ v) j) � φ } ∈ U)

where wffm M means the functions of M never map a list out of the domain of
M .

5 Ultrafilter Extensions

The first application of the theory of ultrafilters above is to construct the ultrafil-
ter extension of a model, which has the nice property of being modally saturated
(m-saturated hereafter). To define m-saturation, we give the following three def-
initions (the first two are called finitely satisfiable, satisfiable) consecutively:

Definition 14. [1, Definition 2.53]

satisfiable-in Σ X M
def
=

X ⊆ MW ∧ ∃w . w ∈ X ∧ ∀φ. φ ∈ Σ ⇒ M ,w
 φ

fin-satisfiable-in Σ X M
def
= ∀S . S ⊆ Σ ∧ FINITE S ⇒ satisfiable-in S X M

m-sat M
def
=

∀w Σ .
w ∈ MW ∧ fin-satisfiable-in Σ { v | v ∈ MW ∧ MR w v } M ⇒

satisfiable-in Σ { v | v ∈ MW ∧ MR w v } M

For m-saturated models, bisimulation and modal equivalence coincide:

Proposition 3. [1, Proposition 2.54]

` m-sat M1 ∧ m-sat M2 ∧ w1 ∈ MW
1 ∧ w2 ∈ MW

2 ⇒
(M1,w1! M2,w2 ⇐⇒ M1,w1 - M2,w2)

Given a model M and a set X of worlds of M , the set of worlds that ‘can see’
X (notation: M♦(X)) is the set of worlds w of M such that there exists some
v ∈ X such that MR w v . We define the ultrafilter extension ueM of M as:

– The world set is the set of all ultrafilters on MW .
– Two ultrafilters u, v on M are related in the ultrafilter extension of M if for

every X ∈ v , the set of worlds that can see X is in u.
– A propositional letter p to be satisfied at an ultrafilter v if and only if the

set of worlds in M which satisfies p is in v.

In HOL:

Definition 15. [1, Definition 2.57 (Ultrafilter Extension)]

ueM
def
=

〈〈frame :=
〈〈world := { u | ultrafilter u MW } ;

rel :=
(λ u v .

ultrafilter u MW ∧ ultrafilter v MW ∧
∀X . X ∈ v ⇒ M♦(X) ∈ u)〉〉;

valt := (λ p v . ultrafilter v MW ∧ { w | w ∈ MW ∧ M V p w } ∈ v)〉〉

Using the ultrafilter theorem and some basic properties about ultrafilters, we
derive:

Proposition 4. [1, Proposition 2.59 (i)]

` ultrafilter u MW ⇒
({ w | w ∈ MW ∧ M ,w
 φ } ∈ u ⇐⇒ ueM , u
 φ)

In particular, every world w ∈ MW is embedded as the principal filter πMW

w on
MW generated by w in the ultrafilter extension or M . Also, the above leads to
the proof of the fact that the ultrafilter extension of every model is m-saturated.
The m-saturatedness of ultrafilter extensions together with Proposition 3 imme-
diately gives the central result about ultrafilter extension: bisimilarity of worlds
in a model M can be characterised as bisimilarity in ueM .

Theorem 6. [1, Proposition 2.62]

` w1 ∈ MW
1 ∧ w2 ∈ MW

2 ⇒
(M1,w1! M2,w2 ⇐⇒ ueM1, π

MW
1

w1 - ueM2, π
MW

2
w2)

6 Countable Saturatedness of Ultrapower Models

Given a first-order model M with no information about interpretation of its
function symbols, we can expand the model M by adding an interpretation of
some function symbols. For our purpose, we are only interested in adding the

interpretation of finitely many nullary function symbols, also called constants.
We write expand M A f to denote the model that is the result of adding each
element in A to M as a new constant. Further, the function f is a bijection
between {0, · · · , n−1} and A, which is assumed to be finite, so that each nullary
function symbol c will be interpreted as f c in M ′.

Definition 16. [1, Definition A.9 (Expansion)]

expand M A f
def
=

〈〈Dom := M .Dom;
Fun :=

(λ c l . if c < CARD A ∧ l = [] then f c else CHOICE M .Dom);
Pred := M .Pred〉〉

As is apparent from the definition, the only difference between a model and its
expansion is the interpretation of function symbols.

A set Σ of first-order formulas is called consistent with a model M if for
every finite subset Σ0 ⊆ Σ , there exists a valuation of M such that all elements
of Σ0 are satisfied, in this case, we write consistent M Σ . A set Γ of first-order
formula is an x-type if for each formula in Γ , the only free variable that may
contain is x. In this case, we write ‘ftype x Γ ’ in HOL. If Γ is an x-type, when
evaluating formulas in Γ , the valuations will only control where the only free
variable x goes to. We say Γ is realised in M if there is an element w in the
domain of M such that M , (λ v . w) � φ for all φ ∈ Γ . In this case, we write
‘frealises M x Γ ’ in HOL. Let M be a model and n be a natural number. If
for every A ⊆ M .Dom with |A| < n and every f : N → M .Dom, the model
expand M A f realises every x-type Γ that is consistent with expand M A f , then
we say M is n-saturated. In HOL:

Definition 17. [1, Definition 2.63 (n-Saturated)]

n-saturated M n
def
=

∀A Γ x f .
IMAGE f U(:num) ⊆ M .Dom ∧ FINITE A ∧ CARD A ≤ n ∧
A ⊆ M .Dom ∧ BIJ f (count (CARD A)) A ∧
(∀φ. φ ∈ Γ ⇒ form-functions φ ⊆ { (c, 0) | c < CARD A }) ∧
ftype x Γ ∧ consistent (expand M A f) Γ ⇒

frealises (expand M A f) x Γ

We say M is countably saturated if M is n-saturated for every natural number
n. The ultimate goal is to prove a lemma to be used in the proof of Van Benthem
characterisation theorem: For a family of non-empty models, their ultraproduct
on a countably incomplete ultrafilter is countably saturated.

Lemma 2. [1, Lemma 2.73]

` (∀ j . j ∈ J ⇒ (M s j)W 6= ∅) ∧ countably-incomplete U J ⇒
countably-saturated (mm2folm (ΠU M s))

Here a countably incomplete ultrafilter is an ultrafilter that contains a countably
infinite family that intersects to the empty set. We prove in HOL that such
ultrafilters do exist using Theorem 3. The above theorem is not simply a direct
consequence of Loś’s theorem: that result is about ultraproducts of first-order
models, and it says nothing about expansion. But to prove Lemma 2, we must
prove a statement for an expanded first-order model, and this first order model
is itself obtained by converting a ultraproduct of modal models.

To deal with this issue, the key observation is that constants are nothing
more than forcing some symbols to be sent to some points in a model under
every valuation, hence rather than use nullary function symbols, we fix a set of
variable letters, each corresponding to a function symbol, and only consider the
valuations that send these variable letters to certain fixed points. With this idea,
we can remove all the constants in a formula, and hence change our scope from
an expanded model back to the unexpanded model. To get rid of the constants
{0, · · · , n − 1}, we replace every Vf m with Vf (m + n), and replace every
constant Fnf c [] by Vf c. This operation is done by the function shift-form which
takes a natural number (the number of constants we want to remove), and a first-
order formula (where the only function symbols may appear are the constants
0, · · · , n−1). Since 0, · · · , n−1 in a shifted formula are now designed to be sent
to fixed places f 0, · · · , f (n−1), it does not make sense to assign these variable
symbols anywhere else. Therefore, to talk about evaluation of shifted formula,
the first thing is to make sure that the valuations we are considering send the
variables which actually denote constants to the right place. Hence we shift the
valuations accordingly, and then prove that a formula is satisfied on an expanded
model is satisfied under a valuation if and only if the shifted formula is satisfied
under the shifted valuation. Also, we prove that ‘taking the ultraproduct first-
order model commutes with the convertion from modal to a first-order model on
certain formulas’, in the sense that the resulting models satisfies the same first-
order formulas without function symbols. By putting these two results together,
we prove Lemma 2 using the proof in Chang and Keisler [3].

7 Van Benthem’s Characterisation Theorem

Note that the standard translation of any modal formula can only contain unary
predicate symbols which correspond to propositional letters, one binary predicate
symbol which corresponds to the relation, and no function symbols. A first-order
formula which only uses these symbols is called an L1

τ -formula. An L1
τ -formula

which contains only one free variable is called invariant under bisimulation if for
all models M and N with w ∈ MW and v ∈ NW , if there exists a bisimulation
relation between M and N relating w and v, then φ holds at w if and only if it
holds at v when both M and N are viewed as first-order models.

Definition 18. [1, Definition 2.67 (Invariant for Bisimulations)]

invar4bisim (x : num) (:α) (:β) (φ : folform)
def
=

FV φ ⊆ { x } ∧ L1
τ φ ∧

∀ (M : α model) (N : β model) (v : β) (w : α).
M ,w - N , v ⇒
(mm2folm M , (λ (x : num). w) � φ ⇐⇒

mm2folm N , (λ (x : num). v) � φ)

Because of the same problem we met when defining equivalence of formulas,
the type parameters are necessary here. However, although it is possible to prove
theorems for different types α and β in the above definition, in the theorems to
come, we will only consider the case where α and β are the same.

The Van Benthem characterisation theorem says an L1
τ formula with at most

one free variable x is invariant under bisimulation precisely when it is equiva-
lent to the standard translation of some modal formula at x. It is immediate
from Proposition 1 that every such formula which is equivalent to a standard
translation is invariant for bisimulation. We cannot prove it as an ‘if and only
if’ statement, since according to the proofs in [1], we can only prove the two
directions separately as:

Proposition 5. [1, Theorem 2.68, as two separate directions]

` FV δ ⊆ { x } ∧ L1
τ δ ∧ δ f≡(:α) STx φ ⇒ invar4bisim x (:α) (:α) δ

` INFINITE U(:α) ∧
invar4bisim x (:(num → α) → bool) (:(num → α) → bool) δ ⇒
∃φ. δ f≡(:α) STx φ

which cannot be put together into a double implication. To see the reason: given
an L1

τ -formula φ with no more then one free variable, by the second theorem
above, if φ is invariant under bisimulation for models with (num → α) → bool-
worlds, then φ is equivalent to a standard translation on a model with α-worlds.
However, if we want to prove the converse of this statement, we need to start
with the assumption that φ is equivalent to a standard translation on models
with α-worlds, and prove that φ is invariant for bisimulation for models with
(num → α) → bool-worlds. But by the first theorem above, we can only
conclude φ is invariant for bisimulation for models of type α. The point is that
it is not the fact that all our desired operations can be taken within a type. In
particular, we cannot take ultraproducts of models and preserve cardinalities.
The cardinality of the type universe of (num → α) → bool is too large to
be embedded into α, so we cannot just fix the ‘base type’ to be α and get an
‘if and only if’ statement-we cannot derive φ is invariant for bisimulation for
models with (num → α) → bool-worlds from the fact that φ is invariant for
bisimulation for models with α-worlds. If we could quantify over types (as we
could in a theorem prover based on dependent type theory), then we can could
define ‘invariant under bisimulation for models of every type’, and hence prove
the original statement of Van Benthem characterisation theorem.

For the proof of the two theorems above, the first one is immediate from
Proposition 1, and the second one requires another critical lemma saying ‘modal
equivalence between two worlds implies bisimilarity of the two worlds when em-
bedded in some other models’. More precisely, if two worlds w ∈ MW and
v ∈ NW are modal equivalent, then we can find an ultrafilter U on J such
that in ultrapower models of M and N on U respectively, there is a bisimulation
between the worlds corresponding to w and v .

Theorem 7. [1, Theorem 2.74, one direction]

` w ∈ MW ∧ v ∈ NW ∧ (∀φ. M ,w
 φ ⇐⇒ N , v
 φ) ⇒
∃U J .

ultrafilter U J ∧
ΠU (λ j . M), { f | (λ j . w) ∼worlds (λ j . M)

U f } - ΠU (λ j . N), { g |
(λ j . v) ∼worlds (λ j . N)

U g }

The proof of the above relies on Lemma 2.

8 Conclusion

To summarise, we have mechanised all of the results (appearing as propositions,
lemmas and theorems) in the first two chapters in Blackburn at al. [1] that can
be captured by the HOL logic, and which are about the basic modal language.
The exceptions are:

– The result in Section 2.6 about ‘definability’, which requires a definition of
the ‘models closed under taking ultraproducts’. Simple type theory cannot
capture such large sets.

– The result about ‘safety’ in Section 2.7 is a result about the PDL language,
which has infinitely many modal operators. For the moment, we have re-
stricted our attention to the basic modal language, with only ♦ (and the
derived �).

The two characterisation theorems from Blackburn et al. [1], namely Theorem
2.68 (Van Benthem’s Characterisation Theorem) and Theorem 2.78, are the only
two mechanised theorem such that translating the ‘if and only if’ statements from
set theory into simple theory theory does not yield an ‘if and only if’ statement.
Blackburn et al.’s proof of Theorem 2.78 has the same pattern as Van Benthem’s
Characterisation Theorem (discussed earlier), and is less complicated.

For each of the mechanised definitions and results, we write the statement in
HOL to be as close as possible to the original statement in [1]. We believe that
this makes it as easy as possible for people who are interested in mechanising
other results in [1] to continue with our work as a starting point. The work on
ultraproducts up to Loś’s theorem is independent of our work on modal model
theory, and should be generally useful in other model-theoretic applications.

8.1 Related Work

We believe that we are the first to mechanise the bulk of the results in this
paper. Of course, much work has been done in this and similar areas. For exam-
ple, de Wind’s thesis [7] is a notable early mechanisation of modal logic, mainly
focusing on proving the validity of modal formulas via natural deduction. Of
similar vintage is Harrison’s mechanisation of foundational results about first
order model theory [5], in particular compactness. We used this mechanisation
directly in our own work. A great deal of work has also been done in the mech-
anisation of first order proof theory, such as the recent pearl by Blanchette et
al. [2], showing completeness in elegant fashion.

The connections between modal logic and process algebra are well-understood
and there has been a great deal of mechanised work on the operational theory
of such (co-)algebraic systems, starting at least as far back as Nesi [6]. Our
proof of the Hennessy-Milner theorem (Theorem 1) is a gesture in this direction,
but Van Benthem’s theorem is much deeper and uses bisimulations as a tool to
understanding the connection between modal and first order logics, rather than
as a connection to process algebras.

Mechanised work with ultrafilters began with Fleuriot’s use of them to mech-
anise non-standard analysis [4]. We are unaware of any previous mechanised use
of ultraproducts or ultrapowers.

References

1. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press
(2001)

2. Blanchette, J.C., Popescu, A., Traytel, D.: Unified classical logic completeness: A
coinductive pearl. In: IJCAR 2014. pp. 46–60. No. 8562 in Lecture Notes in Com-
puter Science, Springer (2014)

3. Chang, C.C., Keisler, H.J.: Model Theory. North Holland (1990)
4. Fleuriot, J.: A Combination of Geometry Theorem Proving and Nonstan-

dard Analysis with Application to Newton’s Principia. Springer (2001).
https://doi.org/10.1007/978-0-85729-329-9

5. Harrison, J.: Formalizing basic first order model theory. In: Theorem Proving in
Higher Order Logics, 11th International Conference. pp. 153–170. No. 1479 in Lec-
ture Notes in Computer Science, Springer (1998)

6. Nesi, M.: Mechanising a modal logic for value-passing agents in HOL. Electr.
Notes Theor. Comput. Sci. 5, 31–46 (1996). https://doi.org/10.1016/S1571-
0661(05)80682-6

7. de Wind, P.: Modal Logic in Coq. Master’s thesis, Vrije Universiteit (2001)

