
Formal Verification of Voting Schemes

Diploma Thesis by

Michael Kirsten

Department of Informatics
Institute of Theoretical Informatics (ITI)
Application-oriented Formal Verification

Supervisor: Prof. Dr. rer. nat. Bernhard Beckert
Advisors: Dipl.-Inform. Thorsten Bormer

Prof. Dr. Rajeev Goré

December 21, 2014

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

Abstract

Fundamental trust and credibility in democratic systems is commonly established through
the existence and execution of democratic elections. The vote-counting of an election,
usually formalised by a voting scheme, essentially boils down to a mechanism that
aggregates individual preferences of the voters to reach a decision. For this matter, there
are various differing voting schemes in use throughout the world, commonly based on
high expectations and means to ensure a sensible democratic process. However, incidents
such as the ruling by the German federal constitutional court which led to a change of
the German legislation in 2013 manifest that it is difficult for a voting scheme to meet
these legitimate expectations [BGB13]. In fact, there is no general notion of correctness
for a voting scheme and thus no universal mechanism as shown in Kenneth J. Arrow’s
Impossibility Theorem in 1951 [Arr51]. As a consequence, designing a real-world voting
scheme without flaws, which still gives significant democratic guarantees, is a difficult
task as a trade-off between desirable properties is non-trivial and error-prone.

The approach in this thesis is based on the idea to tackle this issue by proposing an
incremental and iterative development process for voting schemes based on automated
formal reasoning methods using program verification. We analyse two different forms
of verification considering their role in this development process in order to achieve
formal correctness of voting schemes. We perform a comprehensive set of case studies
by applying “medium-weight” and “light-weight” verification techniques. The “medium-
weight” approach uses the annotation-based deductive verification tool VCC based on
an auto-active methodology and the “light-weight” technique is performed with the
bounded model checking tool LLBMC. Our analysis covers a set of well-known voting
schemes combined with a set of prominent voting scheme criteria. In addition to giving
precise formalisations for these criteria adapted to the specific voting schemes and tools
used, we advance the efficiency of the “light-weight” approach by exploiting fundamental
symmetric properties. Furthermore, we investigate on encountered challenges posed by
the auto-active verification methodology, which lies in-between automatic and interactive
verification methodologies, with respect to specific characteristics in voting schemes
and also explore the potential of bounded verification techniques to produce precise
counterexamples in order to enhance the capability of our envisioned development process
to give early feedback. This thesis gives fundamental insights in general challenges and
the potential of automated formal reasoning with the goal of correct voting schemes.

Deutsche Zusammenfassung

Ein großer Teil des Vertrauens und der Glaubwürdigkeit in demokratischen Systemen wird
gemeinhin durch das Abhalten und den Ablauf von demokratischen Wahlen geschaffen.
Die Entscheidungsfindung einer Wahl, gewöhnlich durch ein Wahlverfahren formalisiert,
ist im Kern ein Mechanismus zur Aggregation individueller Wählerpräferenzen auf ein
Wahlergebnis. Für diese Aufgabe wird eine Vielzahl unterschiedlicher Wahlverfahren
in vielen Ländern der Erde angewandt, die üblicherweise auf hohen gesellschaftlichen
Ansprüchen basieren um einen angemessenen demokratischen Prozess sicherzustellen.
Jedoch zeigen Vorfälle wie das Urteil des Bundesverfassungsgerichts der Bundesrepu-
blik Deutschland, das 2013 zu einer Änderung der deutschen Verfassung führte, dass
es schwierig ist, ein Wahlverfahren zu finden, dass diese berechtigten Erwartungen er-
füllt [BGB13]. In der Tat existiert keine allgemein gültige Auffassung von Korrektheit
für ein Wahlverfahren und in der Konsequenz auch keine universelle Prozedur, wie schon
Kenneth J. Arrow 1951 in seinem Allgemeinen Unmöglichkeitstheorem zeigte [Arr51].
Daraus ergibt sich, dass der Entwurf eines realistischen fehlerfreien Wahlverfahrens, das
dennoch angemessene demokratische Zusicherungen gibt, eine schwierige Aufgabe ist, da
ein Ausgleich zwischen wünschenswerten Eingenschaften fehleranfällig und nicht trivial
ist.

Das Vorgehen dieser Arbeit um diesen Missstand anzugehen basiert auf der Idee ei-
nes stufenweisen und iterativen Entwicklungsprozesses für Wahlsysteme basierend auf
automatischen formal-logischen Beweisverfahren. Es werden zwei verschiedene Beweis-
techniken bezüglich ihrer Rolle in diesem Entwicklungsprozess analysiert, um formale
Korrektheit für Wahlverfahren zu erreichen. Dabei wird eine umfassende Fallstudie durch-
geführt, bei der verschiedene Verifikationstechniken, die wir als “leichtgewichtig” und
“mittel-gewichtig” klassifizieren, zur Anwendung kommen. Der “mittelschwere” Ansatz
wird durch das annotationsbasierte deduktive Verifikationswerkzeug VCC unterstützt,
das auf einer auto-aktiven Methodik basiert und die “leichtgewichtige” Technik nutzt das
Werkzeug LLBMC zur beschränkten Modellprüfung (bounded model checking). Die Ana-
lyse beinhaltet bekannte Wahlverfahren kombiniert mit allgemeinen Korrektheitskriterien
für Wahlverfahren. Über die Aufstellung präziser Formalisierungen dieser Kriterien ange-
passt auf die spezifischen Wahlverfahren hinaus wird die Effizienz des “leichtgewichtigen”
Ansatzes durch die Ausnutzung fundamentaler Symmetrieeigenschaften vorangebracht.
Außerdem untersucht diese Arbeit Herausforderungen, die sich aus der auto-aktiven Me-
thodik bezüglich bestimmter Charakteristika von Wahlverfahren ergeben, und erkundet
das Potential von Verifikationstechniken innerhalb bestimmter Grenzen bezüglich der
Eingabegrößen, präzise Gegenbeispiele zu generieren, um den langfristig angestrebten Ent-
wicklungsprozess um die Möglichkeit zu erweitern, frühzeitige Rückmeldungen bezüglich
der Korrektheit zu geben. Diese Arbeit erarbeitet fundamentale Einsichten in allgemeine

vi

Herausforderungen und das Potential automatisierter formal-logischer Beweisverfahren
bezüglich korrekter Wahlverfahren.

Acknowledgements

I would like to thank Prof. Dr. Bernhard Beckert and Prof. Dr. Rajeev Goré for giving
me the opportunity to be part of this exciting project and the experiences gained during
my visit at the Australian National University (ANU) in Canberra, Australia. Great
thanks go especially to Prof. Dr. Bernhard Beckert for supporting my work during my
visit and beyond, including lots of productive and motivating discussions. A special
thanks goes to my advisor Thorsten Bormer for taking the time for me, having lots of
patience, motivating me and many lively debates supporting my work. Last but not least,
I want to thank my parents for all the support for me and my studies over the years.

Statement of Authorship

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, December 21, 2014

. .
(Michael Kirsten)

Contents

1. Introduction 1
1.1. Research Objectives . 2
1.2. Correctness of Voting Schemes . 2
1.3. Outline . 3

2. Voting Schemes and Correctness Properties 5
2.1. A General Definition of Voting Schemes 5
2.2. Arrow’s Impossibility Theorem and its Implications 7
2.3. Selected Voting Schemes . 9

2.3.1. Plurality Voting . 10
2.3.2. Approval Voting . 12
2.3.3. Instant-Runoff Voting . 13
2.3.4. Single Transferable Vote . 17

2.4. Selected Voting Scheme Properties . 17
2.4.1. Monotonicity Criterion . 19
2.4.2. Condorcet Winner and Loser Criteria 21

3. Techniques and Tools for Verification 25
3.1. Selected Verification Techniques . 25

3.1.1. Auto-Active Deductive Program Verification 26
3.1.2. Software Bounded Model Checking 28

3.2. Selected Verification Tools . 29
3.2.1. Deductive Verification with VCC 29
3.2.2. Bounded Verification with LLBMC 33

4. Deductive Verification of Plurality Voting with VCC 35
4.1. FPTP Implementation and Specification of Monotonicity Criterion . . . 35
4.2. Full Verification with Auxiliary Specifications 39
4.3. Simplifying the Specification with Loop Unrolling 46

5. Bounded Verification with LLBMC and Counterexample Generation 51
5.1. General Setup and Encoding . 51
5.2. Plurality Voting . 54
5.3. Approval Voting . 58
5.4. Instant-Runoff Voting . 60
5.5. Single Transferable Vote . 66
5.6. Summary . 70

xii Contents

5.7. Generation of Counterexamples . 72
5.7.1. Instant-Runoff Voting . 72
5.7.2. Single Transferable Vote . 75

6. Improving Performance of Bounded Verification by Symmetry Reduction 79
6.1. Plurality Voting with Anonymity . 79
6.2. Plurality Voting with Anonymity and Neutrality 83
6.3. Approval Voting with Anonymity and Neutrality 85

7. Conclusion 89
7.1. Related Work . 89
7.2. Summary and Results . 90
7.3. Outlook and Future Work . 92

A. Implementations and Specifications 93
A.1. Plurality Voting for VCC . 93

A.1.1. Full Specification of Monotonicity for Plurality Voting 93
A.1.2. Lemma for Monotonicity Criterion 96

A.2. Plurality Voting for LLBMC . 97
A.2.1. General Plurality Voting . 98
A.2.2. FPTP with Symmetry Breaking Predicates for Anonymity 99
A.2.3. FPTP with Predicates for Anonymity and Neutrality 101

A.3. Approval Voting for LLBMC . 103
A.3.1. General Approval Voting . 103
A.3.2. Approval Voting with Symmetry Breaking Predicates 105

A.4. Instant-Runoff Voting for LLBMC . 108
A.4.1. Implementation of Deterministic IRV 108
A.4.2. Implementation of Exhaustive IRV 110
A.4.3. Specification of Condorcet Loser Criterion for IRV 111
A.4.4. Specification of Condorcet Winner Criterion for IRV 113

A.5. Single Transferable Vote for LLBMC . 114
A.5.1. Specification of Condorcet Loser Criterion 118
A.5.2. Specification of Condorcet Winner Criterion 119

References 122

List of Definitions

1. Social Welfare Function . 6
2. Social Choice Function . 6
3. Pareto-Optimality . 7
4. Independence of Irrelevant Alternatives 7
5. Non-Dictatorship . 7
6. Monotonicity Criterion . 19
7. Condorcet Winner Criterion . 21
8. Condorcet Loser Criterion . 22

9. Monotonicity for Plurality Voting . 37

10. Monotonicity for Approval Voting . 58
11. Condorcet Loser Criterion for Preferential Voting 61
12. Well-Formedness Conditions for Preferential Votes 62
13. Condorcet Loser Criterion for Multi-Seat Pref. Voting 67
14. Condorcet Criterion for Preferential Voting 72
15. Condorcet Criterion for Multi-Seat Preferential Voting 75

16. Symmetry Reduction for Anonymous Plurality Voting 80
17. Symmetry Reduction for Neutral Plurality Voting 84
18. Symmetry Reduction for Approval Voting 85

List of Figures

4.1. VCC Verification Performance with Monotonicity Criterion for Plurality
Voting Fully Annotated . 43

4.2. VCC Verification Performance with Monotonicity Criterion for a Lemma
Satisfied by Plurality Voting . 45

4.3. VCC Verification Performance with Monotonicity Criterion for Plurality
Voting with Manually Unrolled Loops . 48

4.4. VCC Verification Performance with Monotonicity Criterion for Plurality
Voting with Partial Unrolling . 48

5.1. LLBMC Verification Performance with Monotonicity Criterion for Plurality
Voting per Voter . 57

5.2. LLBMC Verification Performance with Monotonicity Criterion for Plurality
Voting per Candidate . 57

5.3. LLBMC Verification Performance with Monotonicity Criterion for Ap-
proval Voting per Voter . 59

5.4. LLBMC Verification Performance with Monotonicity Criterion for Ap-
proval Voting per Candidate . 60

5.5. LLBMC Verification Performance with Condorcet Loser Criterion for
Instant-Runoff Voting per Voter . 65

5.6. LLBMC Verification Performance with Condorcet Loser Criterion for
Instant-Runoff Voting per Candidate . 66

5.7. LLBMC Verification Performance with Condorcet Loser Criterion for STV
per Voter . 68

5.8. LLBMC Verification Performance with Condorcet Loser Criterion for STV
per Candidate . 69

5.9. LLBMC Verification Performance per Voter 71
5.10. LLBMC Verification Performance per Candidate 71
5.11. LLBMC Performance of Counterexample Generation with Condorcet

Criterion for Instant-Runoff Voting per Voter 74
5.12. LLBMC Performance of Counterexample Generation with Condorcet

Criterion for Instant-Runoff Voting per Candidate 74
5.13. LLBMC Verification Performance with Condorcet Criterion for STV per

Voter . 77

6.1. LLBMC Verification Performance with Monotonicity Criterion for Plurality
Voting with Symmetry Breaking (Anonymity) per Voter 82

xvi List of Figures

6.2. LLBMC Verification Performance with Monotonicity Criterion for Plurality
Voting with Symmetry Breaking (Anonymity) per Candidate 83

6.3. LLBMC Verification Performance with Monotonicity Criterion for Plurality
Voting with Strict Symmetry Breaking per Voter 84

6.4. LLBMC Verification Performance with Monotonicity Criterion for Plurality
Voting with Strict Symmetry Breaking per Candidate 85

6.5. LLBMC Verification Performance with Monotonicity Criterion for Ap-
proval Voting with Symmetry Breaking per Voter 86

6.6. LLBMC Verification Performance with Monotonicity Criterion for Ap-
proval Voting with Symmetry Breaking per Candidate 87

List of Tables

2.1. First Exemplary Ballot Box for Rank Order Example 8
2.2. Second Exemplary Ballot Box for Rank Order Example 8
2.3. Exemplary Aggregated Ballot Box for Plurality Voting 12
2.4. Exemplary Aggregated Ballot Box for Approval Voting 12
2.5. Exemplary Aggregated Ballot Box for Instant-Runoff Voting 16
2.6. First Exemplary Aggregated Ballot Box for IRV 20
2.7. Second Exemplary Aggregated Ballot Box for IRV 20
2.8. Example for Condorcet’s Paradox . 21
2.9. Exemplary Preference Order . 22
2.10. Exemplary Preference Order for IRV . 24

5.1. Exemplary Aggregated Ballot Box for Instant-Runoff Voting 64
5.2. Counterexample for Condorcet Loser Criterion with STV 70
5.3. Counterexample for Condorcet Criterion with Instant-Runoff Voting . . . 73
5.4. Counterexample for Condorcet Criterion with Single Transferable Vote . 76
5.5. Generation of Counterexamples for the Condorcet Criterion with STV . . 76

List of Algorithms

2.1. Plurality Voting . 11
2.2. Approval Voting . 13
2.3. Delete Subroutine for Preferential Voting Schemes 15
2.4. Instant-Runoff Voting . 15
2.5. Differences for Deterministic Instant-Runoff Voting 16
2.6. Single Transferable Vote . 18

List of Listings

4.1. Plurality Voting . 36
4.2. Monotonicity Specification for Plurality Voting in VCC 38
4.3. Auxiliary Recursive Specification Function 40
4.4. Loop Invariant for Tallying Votes . 40
4.5. Loop Invariant for Determining Candidate with Most Votes 41
4.6. Second Loop Invariant for Determining Candidate with Most Votes . . . 42
4.7. Specification of Lemma Which Implies Monotonicity for Plurality Voting 44
4.8. Ghost For-Loop in VCC . 46
4.9. Unrolled Ghost Loop in VCC for β Equals Two 47

5.1. Main Method for One-Vote Voting Schemes and Relational Properties . . 52
5.4. Monotonicity Specification for Plurality Voting 55
5.5. Plurality Voting . 55
5.6. Monotonicity Precondition for Approval Voting 59
5.7. Repetitive Step in Instant-Runoff Voting 63
5.8. Vote Redistribution for Single Transferable Vote 67
5.9. Allocation of Remaining Seats for Single Transferable Vote 67
5.10. Postcondition of Condorcet Loser Specification for STV 68

A.1. Script with Parameters for VCC Call . 93
A.2. VCC Specification of Monotonicity for Plurality Voting 93
A.3. VCC Lemma Specification for Monotonicity 96
A.4. Script with Parameters for LLBMC Call of Plurality Voting 97
A.5. LLBMC Specification for Plurality Voting 98
A.6. LLBMC Specification for Anonymous Plurality Voting 99
A.7. LLBMC Specification for Anonymous and Neutral Plurality Voting . . . 101
A.8. Script with Parameters for LLBMC Call of Approval Voting 103
A.9. LLBMC Specification for Approval Voting 104
A.10.LLBMC Specification for Anonymous and Neutral Approval Voting . . . 105
A.11.Script with Parameters for LLBMC Call of Instant-Runoff Voting 108
A.12.LLBMC Specification for Deterministic IRV 108
A.13.LLBMC Specification for Exhaustive IRV 110
A.14.LLBMC Specification of Condorcet Loser Criterion for IRV 111
A.15.LLBMC Specification of Condorcet Winner Criterion for IRV 113
A.16.Script with Parameters for LLBMC Call of STV 115
A.17.LLBMC Specification for STV . 115
A.18.LLBMC Specification of Condorcet Loser Criterion for STV 118

xxii List of Listings

A.19.LLBMC Specification of Condorcet Winner Criterion for STV 119

1. Introduction
Nowadays, almost one-half of the world’s countries, inhabited by one-half of the world’s
population, are ruled by democratic systems and are as such commonly denoted as free
and modern societies [Uni13]. This is legitimated by enabling approval and participation
of the people leading to a lawful, balanced, self-determined and sovereign government by
the people through representation. Approval and participation of the people are mainly
exercised through free, secret and universal elections in order to determine appropriate
representatives of the people to rule the state. Fundamental trust and credibility in the
system as a whole are established through the existence and procedure of these elections,
and a vast majority of people agrees on the need for democratic elections. Participating
in such an election is known as the process of voting and the procedure varies greatly
throughout the world concerning the specific modalities. This fact already indicates that
there is no commonly agreed and preferred way how to realise such a voting process.
Voting and its effect, usually formalised by a voting scheme, boils down to a mechanism
that aggregates individual preferences of the people, given in the form of ballots, to
decide an election. Generally, the participating people, denoted as voters, need to be
confident and convinced that the election is a credible and trustworthy process in order
to establish an acceptably credible and trustworthy government.
When looking more closely at this fundamental procedure, we identify the two major
elements vote-casting and vote-counting, which both play significant roles in the estab-
lishment of people’s trust in and consequently reliance on the election procedure and
hence the legitimacy of the resulting government. With the rise and development of
technology, there are many advances in doing both these tasks using computers. This
raises concerns about the correctness of the vote-casting process, but promises reducing
the effects of human errors on the vote-counting process and making it more efficient,
still leaving us with the general decision for a trustworthy voting scheme. There is a
significant amount of research on how to answer the concerns with electronic vote-casting,
but only little research exists on the development of trustworthy or correct voting schemes
using computers. One development largely promoted by growing technology support is
that more complex voting schemes are applied in real elections as the error-prone and
labour-intensive counting by hand is more and more done by computers. The downside
of this development is that with more complexity of a voting scheme, the probability of
undesired side-effects increases.
An example has been seen in the German federal elections, for which the federal consti-
tutional court ruled that the basic nature of the parliamentary elections in establishing a
proportional representation was bypassed, which subsequently resulted in a change of the
legislation (BWG §6) in 2013 [BTD12][BGB13]. This ruling manifests that there are high
expectations and means to ensure a correct voting scheme. In this case, correctness means

2 1. Introduction

that the voting scheme establishes a proportional representation, but this is not the only
notion of correctness for voting schemes specified in national legislations. Furthermore,
even these legislations may have flaws or inconsistencies in themselves as they commonly
contain multiple interpretations of notions of correctness. Moreover in 1951, Kenneth
J. Arrow proved that already three specific fundamental properties for voting schemes
are inconsistent with each other [Arr51]. We conclude that there has to be a trade-off
between different notions of correctness, which appears to be non-trivial and error-prone
as findings of undesired side-effects such as the German court ruling indicate.

1.1. Research Objectives
We propose an incremental and iterative process in order to develop correct voting
schemes with appropriate and understandable correctness criteria based on automated
formal methods of reasoning [Bec+14a]. For this matter, we start with a simple imple-
mentation and specification and gradually add complexity as we iron out errors in the
implementation and specification, and gain insights into the practicality of the desired
theoretical desiderata.
Furthermore, we propose multiple forms of verification to enable this development process,
more precisely a range from “light-weight” and fully automatic methods using software
bounded model checking (SBMC) to “medium-weight” full functional software verification
using annotation-based program verification tools or “heavy-weight” interactive higher-
order theorem provers. We argue for a development process enhanced by various different
forms of verification and examine the suitability within this work. As a promising analysis
of the suitability of “heavy-weight” verification methods using HOL4 has been done by
Meumann in [Meu14], this work focuses on analysing “medium-weight” methods using
VCC (Section 3.2.1) and “light-weight” methods using LLBMC (Section 3.2.2). Therein,
we analyse formal reasoning for a selected set of well-known voting schemes (Section 2.3)
with respect to well-known voting scheme properties (Section 2.4), declaratively formalised
in first-order predicate logic.

1.2. Correctness of Voting Schemes
When talking about correctness of voting schemes, we need to clarify when we consider a
voting scheme to be correct. Other than a mathematical equation, which is based on
fundamental and generally accepted mathematical axioms, voting schemes do not have a
generally accepted notion of correctness. Hence, we consider a given voting scheme correct
or incorrect with respect to a given specification. The vagueness when talking about the
correctness of voting schemes thus arises about which specification we are referencing.
The field of social choice theory has developed and advanced a respectable variety of
different correctness criteria for voting schemes along with profound examinations on
how they relate to various voting schemes. Throughout this work, we will use first-order
predicate logic in order to specify correct behaviour of a voting scheme. First-order

1.3. Outline 3

predicate logic is expressive enough to formalise appropriate properties for voting schemes,
but also simple enough to produce understandable declarative properties.
Another notion of correctness considers more experimental criteria and focuses on the
probability that certain criteria are met for specific voting schemes as most precise criteria
are generally too strong for complete correctness [CS12]. Moreover, a soft notion of
correctness was defined by the Royal Commission on the Electoral System in 1986 as
an evaluation of possible new voting schemes for New Zealand, which addresses criteria
such as fairness between political parties, effective minority representation, political
integration, effective representation of constituents, effective voter participation, effective
government, effective parties, as well as legitimacy [Lij87]. Notably, the report stated that
the voting scheme should be understandable to the people, which seems to be a prevailing
expectation. Furthermore, a so-called distance rationalisability has been proposed for
comparing different voting schemes to each other by algorithmic analysis with rather
general properties such as neutrality and consistency [EFS10]. Much more focussing on a
concrete implementation, there has also been work on verifying concrete voting systems,
which consider a specific voting software [DYJ08].
In this work however, we will examine abstract voting schemes with respect to concrete
correctness properties specified in first-order predicate logic.

1.3. Outline
The rest of this work is structured as follows.

• Chapter 2 presents the fundamental terms, concepts and notions used in this thesis.
This includes a general definition of voting schemes, fundamental insights in the
difficulty of specifying and implementing correct voting schemes, as well as the four
voting schemes and three correctness criteria, which we examine within this work.

• Chapter 3 introduces the two methodologies of auto-active deductive (which we
classify as “medium-weight”) and fully automatic bounded (which we classify as
“light-weight”) verification together with the two tools VCC and LLBMC, which
we use in this thesis to apply the respective techniques.

• Chapter 4 presents a case study using “medium-weight” verification methods with
the auto-active deductive verification tool VCC to prove the correctness of a simple
first-past-the-post plurality voting scheme together with the encountered challenges
and our responses to them.

• Chapter 5 then illustrates an extensive case study using “light-weight” bounded
verification methods with the fully automatic verification tool LLBMC to give
correctness guarantees or generate counterexamples (for incorrect voting schemes)
for a selected set of voting schemes and appropriate correctness criteria.

• Chapter 6 further advances on results from Chapter 5 by using fundamental insights
in the symmetric structure of the problem, leading to performance increases with

4 1. Introduction

LLBMC through the reduction of the set of possible input parameters (for the
matter of this thesis, these are ballot boxes).

• Chapter 7 concludes by discussing related work as well as the results of this work,
and giving an outlook on further ideas and future work on the formal verification
of voting schemes.

2. Voting Schemes and Correctness
Properties

In the following, we familiarise the reader with some fundamental findings in the general
analysis of voting schemes, which set the main motivation for our examinations for
verifying correctness of voting schemes as outlined in Section 1.2. These findings justify
low expectations regarding the development of one universal voting scheme with a
universal notion of correctness and instead strengthen the motivation for research on a
variety of voting schemes with respect to different notions of correctness.
In order to set the path for our analysis, this chapter gives a small set of necessary
definitions in Section 2.1 and illustrates implications of the Impossibility Theorem by
the economist, writer, and political theorist Kenneth J. Arrow in Section 2.2. The focus
of this work is on the four well-known voting schemes plurality voting, approval voting,
instant-runoff voting (IRV) and single transferable vote (STV). We illustrate those in
Section 2.3 along with abstract definitions of the procedures. As our selection of voting
schemes features great variations in complexity, we also reflect this in our choice of
voting scheme properties, each representing a different notion of correctness. Section 2.4
is dedicated to presenting the three different voting scheme properties monotonicity
criterion, Condorcet loser criterion as well as the Condorcet criterion, named after the
philosopher, mathematician, and early political scientist Marquis de Condorcet. Both
Arrow and Condorcet were great pioneers in modern “social choice theory” as they
determined the fundamentals in this domain.
We also illustrate how these correctness properties for voting schemes relate to the voting
schemes selected for our analysis. These relationships are well-known in the field of social
choice theory [Fel12b] with the exception of correctness properties for the widely-used
STV, which elects multiple candidates to achieve a proportional representation. For this
matter, we investigate on adapting properties which are known to hold for IRV to the
STV scheme, which is rather known for violating common notions of correctness and
argued to have a quasi-chaotic behaviour [Nur96][Mil07][FB83].

2.1. A General Definition of Voting Schemes
Social Welfare Functions We start by defining social welfare functions as these are
perhaps the most general form to aggregate preferences of individuals into collective
preferences [BCE13]. Let us assume a finite set N containing at least two agents or
individuals (or voters for voting schemes), i.e. |N | ≥ 2, and a finite universe U containing
at least two alternatives (or candidates for voting schemes), i.e. |U | ≥ 2. Furthermore,

6 2. Voting Schemes and Correctness Properties

we assume every individual i ∈ N to have preferences over the alternatives in U , which
are represented by the transitive and complete preference relation �i. Completeness
can be assumed for a rational social welfare function, since we also allow indifference,
which represents an indecisiveness of an individual for the according two alternatives,
and thus any rational decision can be expressed. However, we do not assign weights
or other measurements to individual rankings (which then would be called ratings) as
firstly the voting schemes examined within this work do not need ratings but only at
most rankings, and secondly the following definitions would become considerably less
intuitive. Transitivity is needed for reasons of consistency.
For any two alternatives a, b and an individual i, a �i b denotes that individual i likes
alternative a at least as much as alternative b. If we know that a �i b holds, but b �i a
does not, we can express this by the strict preference relation a �i b. Accordingly, a ∼i b
is short for a �i b and b �i a, which we call indifference relation. The set of all preference
relations over the universe U is denoted as R(U). We will also be talking about the set
of preference profiles, expressing all preferences for every individual i ∈ N , i.e. R(U)n

(for n = |N |). We can hence make the following definition [BCE13]:

Definition 1 (Social Welfare Function) A social welfare function is a function

f : R(U)n → R(U)

The resulting social preference relation can then be simply denoted by �, as it does not
depend on the individual.

Voting Schemes A social welfare function hence gives us an aggregated preference
profile. However, a function used for voting needs to determine a set of elected alternatives.
For this matter, we define the set of possible feasible sets F(U) as the set of all non-empty
subsets of U (i.e. F(U) = P(U) \ ∅, where P denotes the power set). By using this set,
we hence define the following:

Definition 2 (Social Choice Function) a social choice function is a function

f : R(U)n → F(U)

We will refer to the result of a social choice function by the name choice set. This is
already a usable function for voting, but in order to be a reasonable voting scheme, we
need f to additionally fulfil the two symmetry conditions denoted as anonymity and
neutrality. The property anonymity states that the outcome of f remains unaffected
when any individuals are renamed, i.e. when the individual relations are permuted within
the preference profile. Similarly, neutrality means the outcome is invariant under the
renaming or permutation of any alternatives.
Some voting schemes always yield a unique winner, i.e. |f(R)| = 1. These voting schemes
are called resolute or single-valued. However, voting schemes cannot always be resolute,
as this property generally contradicts anonymity and neutrality.

2.2. Arrow’s Impossibility Theorem and its Implications 7

2.2. Arrow’s Impossibility Theorem and its Implications
Kenneth J. Arrow’s results from 1951 [Arr51] form the basic motivation for this work, as
they introduce essential challenges and therefore have major implications for all areas of
social choice theory. Arrow essentially showed that every “reasonable” voting scheme with
at least three distinct alternatives is inconsistent. Additionally to the properties of our
definition of a voting scheme, Arrow’s definition of a “reasonable” voting scheme fulfils the
following three conditions (defined for social welfare functions) [BCE13][Dut00][Arr51].

Definition 3 (Pareto-Optimality) We call a social welfare function Pareto-optimal
iff

∀a, b ∈ U : (∀i ∈ N : a �i b)⇒ a � b

i.e. strict unanimous agreement is reflected in the social preference relation.

Definition 4 (Independence of Irrelevant Alternatives) We call a social welfare
function independent of irrelevant alternatives iff (the two preference profiles R and R′
correspond to � and �′ respectively)

∀R,R′ ∀a, b ∈ U : (∀i ∈ N : a �i b⇔ a �′i b)⇒ (a � b⇔ a �′ b)

i.e. the social preference between any pair of alternatives only depends on the individual
preferences restricted to these two alternatives.

Definition 5 (Non-Dictatorship) We call a social welfare function non-dictatorial iff

¬∃i ∈ N : (∀a, b ∈ U : a �i b⇒ a � b)

i.e. there is no individual who can dictate a strict ranking no matter which preferences
the other individuals have.

All three conditions are very intuitive and seem clearly desirable for any voting scheme.
However, Arrow has shown in his impossibility theorem, which he called the general
possibility theorem, that there does not exist any voting scheme (as defined above) with
at least three alternatives (i.e. |U | ≥ 3) which satisfies Pareto-optimality, independence
of irrelevant alternatives and non-dictatorship simultaneously [Arr51]. Thereupon, there
has been much work on how to construct “reasonable” voting schemes by relaxing any
of these conditions, but as indicated by Arrow’s theorem, all of them provide clear
insufficiencies (except for cases, where two alternatives suffice). We will now provide two
examples as to demonstrate some inconsistencies regarding Arrow’s conditions for some
simple voting schemes [Sen70].

First Example: Rank Order Let us begin with the so-called “rank order” voting scheme,
where a certain number of marks are given to each alternative for being first in anyone’s
preference ordering, a smaller number for being second in someone’s ordering, and so
on. Then the total number of marks for each for each alternative is added up, and the

8 2. Voting Schemes and Correctness Properties

one with the highest score wins. Let us take a set of three individuals {1, 2, 3} and three
alternatives {x, y, z}. Having a set of three alternatives, we use three marks for the first
preference, two marks for the second preference, and one mark for the third preference.
Firstly, as renaming does not affect the outcome, i.e. any alternative can win by having
the highest score and every vote is given the same weight, it satisfies our definition of
a voting scheme. Secondly, there is no one individual being able to dictate the social
preference, hence it satisfies non-dictatorship. Thirdly, if any alternative receives a higher
rank than another alternative by all voters, the aggregated rank will also be higher, hence
Pareto-optimality is also satisfied. Fourthly, for evaluating the independence of irrelevant
alternatives, we need a closer look.

Individual 1 Individual 2 Individual 3 Aggregation
x z z x: 7
y x x y: 4
z y y z: 7

Table 2.1.: First Exemplary Ballot Box for Rank Order Example

Let us take a ballot box (Table 2.1), where individual 1 prefers x to y to z and both
individuals 2 and 3 prefer z to x to y. By evaluating our voting scheme, x receives 7
marks, y receives 4 marks and z receives 7 marks. Thus, we have a tie between the
candidates x and z.

Individual 1 Individual 2 Individual 3 Aggregation
x z z x: 7
z x x y: 3
y y y z: 8

Table 2.2.: Second Exemplary Ballot Box for Rank Order Example

Now, let us take a second ballot box (Table 2.2), where the preferences between candidates
x and z stay the same, but individual 1 ranks y on third position. The new scores evaluate
to 7 marks for x, 3 marks for y, and 8 marks for z, making z win the election. For both
ballot boxes the individual preferences between candidates x and z are the same, but
the social preferences between them are different, as the irrelevant alternative y affects
their social preference. Hence, the voting scheme violates the independence of irrelevant
alternatives.

Second Example: Traditional Code In our second example, the social preference is
determined by an entirely specified traditional code (i.e. the outcome is predetermined,
e.g. by a written constitution, and independent of any individual preference), which
determines a given ordering of all alternatives. Even though this does not appear to
be a voting scheme, it satisfies anonymity and neutrality from our definition for voting
schemes, since the outcome is invariant under renaming. Furthermore, the conditions
independence of irrelevant alternatives and non-dictatorship are trivially satisfied as the

2.3. Selected Voting Schemes 9

individual preferences simply have no effect on the social preference and consequently
no individual is a dictator. However, this voting scheme violates Pareto-optimality. Let
us for example assume the traditional code determines for the two alternatives x and y
the social preference x � y. This outcome remains, even when every individual strictly
prefers y to x. Therefore, we see the importance of Pareto-optimality as this voting
scheme does also not satisfy common democratic concepts.

2.3. Selected Voting Schemes
A voting scheme, or more precisely a vote-counting scheme, is essentially a mechanism
that aggregates individual preferences to decide an election. We gave a concise general
definition of voting schemes through precise mathematical descriptions in Section 2.1 using
a minimal set of common notions. In its essence, vote-counting is a very straightforward
task and we can easily think of very simple algorithms which satisfy this definition.
However, the definition greatly under-specifies any possible solution as the decision of an
election can be done in multiple ways. As such, there exists a tremendously great variety
of voting schemes, with each having different justifications and qualities. in Section 2.2,
we learned that there is no universal set of qualities, to which researchers generally agree
and every voting scheme should fulfil. The major consequence of this finding is that there
exist multiple different and often contradicting understandings of “reasonable” voting
schemes. In general, the underlying motive is to balance objectives such as establishing
legitimacy, encouraging participation, and discouraging factionalisation [LN95]. It is
argued that there is not any one right answer as to how these objectives should be
traded off against each other, but also that there are certainly many wrong answers. An
essential difficulty arises if the voting population lacks a consensus, which constitutes the
fundamentally conflicting case among different voting schemes.
Moreover, there are also differences in how a voter can express his will in the election.
For this matter, we can distinguish the three general types of one-vote, ranked, and rated
voting schemes. In one-vote voting schemes, a voter can only vote for one candidate and
nothing more. Sometimes, multiple one-vote voting schemes are done sequentially one
after another, reducing the number of available candidates, usually based on the results
in the previous election, for every new election. This is called runoff election and the
common case is to do a maximum of two consecutive elections, whereby in the second
one, only the two candidates with the best results in the first election are available, and
in case one candidate gets an absolute majority in the first election, no second one is held.
Alternatively in ranked or preferential voting schemes, each voter ranks the candidates
in order of preference. Unranked candidates are usually taken as sharing the last place
and variations of this type also allow voters to assign one rank position to more than
one candidate. Finally, another type is the rated voting scheme, wherein voters give a
score to each candidate, allowing even more flexibility than ranked voting schemes, as
differences in rank can be quantified within this category.
Often, voting schemes are used to elect multiple candidates in one election, e.g. in order
to constitute a parliament, and are in the following also called multi-seat voting schemes

10 2. Voting Schemes and Correctness Properties

in distinction to resolute single-winner voting-schemes, which elect exactly one candidate.
In this case, it becomes not only important which exact candidates get elected, but also
how the overall composition of all elected candidates is. This has a particular impact on
multi-party systems, wherein members of a particular party usually pursue very similar
goals. The simplest version with respect to the overall composition is a majoritarian
voting scheme, which simply elects a set of candidates, which is supported by a majority
of voters, pursuing the majority rule. It is usually done by lists, each provided by a
different party, and the elected candidates are simply the ones on the list, which is
supported by a majority of voters. Another variation of majoritarion voting is to let
each voter directly vote for any of the available candidates and then elect a number
(usually determined by the size of the parliament) of candidates with the best results.
Alternatively, many elections do some sort of proportional representation, wherein a
candidate or party with x percent of the total votes also receives (roughly) x percent of
all seats in parliament. Finally, there are also so-called semi-proportional voting schemes
which combine proportional representation with majority rule, pursuing to find a trade-off
between both objectives.
Besides these categories with respect to the expressiveness of the voter’s will and how
the plurality of voters is represented in a parliament, also the level of complexity of a
voting scheme plays a role. This factor impacts transparency of the election process to
the voters, but also and more directly the necessary effort of actually performing the
election, especially the vote-counting. Some argue that complex voting schemes make it
harder for voters to vote strategically, i.e. vote dishonestly in order to better achieve
their honest will in the election outcome [LN95]. The complexity of a voting scheme is a
significant obstacle when manual vote-counting is involved and many people have to get
paid for counting the votes by hand. However, we believe this becomes and is already less
of an issue as more and more elections are done electronically and machines do the actual
computation of the election outcome. We also argue that the establishment of trust in
an election and its outcome becomes harder if the voting scheme is less comprehensible
by the voters, which usually holds for more complex voting schemes.
In the following, we illustrate the four different voting schemes plurality voting, approval
voting, instant-runoff voting (IRV) and single transferable vote (STV). Plurality voting
(Section 2.3.1) is a widely-used one-vote voting scheme, approval voting (Section 2.3.2)
a restricted rated voting scheme, and IRV (Section 2.3.3) and STV (Section 2.3.4) are
ranked voting schemes. From these selected voting schemes, STV is the only multi-seat
voting scheme, more specifically a proportional one, with the others all being resolute
single-winner voting schemes. We use some common constants for all voting schemes,
whereof V always denotes the number of voters, C the number of candidates, and S the
number of seats in case of a multi-seat voting scheme.

2.3.1. Plurality Voting
Plurality voting is a simple and perhaps the most fundamental voting scheme. More
specifically, we refer to first-past-the-post (FPTP) plurality voting, where each voter can
vote for exactly one candidate and only one candidate gets elected. Another variation

2.3. Selected Voting Schemes 11

of plurality voting is block voting, where a certain number n of candidates gets elected
and each voter can cast n votes. In the case of first-past-the-post plurality voting (from
now on simply referred to as plurality voting), each voter has one vote. These votes are
then tallied and the candidate, who gets more votes than any other candidate, is elected.
This is not to be confused with majority voting or majority rule, where the elect needs
an absolute majority of all votes. Contrarily, plurality voting can elect a candidate with
less than 50% of the votes, if the candidate reaches a relative majority among all votes.
As plurality voting still leaves room for ties, real-world voting systems vary in the way in
which they deal therewith. For the matter of this thesis, we do not elect any candidate in
the event of a tie. The precise scheme used within this work can be seen in Algorithm 2.1.
Therein, the notion #{. . . } specifies the cardinality of the set described between the two
braces, i.e. the number of elements contained in this set.

Algorithm 2.1 Plurality Voting
Input: v: list of |V | votes with vi ∈ C, C: set of candidates, V : set of voters
Output: elect: the elected candidate (elect ∈ C) or a tie (elect = ⊥)

1: function voting(v, C, V)
2: max← 0, voteCount← 0, elect← ⊥
3: for all k ∈ C do
4: voteCount← #{i ∈ V | vi = k}
5: if max < voteCount then
6: max← voteCount
7: elect← k
8: else if max = voteCount then
9: elect← ⊥

10: end if
11: end for
12: return elect
13: end function

One noteworthy attribute of plurality voting is an observation expressed in Duverger’s
law [Dre72], according to which plurality voting within single-member districts tends
to favour two-party systems. Single-member district voting contrasts proportional
representation and refers to an election where either only a single candidate gets elected
or bloc voting is used, i.e. one of multiple predefined candidate groups gets elected.
Sometimes parliaments are constructed via multiple of these single-member elections,
each within a predefined district, and thus denoted as single-member district voting. This
scheme makes it harder for smaller parties to become successful, making the outcome
less surprising and more stable. The idea behind this hypothesis is that voters do not
want their vote to be insignificant and hence tend to vote for parties or candidates who
were successful in past elections.
Referring to Arrow’s impossibility theorem, the plurality voting scheme complies with
non-dictatorship and Pareto-optimality, but violates the independence of irrelevant
alternatives.

12 2. Voting Schemes and Correctness Properties

Example Let us assume A, B and C be three candidates and {B, C, A, B, A, C, B, B, B, A}
a set of votes.
We then tally the votes and count 3 votes for candidate A, 4 votes for candidate B and 3
votes for candidate C. Hence, candidate B wins the election. Since each voter can only
submit a vote for only one candidate, there can still be another candidate who is preferred
over candidate B by a majority of voters, but which is not considered by plurality voting.

3 Votes 4 Votes 3 Votes
A B C
C C B
B A A

Table 2.3.: Exemplary Aggregated Ballot Box for Plurality Voting

If we assume for example (Table 2.3) that all the voters voting for candidate A have
candidate C as their second choice and candidate B only as their last choice, there would
be a majority who prefers candidate C over candidate B and this opinion of the majority
would not be captured by this election result.

2.3.2. Approval Voting
The vote counting process of approval voting is very similar to the one for plurality voting.
However, it differs in the amount of votes each voter is allowed to cast. Approval voting
allows each voter as many votes as there are candidates running for election. The voter
can vote for as many candidates as he or she likes. This is usually done by completing a
ballot paper listing all candidates and one box for each of them. Completing the ballot
paper then consists in ticking all the boxes for candidates the voter approves of. Hence,
the voters can express their will more accurately than for plurality voting. Subsequently
– just as for plurality voting – all votes are tallied and the candidate who gets more votes
than any other candidate is elected. Here again, we do not deal with ties, but instead
do not elect any candidate. The precise scheme used within this work can be seen in
Algorithm 2.2.
Referring to Arrow’s impossibility theorem, this voting scheme complies with non-
dictatorship and Pareto-optimality, as well as with the independence of irrelevant alter-
natives.

Example Let us assume A, B and C be three candidates and there are ten voters. Four
voters approve of candidates A and B, three voters approve of candidates B and C, two
voters approve only of candidate A and one voter approves only of candidate C (Table 2.4).

4 Votes 3 Votes 2 Votes 1 Vote
A, B B, C A C

Table 2.4.: Exemplary Aggregated Ballot Box for Approval Voting

2.3. Selected Voting Schemes 13

Algorithm 2.2 Approval Voting
Input: v: list of |V | vote lists of length |C| with vi,j ∈ {0, 1} (1 for approval), C: set of

candidates, V : set of voters
Output: elect: the elected candidate (elect ∈ C) or a tie (elect = ⊥)

1: function voting(v, C, V)
2: max← 0, voteCount← 0, elect← ⊥
3: for all k ∈ C do
4: voteCount← #{i ∈ V | vi,k = 1}
5: if max < voteCount then
6: max← voteCount
7: elect← k
8: else if max = voteCount then
9: elect← ⊥

10: end if
11: end for
12: return elect
13: end function

We then tally all votes and count 7 votes for candidate B, 6 votes for candidate A and
5 votes for candidate C. Hence, candidate B wins the election. In contrast to plurality
voting, in approval voting one voter can vote for more than one candidate. If for example,
candidates A and B represent similar views, this does not diminish the result of either
of them as voters can simply vote for both instead of having to choose between them
(independence of irrelevant alternatives).

2.3.3. Instant-Runoff Voting
Whereas plurality voting and approval voting each consist of one round of voting, instant-
runoff voting can be perceived as performing multiple voting rounds. Although there is
only one vote casting process, multiple voting rounds are simulated by the voting scheme.
This is done by casting preferential votes, i.e. each voter can cast a ranked vote expressed
through an ordered list of candidates. For this matter, an empty ballot paper may look
much like one for approval voting, but instead of ticking or not ticking the boxes, a voter
expresses his or her will by writing numbers from 1 to C (where C denotes the amount
of eligible candidates) in the boxes, where 1 denotes the voter’s first preference, 2 the
voter’s second preference, and so on up to the voter’s least preferred candidate.
Subsequently, this results in a complex vote counting process. The complete scheme
used within this thesis can be seen in Algorithm 2.4. We start by tallying only the first
preferences. If there is already one candidate with an absolute majority, this candidate
is elected (Line 6). If this is not the case, the candidate with the least amount of first
preferences is eliminated, the according votes are distributed to the remaining candidates
according to their second preferences, and their preferences are recalculated (Lines 10
to 13). We iteratively repeat this process until a winner is found. For the given ballot

14 2. Voting Schemes and Correctness Properties

box used in the voting scheme, we assume there are no empty votes, all preferences of a
vote either contain a valid candidate or are empty, in any preference list each candidate
can appear only once, and if any preference rank in a vote is empty, then all subsequent
ranks in this vote are also empty, and hence there are no gaps in preference lists.

Breaking Ties (Two Variations) For instant-runoff voting, ties can occur at various
points in the vote counting process, which for our general version of instant-runoff
voting is abstracted by the function chooseCandidate, which is in charge of picking one
candidate out of the set of candidates W (Algorithm 2.4). Directly before the call of
this function, we compute the set of candidates, who are weakest at the current state
in the algorithm, i.e. currently have the least amount of first preferences compared to
all other candidates still in the race. Hence, a tie occurs when the set W has more
than one element, which means that there is no unique weakest candidate, but a set of
equally weakest candidates. In this work, we abstract the tie-breaking mechanism by the
function chooseCandidate, but in real-world examples, there are different approaches to
deal with ties. Some consider the previous results of tied candidates and eliminate the
one with a previously inferior result. Others consider their second or last preferences,
whereas some even choose randomly. Within this work, we examine two variations.
Firstly, we only eliminate one of the tied candidates, but pursue all possible choices
simultaneously (from now on denoted as exhaustive instant-runoff voting). The precise
scheme for this version can be seen in Algorithm 2.4, using the delete subroutine seen in
Algorithm 2.3. Technically, we only pursue one randomly chosen path in this description
when choosing a candidate for deletion. The pursuit of all possible paths is expressed by
the non-concreteness of the function chooseCandidate (i.e. the choice of a candidate from
the set W is under-specified), thereby creating multiple instances of the voting procedure
every time we have multiple equally weakest candidates at this stage. For the real world
scenario, this is the variation being used, but only one choice is pursued. As this choice
is, however, generally arbitrary, we want to abstract away from the particular choice
made by taking each generally possible path.
Secondly, we consider a version which eliminates all tied candidates with the least amount
of first preferences at the same time (from now on denoted as deterministic instant-runoff
voting). In this case, the function chooseCandidate is not needed and instead we replace
Line 11 to Line 13 in Algorithm 2.4 by the three lines of code seen in Algorithm 2.5 and
also using the same subroutine as in Algorithm 2.3, i.e. we simply iterate over the set
of equally weakest candidates and delete each of them from the ballot box. In the rare
case where all candidates are eliminated (which can happen, if we eliminate multiple
candidates at once), we simply do not elect any candidate.
Furthermore, we make some assumptions about the votes. Firstly, we assume every
voter assigns a first preference. Secondly, if a voter does not assign a certain preference
(which is not the first one), all successive preferences are unassigned as well. Thirdly and
lastly, we assume every voter does only rank each candidate at most once in his or her
preference list.

2.3. Selected Voting Schemes 15

Algorithm 2.3 Delete Subroutine for Preferential Voting Schemes
Input: votes: list of |V | vote lists of length |C| with votesi,j ∈ C or votesi,j = ⊥ (votesi,1

for the candidate which voter i prefers most, ⊥ means there is no jth preference for
voter i), candidate: candidate to be deleted from votes, C: set of candidates, V : set
of voters

Output: votes: list of |V | vote lists of length |C − 1| without votes for candidate,
otherwise equal to the input parameter

1: function delete(votes, candidate, C, V)
2: for all (i, k) ∈ V × C do
3: if votesi,k = candidate then
4: for p← k to |C| − 1 do
5: votesi,p ← votesi,p+1
6: end for
7: votesi,|C| ← ⊥
8: end if
9: end for

10: return votes
11: end function

Algorithm 2.4 Instant-Runoff Voting
Input: v: list of |V | vote lists of length |C| with vi,j ∈ C or vi,j = ⊥ (vi,1 for the

candidate which voter i prefers most, ⊥ means there is no jth preference for voter i),
C: set of candidates, V : set of voters

Output: elect: number denoting the elected candidate (elect ∈ C)
1: function voting(v, C, V)
2: quota← bV

2 c, CC ← C, elect← ⊥
3: while elect 6∈ C ∧ CC 6= ∅ do
4: for all k ∈ C do
5: if quota < #{i ∈ V | vi,1 = k} then
6: elect← k
7: end if
8: end for
9: if elect 6∈ C then

10: W ← {k ∈ C| #{i ∈ V | vi,1 = k} = min
c∈C

#{i ∈ V | vi,1 = c}}
11: weakest← chooseCandidate(W)
12: v ← delete(v, weakest, CC, V)
13: CC ← CC \ weakest
14: end if
15: end while
16: return elect
17: end function

Elect candidate
with more votes
than the quota.

Eliminate cand.
with fewest 1st

preferences,
redistribute
according
to 2nd pref.

16 2. Voting Schemes and Correctness Properties

Algorithm 2.5 Differences for Deterministic Instant-Runoff Voting
11: for all w ∈ W do
12: v ← delete(v, w)
13: CC ← CC \ w
14: end for

Referring to Arrow’s impossibility theorem, instant-runoff voting – just as plurality voting –
complies with non-dictatorship and Pareto-optimality, but violates the independence of
irrelevant alternatives.

Example Let us assume, as depicted in Table 2.5, A, B and C be three candidates and
there are ten voters. Four voters rank candidate C first, candidate A second and candidate
B third. Three voters rank candidate B first, candidate A second and candidate C third.
Two voters rank candidate A first, candidate B second and candidate C third. And one
voter ranks candidate A first, candidate C second and candidate B third.

4 Votes 3 Votes 2 Votes 1 Votes Aggregation 1 Aggregation 2
C B A A B,C: 5 A,C: 6
A A B C C,B: 5 C,A: 4
B C C B

Table 2.5.: Exemplary Aggregated Ballot Box for Instant-Runoff Voting

In instant-runoff voting, we start by looking only at all first choices. There, we count 4
votes for candidate C, 3 votes for candidate A and 3 votes for candidate B. Hence, there
is no candidate with an absolute majority in all first preferences and we must delete one
candidate. However, as there are two candidates who both have the lowest amount of
first preferences, we would need some kind of tie-breaker in practice. Within this work,
we explore both possibilities in this case.
Therefore, we start by deleting all votes for candidate A, as this candidate has the lowest
amount of first preference votes. This results in the following modified votes (Aggregation
1 in Table 2.5). Five voters rank candidate C first and candidate B second. Five voters
rank candidate B first and candidate C second. Again, we get two equally low ranked
candidates and explore both possibilities. As after deleting any candidate there is only
one candidate left, either candidate B or candidate C wins.
We now explore the case, in which we deleted all votes for candidate B in the first place.
This results in the following modified votes (Aggregation 2 in Table 2.5). Four voters
rank candidate C first and candidate A second. Six voters rank candidate A second and
candidate C third. In this case, candidate A has the absolute majority of all remaining
first preference votes and hence wins the election.
Hence, for this set of votes, there is an instance of instance-runoff voting for any candidate
to win the election. Even though, deleting all votes for candidate B in the first round
seems to lead to the clearest result and in practice many used tie-breaking rules suggest

2.4. Selected Voting Scheme Properties 17

this, we could also argue for candidate C to win the election in this case as this candidate
also has a “clear” majority.

2.3.4. Single Transferable Vote
Single transferable vote (STV) is similar to instant-runoff voting, but instead elects a
number of candidates, e.g. fills a number of seats in parliament. The precise scheme
used within this work can be seen in Algorithm 2.6, again using the delete subroutine
seen in Algorithm 2.3. This is basically done by repeating instant-runoff voting until
all seats are filled (e < |S|) or there are as many seats left as remaining candidates, in
which case the remaining seats are filled up automatically. After one candidate gets
elected, he or she gets eliminated and only the surplus votes (i.e. the ones exceeding the
quota) get transferred to the next preferences. This is a means to reuse votes, which an
elected candidate did not need to get elected, and thus make every vote count and avoid
strategic voter behaviour. However, there exist various different versions of STV. They
differ, e.g., in the quota needed to get elected (which can be lower than 50%), the way
ties are dealt with or the possible resurrection of already eliminated candidates when
they receive transferred votes in future rounds. There are even further variations, but
these are argued to not be part of the STV family anymore [BGS13].
This voting scheme also complies with non-dictatorship and Pareto-optimality, but
violates the independence of irrelevant alternatives.

2.4. Selected Voting Scheme Properties
We argued that even though there is no universal notion of correctness for voting schemes,
having a justified and formal concept of correctness is indispensable in order to establish
trust and credibility in the election process as a whole and the vote-counting in particular.
There is not any one right answer for a sensible trade-off for this matter, but finding a
good, unambiguous and comprehensible one is still crucial for the election and its result
to be lawfully justified and constitutional. As any voting scheme has its flaws, these
should be well-understood in order to avoid surprising effects and have a suitable election
procedure. This becomes an especially essential necessity for modern voting schemes,
which grow in variety as well as complexity. in order for increasingly complex voting
schemes to still be graspable enough to be trusted by all participants, we believe in the
need for more declarative and traceable specifications of voting schemes such as precise
and formal properties. They have the potential to enhance comparability, verifiability
and justification, and thereby minimise any surprising behaviour and outcomes.
Research in the area of social choice theory has produced an overview of a large variety of
voting scheme properties and the voting schemes which satisfy or violate those [Fel12b].
However, it becomes evident for the large number of violated properties for each voting
scheme that we either need some kind of measure in order to determine how badly it is
violated, or adapted tailor-made properties in order to instead formalise relaxed properties
which are satisfied. The former has been investigated on and shown to be a difficult

18 2. Voting Schemes and Correctness Properties

Algorithm 2.6 Single Transferable Vote
Input: v: list of |V | vote lists of length |C| with vi,j ∈ C or vi,j = ⊥ (vi,1 for the

candidate which voter i prefers most, ⊥ means there is no jth preference for voter i),
C: set of candidates, V : set of voters, S: set of seats

Output: elect: list of length |S| with the elected candidates or ⊥ (in case |C| < |S|)
1: function voting(v, C, V , S)
2: quota← bV

2 c, CC ← C, e← 0, res← ⊥, elect← {⊥, . . . ,⊥}
3: while CC 6= ∅ ∧ e < |S| ∧ (|S| − e) < |CC| do
4: for all k ∈ C do
5: if quota < #{i ∈ V | vi,1 = k} then
6: res← k
7: end if
8: end for
9: if res ∈ C then

10: electe ← res, e← e+ 1, T ← ∅
11: for all i ∈ V : vi,1 = res ∧ |T | < quota do
12: for all k ∈ C do
13: vi,k ← ⊥
14: end for
15: T ← T ∪ i
16: end for
17: v ← delete(v, res)
18: CC ← CC \ res, res← ⊥
19: else
20: W ← {k ∈ C| #{i ∈ V | vi,1 = k} = min

c∈C
#{i ∈ V | vi,1 = c}}

21: weakest← chooseCandidate(W)
22: v ← delete(v, weakest)
23: CC ← CC \ weakest
24: end if
25: end while
26: if e < |S| then
27: for all i ∈ S \ elect: CC 6= ∅ do
28: res← ⊥
29: for all k, j: k ∈ C ∧ j ∈ V ∧ res 6∈ C do
30: if vj,1 = k then
31: res← k
32: end if
33: end for
34: electi ← res, e← e+ 1
35: v ← delete(v, res)
36: CC ← CC \ res
37: end for
38: end if
39: return elect
40: end function

Elect candidate
with more votes
than the quota.

Eliminate cand.
with fewest 1st

preferences,
redistribute
according
to 2nd pref.

Elected candidate
gets eliminated
and surplus

votes (|T |) get
transferred to

next preferences.

Fill remaining
seats with
remaining

candidates who
received at

least one vote.

2.4. Selected Voting Scheme Properties 19

approach [Nur12]. We argue for the latter one and propose a development cycle for voting
schemes and suitable properties based on automatic reasoning with formal methods. In
the course of this work, we examine the feasibility of our proposition on the basis of
three well-known voting scheme properties; the monotonicity criterion (Section 2.4.1),
the Condorcet criterion and the Condorcet loser criterion (both in Section 2.4.2). In
the following, we illustrate these three criteria and give examples with respect to our
selection of voting schemes.

2.4.1. Monotonicity Criterion
Monotonicity is perhaps one of the most natural properties one would suspect a voting
scheme to have. Intuitively, voting for a preferred candidate x should not be worse for
x than not voting for x. The criterion was originally posited as a desirable property of
social welfare functions as follows [Arr50]:

“If an alternative social state x rises or does not fall in the ordering of each
individual without any other change in those orderings and if x was preferred
to another alternative y before the change in individual orderings, then x is
still preferred to y.”

Applied to voting schemes, this translates to the mono-raise criterion [Woo97]:
“A candidate x should not be harmed if x is raised on some ballots without
changing the orders of the other candidates.”

In order to analyse voting schemes for the monotonicity criterion, we hence need to talk
about two comparable runs of the same voting scheme. As for voting schemes where
votes only consist in the indication of one candidate, raising candidate x means a vote for
a candidate other than x is changed to a vote for candidate x instead. For preferential
voting schemes with lists of ranked votes, raising candidate x means to switch the vote
for candidate x with a higher ranked one of the same voter. In case the voter did not
rank candidate x, we choose any one of the ranked candidates and proceed as for single
vote voting schemes.
The criterion then states that the outcome for the “raised” candidate x in the second
run is not worse than x’s outcome in the first run. This hence means that if the raised
candidate x has won the first run, x also wins the second run. If we argue inductively over
the sets of voters and candidates, we get an equivalent statement with only one changed
vote. By also defining the preference relation between different sets of individuals and
thus also different ballot boxes (expressed by indexing the candidates with the according
ballot box) coherently, we then can express monotonicity in the following manner:
Definition 6 (Monotonicity Criterion) For a set of candidates C, a set of voters V
and a set of ballot boxes B, we call a voting scheme monotone iff

∀c ∈ C, v ∈ V, b, b′ ∈ B : (cb′ �v cb ∧ ∀i ∈ V : i 6= v ⇒ ∀a ∈ C : ab′ ∼i ab)⇒ cb′ � cb

The voting schemes plurality voting and approval voting comply with the monotonicity
criterion, whereas instant-runoff voting and single transferable vote violate the condition.

20 2. Voting Schemes and Correctness Properties

Example: Instant-Runoff Voting Let us illustrate a voting scheme with non-monotone
behaviour by means of an exemplary election with the instant-runoff voting scheme
(Section 2.3.3), having 17 voters and the three candidates A, B and C [Gal13]. Hence, a
candidate needs a quota of 9 votes in order to win the election. There are six voters, who
rank candidate A first, candidate B second and candidate C third. Another six voters
rank candidate B first, candidate C second and candidate A third. The remaining five
voters rank candidate C first, candidate A second and candidate B last.

6 Votes 6 Votes 5 Votes
A B C
B C A
C A B

Table 2.6.: First Exemplary Aggregated Ballot Box for IRV

With this ballot box as shown in Table 2.6 in an aggregated manner, the amounts of first
preferences are 6, 6 and 5 for candidates A, B and C respectively. Therefore, no candidate
reaches the necessary majority of 9 votes in the first round and the weakest candidate
gets eliminated, who is candidate C. The resulting ballot box with only candidates A and
B has then 11 votes for candidate A and 6 votes for candidate B, making candidate A the
winner of the election.
Now, let us consider two voters had changed their mind (e.g. as they visited a convincing
speech by candidate A one day before the election). They switch to candidate A as their
first preference, leaving the order of the remaining two preferences as in the first ballot
box. More precisely, now two ballots in the first ballot box of the form [B, C, A] are
changed to [A, B, C], leaving us with an aggregated ballot box as shown in Table 2.7.

8 Votes 5 Votes 4 Votes
A C B
B A C
C B A

Table 2.7.: Second Exemplary Aggregated Ballot Box for IRV

Hence, the first preferences of the ballot box after the change compute to 8, 5 and 4
for candidates A, C and B respectively. Also in this election, no candidate reaches the
necessary majority of 9 votes in the first round, but this time candidate B is the weakest
candidate and gets eliminated. As the voters with candidate B as their first preference,
ranked candidate C second, the resulting ballot box with candidates A and C contains 9
votes for candidate C and 8 votes for candidate A. The new winner is therefore candidate
C, although his or her ranks are worse than in the first ballot box in Table 2.6, especially
compared to candidate A, who achieved an increased voter support, but a worse election
result, which thus constitutes a non-monotone behaviour.

2.4. Selected Voting Scheme Properties 21

2.4.2. Condorcet Winner and Loser Criteria
The two criteria illustrated in the following are both based on findings of the philosopher,
mathematician, and early political scientist Marquis de Condorcet [Con85]. Therein he
argues the candidate with the greatest amount of head-to-head competitions or pairwise
majority comparisons, called the Condorcet winner, to be a sensible winner of an election.
He also illustrates situations where such a candidate does not exist due to a preference
cycle, which is nowadays commonly known as the Condorcet paradox. His investigations
are based on ranked or preferential ballots.

Condorcet Winner Criterion The Condorcet winner criterion is based on pairwise
simple majority comparisons. This means we compare for each candidate the (ranked)
lists of votes of each voter. Therein, we compare all voted candidates mutually by
determining the candidate who is ranked higher. When we do this for all lists of votes,
we determine the candidate who wins all of these comparisons, i.e. defeats every other
candidate. This candidate is then called the Condorcet winner. However, a Condorcet
winner does not always exist as there can occur a cycle of these mutual comparisons,
also called Condorcet’s paradox. In this case, the ranking of pairwise simple majority
comparisons provides no clear winner as the collective ranking forms a cycle. An example
for the three candidates A, B and C with three voters can be seen in Table 2.8. Therein,
every candidate is preferred over every other candidate by a margin of two to one and a
Condorcet winner cannot be determined.

Voter 1 Voter 2 Voter 3
A B C
B C A
C A B

Table 2.8.: Example for Condorcet’s Paradox

A voting scheme complying with the Condorcet winner criterion, also simply called
Condorcet criterion, always elects the Condorcet winner when one exists. Hence, we can
express this criterion in the following manner:

Definition 7 (Condorcet Winner Criterion) For a set of candidates C and a set
of voters V , we say a voting scheme satisfies the Condorcet criterion iff

∀c ∈ C : (∀k ∈ C : k 6= c⇒ #{v ∈ V | k �v c} < #{v ∈ V | c �v k})
⇒ ∀c′ ∈ C : c′ = c ∨ c � c′

The voting schemes plurality voting, approval voting, instant-runoff voting and single
transferable vote all violate the Condorcet criterion.

Condorcet Loser Criterion Conversely to the notion of the Condorcet winner, there is
for of the Condorcet loser, which is also based on pairwise simple majority comparisons.

22 2. Voting Schemes and Correctness Properties

In this case, we determine the candidate who is ranked lower instead of higher against
every other candidate. We then call this candidate the Condorcet loser. Similarly to the
Condorcet winner, a Condorcet loser does not always exist.
A voting scheme complying with the Condorcet loser criterion thus never allows a
Condorcet loser to get elected. Hence, we can express this criterion in the following
manner:

Definition 8 (Condorcet Loser Criterion) For a set of candidates C and a set of
voters V , we say a voting scheme satisfies the Condorcet loser criterion iff

∀c ∈ C : (∀k ∈ C : k 6= c⇒ #{v ∈ V | c �v k} < #{v ∈ V | k �v c})
⇒ ¬∃c′ ∈ C : c � c′

The voting schemes instant-runoff voting and single transferable vote comply with
the Condorcet loser criterion, whereas plurality voting and approval voting violate the
condition.

First Example: Plurality Voting In the case of plurality voting, each voter can only
vote for exactly one candidate, which already indicates that the voting scheme does
not capture any individual pairwise relations except for the ones between the chosen
candidate and any other candidates. However, a voter who cast a vote for candidate C
can also have more distinctive opinions as e.g. preferring candidate A to candidate B or
even being undecided between candidates A and C. Let us assume an exemplary order
of preferences for 7 voters and the three candidates A, B and C as shown in Table 2.9,
where three voters prefer candidate A to candidate C, who they prefer to candidate B.
Two voters prefer candidate B to candidate C, who they prefer to candidate A, and the
remaining two candidates prefer candidate C to candidate B, who they prefer to candidate
A.

3 Votes 2 Votes 2 Votes
A B C
C C B
B A A

Table 2.9.: Exemplary Preference Order

In an election with plurality voting (Section 2.3.1), if we assume honest voting behaviour,
we get three votes for candidate A, two votes for candidate B and another two votes for
candidate C, consequently making candidate A the winner of the election. However, four
voters prefer both candidates B and C to candidate A, compared to only three candidates
preferring candidate A. When we look at all pairwise head-to-head competitions, candidate
B defeats candidate A with four versus three wins, candidate C defeats candidate A also
with four versus three wins, and candidate C beats candidate B with five versus two wins.
This means, the Condorcet winner is candidate C and A is even the Condorcet loser for

2.4. Selected Voting Scheme Properties 23

this preference order. As a consequence, plurality voting violates both the Condorcet
winner and the Condorcet loser criterion.
Alternatively, we could revoke our assumption of an honest voting behaviour and suspect
supporters of candidates, for who they suspect to not stand a chance for winning the
election, to instead vote for a candidate with higher chances. However, even then the
given preference order can create problematic outcomes with plurality voting. As both
the supporters of candidate B and the supporters of candidate C are equally averse to
support candidate A, at least two alternative voting behaviours seem likely.
If candidates B and C both share similar views, their supporters might all vote for
candidate B. This would result in three votes for candidate A and four votes for candidate
B, making candidate B win the election. In this case, we did not end up electing the
Condorcet loser, but the Condorcet winner was not elected either. The other case, where
supporters of candidates B and C unitedly vote for candidate C is just as likely as the
latter scenario. But then, candidate C would win the election and the result would be
compatible with the Condorcet winner criterion. Nonetheless, with the assumption of
strategic voting, the exact voting behaviour is firstly hard to estimate with still a high
chance of not electing the Condorcet winner or even making the Condorcet loser win
the election, and we secondly argue strategic voting to be an undesirable behaviour in a
democracy.

Second Example: Approval Voting For an election with approval voting (Section 2.3.2),
each voter can express his or her approval or disapproval for every candidate separately
and no order between the approved candidates is given. As a consequence, the outcome
is a more consensual one than for plurality voting. Let us assume the same preference
order as for the previous example in Table 2.9 with 9 voters and the three candidates A, B
and C. In the case of approval voting, how to deduce a ballot box from a given preference
order is not obvious as approval voting rather relies on rated ballots than on ranked ones.
If we simply assume that every voter approves of two candidates, accordingly only
disapproving of one candidate, we get get three votes for candidates A and C, and four
votes for candidates B and C, making candidate C the winner of the election. This
outcome is compatible with both the Condorcet loser and the Condorcet winner criterion
as candidate C is the Condorcet winner. Indeed empirical data justifies that the approval
voting scheme is very likely to elect the Condorcet winner in practice [BF88][RG98].
There are however at least theoretical counterexamples, where approval voting does
not comply with the Condorcet criterion. When we revoke our assumption that every
voter approves of exactly two candidates, the situation changes. The given preference
order (Table 2.9) always lists candidate A as first or third, but never as second choice.
Therefore, candidate A may hold views strongly opposing a large set of A’s or B’s views.
In this case it is unlikely that a voter favouring candidate A additionally approves of
either candidate B or C. Further pursuing this assumption, we could get a ballot box with
three votes for candidate A, and four votes for candidate B and C. This is a tie situation
between candidates B and C and thus only complying with the Condorcet loser criterion
as candidate A does not get elected. Any change in the threshold for a supporter of either

24 2. Voting Schemes and Correctness Properties

candidate B or candidate C would determine the election result with either candidate B
or candidate C, the Condorcet winner, as the winner.
A situation identical to the example for plurality voting with the same preference order
arises, when every voter only elects one candidate. In this – arguably unlikely – case,
approval voting violates both the Condorcet loser and the Condorcet winner criterion.
We can conclude our example with the insight that approval voting can violate both
criteria, but is in practice unlikely to violate the Condorcet loser criterion.

Third Example: Instant-Runoff Voting In contrast to plurality voting and approval
voting, instant-runoff voting requires preferential ballots and is hence easier for examining
both the Condorcet loser and the Condorcet winner criterion. As mentioned above, IRV
is well-known to comply with the Condorcet loser criterion, but violates the Condorcet
winner criterion [Fel12b]. Let us for this matter consider an exemplary ballot box very
similar to Table 2.9, but with two more voters in order to avoid ties. We hence have a
ballot box with 9 voters, the three candidates A, B and C as shown in Table 2.10, and
therefore a candidate needs a majority of five votes to get elected.

4 Votes 3 Votes 2 Votes
A B C
C C B
B A A

Table 2.10.: Exemplary Preference Order for IRV

When determining the Condorcet winner, we compare all head-to-head competitions and
observe that candidate B defeats candidate A with five versus four wins, candidate C also
defeats candidate A with five versus four wins, and candidate C beats candidate B with
six versus three wins. The Condorcet winner accordingly is candidate C and candidate A
the Condorcet loser. In the event of an IRV election, the aggregated first preferences are
four votes for candidate A, three votes for candidate B, and two votes for candidate C.
Consequently, no candidate reaches the quota of five first preference votes and candidate
C as the weakest candidate gets eliminated in the first round. After the elimination,
we have five votes for candidate B and four votes for candidate A, effectively making
candidate B the winner under an IRV election. Candidate B is neither the Condorcet loser
nor the Condorcet winner and as such this outcome violates the Condorcet criterion.

3. Techniques and Tools for
Verification

Throughout the previous chapter, we presented various different voting schemes as
well as three different criteria to specify different aspects of correctness for a voting
scheme. Voting schemes are usually designed with at least some notion of correctness
in mind, sometimes the designers even attempt to comply with multiple correctness
criteria. Whereas it is desirable to cope with multiple notions of correctness by satisfying
various correctness criteria, we have demonstrated in Section 2.2 that this is impossible
to achieve for general correctness properties. This finding makes the development of
voting schemes with a consistent notion of correctness, where the selected correctness
criteria are compatible, a difficult undertaking and provides several pitfalls for designers
of voting schemes. Hence, we believe it is important to have a good understanding of the
properties a voting scheme has, as these can lead to unexpected and often undesirable
results.
In order to gain reliability on this issue, we perform an analysis of voting schemes with
respect to formal notions of correctness, providing precise results with the goal of a
non-regressive and thus fail-safe design process for voting schemes. For this matter,
this chapter illustrates two major formal verification techniques as well as two formal
software tools, of which each pursues one of these techniques. Thereby, we have a design
process in mind, wherein each technique plays a different role and complements the
respective other technique. The “light-weight” verification technique software bounded
model checking (SBMC) gives early feedback for small inputs and thus leads to a rapid
prototype for a desired voting scheme, where invalid voting schemes or properties can
usually be disproved by producing concrete counterexamples. In the further process,
the “medium-weight” verification technique auto-active deductive program verification
can produce a more reliable verification for a larger or even unlimited set of inputs, but
cannot be called rapid as it requires significantly more user interaction.

3.1. Selected Verification Techniques
Within this work, we apply two different verification techniques, which we argue to be
light-weight and medium-weight techniques. Using this notion, we distinguish light-weight
and medium-weight from heavy-weight techniques. This distinction is mainly made with
respect to the necessary amount of specification and the necessary verification work
using this specification. In terms of the verification work, we understand light-weight and
medium-weight techniques to be mostly automatic and or at least auto-active. Auto-active

26 3. Techniques and Tools for Verification

verification has to be considered in-between fully automatic analysis and interactive
proofs [LM10]. It targets a high degree of automation and supports programmer-friendly
user interaction through source code annotations with additional proof hints, usually
relying on abstract interpretation. The fully automatic technique of software bounded
model checking (SBMC) however requires only a small amount of user interaction, but
does only provide verification for a small scope of inputs. SBMC unrolls the control
flow graph of the program for a fixed number of steps (usually instructions) and checks
whether an error location (leading to a counterexample) can be reached within this
number of steps [Bie+99]. A major justification for the significance of this technique
comes from the small scope hypothesis, which argues that a high proportion of bugs can
be found for inputs within some small scope [ADK03]. SBMC is usually being used to
find low level bugs which concern the technical functionality of the program, but can
also be enhanced with simple source code annotations in order to specify more global
properties, and bounded proof obligations are discharged automatically.
Both techniques SBMC and auto-active verification involve adding the properties to be
checked as pre- and postcondition annotations to the actual program code. However, fully
interactive verification, which we classify as heavy-weight technique, involves encoding
the implementation as well as the specification into a higher order logic, commonly of
an LCF-style theorem prover [Mil72]. Then, we use the theorem prover to prove that
the implementation adheres to the specification, which is usually done interactively. The
LCF-style theorem prover ensures that theorems are only derived from the inference
rules by the abstract type and rely as such completely on a small core of rules. As a
consequence, the heavy-weight approach produces proofs with a high degree of trust.
The main disadvantages of this approach are that the user has to be proficient in logic
and formal proof theory, and that a successful verification demands a high degree of
interaction, i.e. user support, making this a labour-intensive technique. Additionally, this
technique is not apt for generating counterexamples in case a property is not satisfied.
We believe that a proof using the heavy-weight approach is clearly desirable and necessary
to ensure a high amount of trust and credibility in a voting scheme. Yet, we also argue
that a successful verification process of voting schemes needs an early feedback in order to
develop meaningful voting schemes and correctness criteria in the first place. Thus, this
work analyses and employs the light-weight verification techniques SBMC and auto-active
annotation-based program verification and examines their applicability on the formal
verification of voting schemes. In the following, we amplify our motivation for these two
techniques.

3.1.1. Auto-Active Deductive Program Verification
In general, we want program verification to be easy to use and the effort invested in doing
the verification should be outweighed by the additional reliability, which can be gained
in the event of a successful verification [LM10]. This task is tackled by the technique
of auto-active deductive annotation-based verification with a significant effort to reduce
the potential verification work for the programmer writing the program to be verified.
The technique still provides universally reliable guarantees when a program can be

3.1. Selected Verification Techniques 27

successfully proven with respect to its specification. For this matter, the technique aims
for a high portion of automation combined with early feedback to enhance the necessary
interaction in order to accomplish the proof. More precisely, auto-active deductive
program verification is a modular verification technique, wherein program artefacts
are annotated with a method contract, consisting of a pre- and a postcondition and
potentially more specification elements such as frame conditions, object invariants and
auxiliary annotations specifying inner parts of the program artefact. When this contract
can be successfully verified, the established guarantees can be used in order to verify
other program artefacts, which invoke the already proven artefact. The same applies to
specified parts inside the program artefact, as e.g. loop invariants for modularising loop
iterations.
This approach attempts to provide a rather intuitive usability for programmers as its
specification language aims to be very close to the language of the actual program code.
In order to achieve this intuitive usability, the verifier needs an extensive set of usage rules
in order to handle program language specific operations and types. As a consequence,
the program artefact with its specification needs to be translated to a verifiable logical
encoding. Thus, a set of logical verification conditions (VCs) is generated and then
processed by a reasoning engine. Thereby, we can separate intricacies of the programming
language and its modelling from the underlying logic and proof procedures.
At this point, we need to clarify, where we draw the boundary between interactive and
auto-active verification, as within this work, we stick to auto-active verification. The
boundary can be illustrated by defining exactly at which stage the interaction or user
input is typically supplied. For most interactive proof assistants, the user interacts with
the verifier after the VC generation. In the case of auto-active verification (lying between
automatic and interactive verification) however, the interaction is closer to the program
code and happens before generating the VCs. This programmer-friendly approach is
enabled by powerful automatic satisfiability-modulo-theories (SMT) solvers [DB11].
Furthermore, proofs often closely relate to programs in the amount and structure of
their case distinctions, e.g. if-statements usually result in performing a case split in the
proof. The use of powerful SMT solvers enables us to receive early feedback also in case
of failed proof attempts, in the form of precise counterexamples and the location in the
program code or its specification, where the counterexample was generated. Moreover,
the combination of early feedback and a good intuition of which part of the program
causes the proof to fail enables the user to keep track of failed proof attempts and the
program elements which possibly need to be re-proven after a change in the program.
These means justify auto-active deductive program verification to bridge the gap between
the user and the verification process, while still being apt to provide great reliability.
There is however a drawback concerning the established reliability. First off, the auto-
active verification approach usually involves a complex verification tool with an interface
to an SMT solver. This fact itself already lowers the gained reliability in comparison to
heavy-weight verification, which provides intrinsic reliability based on its architecture
with only little dependencies. Furthermore, the usually short verification time both for
successful verification and verification failure also comes at a price [LM10]. This concerns
the case when the tool fails to automatically discharge the required proof obligations, as

28 3. Techniques and Tools for Verification

usually little can be done in this event. However, the strengths of this technique indicate
its important role in enhancing the formal verification process of voting schemes.

3.1.2. Software Bounded Model Checking
As indicated in the justification for the auto-active deductive verification technique,
powerful SMT solvers can extensively enhance program verification. However, it can
occur for auto-active verification that no proof obligation can be discharged automatically
and we are stuck in the verification process. We justify in this section that the software
bounded model checking (SBMC) technique can bridge this gap in order to gain at
least partial reliability or generate smaller proof obligations in order to still produce a
counterexample where the auto-active technique fails completely.
The SBMC technique does in contrast to auto-active or interactive deductive verification
not aim to establish universal correctness guarantees or full reliability for all possible input
parameters. Instead, it only considers a finite search or state space by cutting off program
execution paths at a certain length. As such, this approach is comparable to systematic
exhaustive testing up to a certain boundary of input size. However, SBMC provides
means of symbolic representation for a state space and thus generally outperforms testing
by large as truly exhaustive testing is rarely possible. Whereas for testing concrete
inputs need to be provided and corresponding concrete outputs observed, SBMC tackles
the potential state space explosion induced by simple mathematical combinatorics of all
possible concrete input parameters and program paths by symbolic representation. While
being more expressive than testing, we can usually generate simpler proof obligations
than with deductive verification techniques and the emission of bounded guarantees is
more likely.
More precisely, symbolic model checking uses boolean decision procedures and avoids the
high space blow up, which occurs in approaches which use a compressed representation
of all relations with a variable ordering [Bie+99]. SBMC uses modern SAT procedures in
order to generate a propositional formula that is satisfiable if and only if a counterexample
of a particular length (specified by the user) exists. The bound is thus given by the
maximal length of a counterexample and we reduce the verification problem to proposi-
tional satisfiability. Furthermore, SBMC tools include additional decision procedures that
support features of common complex programming languages such as complex memory
models or further data types in order to check a wider range of correctness properties
beyond the scope of traditional model checking without these decision procedures. This
technique is usually argued to have the finding of small explicit counterexamples, which
are easy to understand by the user, as its most important feature. Even though the
potential for counterexamples within a larger scope still exists, we argue that SBMC is
suitable for both finding counterexamples and the establishment of positive reliability
guarantees. Bounded verification results provide great significance to full or unbounded
reliability, based on the small scope hypothesis.

Small Scope Hypothesis The idea behind the small scope hypothesis is to artificially
truncate the state space by checking only within some finite bounds [JD96]. It is an

3.2. Selected Verification Tools 29

informal intuition for a “downward scalability” based on findings such as the small model
property, which states that for some logical formulas with a possibly infinite variable
domain, satisfiability checking for only a finite range of variables is sufficient [Pnu+02].
As such, most faults can be exposed by some “short” failing trace. The size of this
failing trace may be influenced by various factors, e.g. the formula length, the number of
operations or the complexity of input structures. One general danger of relying on the
small scope hypothesis is the violation of resource bounds, which might not occur for the
considered search space at all. However, this is not critical for the verification of abstract
voting schemes within this work, as we apply the small scope hypothesis to the range of
possible candidates, seats or voters, which also defines the actual resource bounds as e.g.
the sizes of used data structures for vote counting in an according range. Evaluations of
the small scope hypothesis have shown that exploiting the hypothesis and performing
tests within a small scope can achieve complete coverage even when checking intricate
methods [ADK03]. On the downside, we need to note that for some inputs, even the
generation of proof obligations for a very small scope can be intractable and finding a
more compact representation of the input might be a more promising approach for this
case.

3.2. Selected Verification Tools
In the previous section, we have gained theoretical insights in the verification techniques
employed within this work. Hereinafter, we illustrate the concrete software verification
tools, which we use in our examinations of the following chapters in order to apply the
chosen verification techniques.

3.2.1. Deductive Verification with VCC
The Verifying C Compiler (VCC), developed by the European Microsoft Innovation
Center and the RiSE group at Microsoft Research, aims for full modular and deductive
verification of concurrent C programs for every possible program execution [Coh+09].
It pursues an auto-active approach as described in Section 3.1.1 and uses the Design
by Contract approach relying on contracts with function pre- and postconditions, state
assertions, ghost code, loop and type invariants as well as frame conditions (i.e. describing
which memory locations can be changed). These annotations are written in first order
logic and other legal C statements. VCC translates the annotated C code into the
intermediate verification language Boogie [DL05], which is then passed as an input to the
verification condition generator Boogie [Bar+06]. The generated verification conditions
are then fed into the Z3 SMT solver [MB08] and finally the proof result, in its minimal
form simply the verification time together with either a success message or a partial
counterexample, is presented to the user by VCC. As this work is not concerned with the
verification of concurrent programs, we limit the following description of VCC’s usage to
the verification of sequential programs.

30 3. Techniques and Tools for Verification

Function Contracts VCC heavily relies on abstraction and modularisation and as such
performs a static modular analysis for each function in isolation. This task is done with
the help of the contracts of functions that the examined function calls and invariants of
types used in the function’s code. A function contract can be given for every function in
C code and consists of a precondition with the keyword requires , a postcondition with
the keyword ensures , and frame condition with the keyword writes . If parts of the pre-
and the postcondition overlap, the keyword maintains can be used for combining both
(overlapping) aspects into one predicate. A precondition declares under which condition
a function may be called, a postcondition under which condition the function may return
(when called in a state satisfying the precondition), and the frame condition describes
the part of the whole program state that the function is allowed to modify. Whereas
other functions have to guarantee the precondition of the function they are calling, the
called function itself has to guarantee that its postcondition holds after the call and at
most the specified locations in the frame condition have been changed afterwards. This
also shows the duality of function contracts, as preconditions need to be weak enough to
be fulfilled by calling functions, but strong enough for the function itself to be proven.
Similarly, frame conditions need to be permissive enough to prove the postcondition, but
strict enough to not impede verification of calling functions, and postconditions need
to be weak enough to be verified to hold for a function contract, but strong enough to
enable the other functions’ proofs. Additionally to function contracts, VCC uses type
invariants specifying data with either one- or two-state predicates. These type invariants
can then be used at various points in the program.

Ghost Code A further concept, which is crucial for specification and verification with
VCC, is ghost code only operating on ghost states, in contrast to regular operational (with
respect to actual program states) code. It is only seen by the static verifier, but not the
regular compiler, and comprises ghost type definitions, ghost fields, static or automatic
ghost variables, ghost input and output parameters, as well as ghost state updates. In
order to realise this division into two different kinds of code, a ghost memory state is
being kept separate from the regular memory state by VCC and any data flow from the
ghost state to the operational state of the software is forbidden. The types used in ghost
code can either be regular C types, or special verification purpose types such as maps
and other VCC specific types. One common application of ghost code is to keep shadow
copies of implementation data, usually introducing abstractions or allowing for atomic
shadow updates in order to enforce the usage of two-state invariants, specifying state
transformations, on the overall system when this is not possible with the operational
code.

Ownership Model and Type Invariants Speaking of states and type invariants, the
exact notion of invariants and when they must hold is an important issue in a specification
language targeted at an imperative programming language. Obviously, there are type
invariants that cannot always hold as they depend on the states of other objects and a
modification of any of these objects potentially violates the invariant. In a system with

3.2. Selected Verification Tools 31

reusable components, the methodology must allow such behaviour and ensure that the
invariants of the other objects are reestablished before it relies on them again. For this
matter, VCC implements a Spec#-style ownership model organising the objects of the
heap into a collection of tree structures and thereby also dealing with the important issue
of aliasing, which arises in object-oriented programs [BLS05]. Edges in the ownership
tree indicate ownership or an aggregate/sub-object relationship and a type or object
invariant depends only on states in its sub-tree with the invariant being at the root.
Methods can only call objects downwards in the ownership tree, but not upwards as
to prevent method calls on inconsistent objects. Consequently, every object has an
ownership domain containing all the objects directly or transitively owned by this object.
Based on this model, VCC uses a range of specification elements in order to track an
object’s status in its meta-state (especially useful to deal with concurrent modification).
We do not discuss these specification elements in detail at this point as verification within
this work manages without them and instead makes heavy use of ghost code, which
describes ghost states not prone to concurrent modification. However, we note that frame
conditions strongly relate to the ownership model as granting write access to the root of
an ownership domain automatically enables writing to the entire ownership domain.

Z3 SMT Solver The reasoning back-end of VCC is the Z3 SMT solver which consists
of a simplifier, a compiler, a congruence closure core with solvers for equalities and
uninterpreted functions, theory solvers for linear arithmetic, bit-vectors, arrays and
tuples, an E-matching engine, and a Davis-Putnam-Logemann-Loveland(DPLL)-based
SAT solver [MB08]. When Z3 receives the verification conditions from Boogie, it first
applies an incomplete but efficient simplification in order to reduce the formula before
this abstract syntax tree representation is converted into a set of clauses and congruence-
closure nodes by the compiler.
Then the complex constraint solving commences with the congruence closure core which
propagates equalities, assignments, atoms and literal assignments between the SAT solver,
the theory solvers and the E-matching engine. With the truth assignments and links to
atoms from the SAT solver, the congruence closure core propagates asserted equalities
with the help of a data structure called an E-graph following. Nodes in this E-graph may
point to one or more theory solvers and when nodes are merged, the merge is propagated
as an equality to the theory solvers referenced in the intersection of these nodes. Vice
versa, also the effects of the theory solvers as inferred equalities and atoms are assigned
to the SAT solver. As verification conditions may also contain quantifiers, Z3 also needs
a mechanism in order to instantiate these quantifiers appropriately and efficiently.
This is done by the E-matching engine, which is an abstract machine also using the
mentioned E-graph with a well-known approach for quantifier reasoning. Generally
speaking, algorithms are used to identify matches on E-graphs incrementally and efficiently.
Z3 uses heuristics to select instances, which are “relevant” to the conjecture [DB07]. The
key idea of E-matching is to consider those possible instances as relevant or a match,
of which enough terms are represented in the current E-graph. As such, non ground
terms from the quantified formula are selected as patterns and an instance of the formula

32 3. Techniques and Tools for Verification

is considered a match whenever the any pattern with the same instantiation is in the
E-graph. Additionally, Z3 also supports the more restrictive concept of multi-patterns,
which operate similar to patterns, but use multiple non ground terms for one instantiation.
Only when all of them are contained in the E-graph, the instantiation is considered a
match. In addition, Z3 has the ability to produce partial models assigning values to the
constants in the input and subsequently generate partial function graphs for predicate
and function symbols.

Quantifier Instantiation Using E-Matching and Triggers In the previous paragraph,
we have seen an overview of Z3’s architecture including the E-matching engine which
attempts to find good instantiations for quantifiers. Yet, however efficient this instanti-
ation mechanism is, the issue of solving quantified formulas is in general undecidable.
For this matter, VCC has an automatically integrated mechanism to enhance Z3’s E-
matching mechanism in deciding which instantiated instances are useful and which are
not. Moreover, VCC also provides primitives such that the programmer or verification
engineer can enhance this task with present program knowledge.
This mechanism is called triggers and VCC infers appropriate triggers automatically
by default or the user can specify some explicit triggers manually [Coh+11]. These
triggers are then passed as patterns to Z3 in order to guide the matching mechanism and
consequently which instances of quantified formulas are generated. In general, VCC’s
mechanism to generate appropriate triggers is reliable and avoids any instantiation loops.
However, complex specification elements may require the use of explicit triggers specified
by the user. Usually, this is to reduce the set of generally admissible triggers or specify
“bigger” multi-triggers in order to generate more restrictive patterns or multi-patterns
respectively and cause the formula to be instantiated less often, generally leading to a
better proof performance, but also possibly preventing the proof altogether. Sometimes
there is the opposite situation, where we want to specify a less restrictive trigger as
the proof gets stuck as a formula cannot be instantiated at all. For this matter, VCC
provides some trivial triggers, as e.g. the functions \match_long() and \match_ulong(),
matching on any instantiation for a given type. Additionally, very similar primitives
are so-called hints, which intuitively indicate that they might have something to do
with proving the following formula. They are usually used so that certain terms are not
“missed” in the proof.

VCC Tool Suite VCC’s tool chain includes Microsoft Research’s Common Compiler
Infrastructure (CCI) libraries for all usual compiler tasks such as name resolution and
type and error check [Coh+09]. Subsequently, the program undergoes a range of source-to-
source transformations in order to perform simplification, add proof obligations stemming
from the methodology, and generate the Boogie source. Therein, Boogie encodes the input
program according to a given C formalisation and adds minimal imperative control flow,
procedural and functional abstractions, as well as types on top of first order predicate
logic. The generated verification conditions are then fed into Z3, which uses fast decision

3.2. Selected Verification Tools 33

procedures for linear arithmetic. In case the proof succeeds, this is the whole work flow
with VCC.
Yet, there may be genuine errors in the code or the annotations as well as a lack of
computer memory, time or patience. Especially as this verification is in general undecid-
able, VCC provides a larger framework that includes tools for monitoring proof attempts,
tracking and examining failed proofs as well as generating partial counterexample traces.
The VCC Model Viewer is part of this framework and is able to translate partial coun-
terexamples generated by Z3 into a representation for inspecting the sequence of program
states that led to the failure. It also includes the values of local and global variables as
well as the heap state.
Another possible reason to further examine the situation is when the prover takes an
excessive amount of time to come up with either a proof or a refutation for a verification
condition. For this matter, the Z3 Inspector allows to monitor the progress of Z3 linked to
the code annotations for the user to pinpoint the responsible verification conditions. This
can be either caused by a valid verification condition for which the prover requires a long
time, or by an invalid verification condition for which the search for a counterexample
takes a very long time. It is argued that identifying the problematic assertion for the
latter case is a quick task with this tool [Coh+09]. In the former case, the Z3 Axiom
Profiler is proposed for a closer inspection of the quantifier instantiation pattern with
the objective to determine inefficiencies in the underlying axiomatisation of C or the
program annotations and for example triggering cycles can be detected by this means.
The developers further propose the usage of Visual Studio IDE (also used within this
work) for a direct access of the described framework and tool chain and options for
verifying only individual functions.

3.2.2. Bounded Verification with LLBMC
The Low-Level Bounded Model Checker (LLBMC), actively developed by the research
group Verification meets Algorithm Engineering at Karlsruhe Institute of Technology
(KIT), employs bounded model checking in order to verify properties in sequential C/C++
programs with the main purpose of finding bugs and run-time errors [MFS12]. This is a
fully automatic approach also known by the name SBMC as described in Section 3.1.2,
converting the originally generally undecidable verification task into a decidable, yet
incomplete, endeavour through only considering a finite part of it. In order to achieve
this, LLBMC restricts the number of considered loop iterations and nested function calls
by loop unrolling and function inlining up to specified bounds and essentially analyses
one large function with only finite runs, on which an efficient symbolic exhaustive search
is performed.

Built-In Checks Concerning the verification capabilities, LLBMC provides a wide range
of built-in checks for commonly occurring bugs in C programs. These include arithmetic
overflow and underflow, logic or arithmetic shifts exceeding the bit-width, memory access
at invalid addresses, invalid memory allocations and de-allocations, overlapping memory
regions in memcpy, memory leaks, divisions by zero, as well as user defined and SBMC

34 3. Techniques and Tools for Verification

specific (i.e. manually given) assumptions and assertions using the keywords assume
and assert (also usable by the C compiler) or their specification-only versions prefixed
with __llbmc_ (only usable by LLBMC). Additionally, LLBMC provides a measure
to check, whether the specified bound for loop iterations (by using the option “max-
loop-iterations=n”) is sufficient. Each of these checks can be enabled or disabled
independently with most of them enabled by default. For commonly used for-loops,
LLBMC automatically identifies an appropriate upper bound for the number of loop
iterations immediately, but for some more complex loops, an upper bound for the number
of loop iterations cannot be easily determined. Custom specifications can be given with
any legal C/C++-expression of type boolean and thus do not directly support expressions
in full first order logic. Our examination within this work mainly targets these custom
assertions in order to analyse more complex properties specific to voting schemes.

Encoding and Representation Verification with LLBMC is not done directly on
C source code, but operates on the intermediate compiler representation LLVM-IR
generated by the LLVM compiler framework with an according front-end such as clang
or llvm-gcc [LA04]. LLVM-IR is an abstract, RISC-like assembler language for a register
machine with an unbounded number of registers consisting of type definitions, global
variable declarations, and a representation of the program itself. The program is rep-
resented as multiple functions, each realised by a graph of instruction lists or so-called
basic blocks. As such, this static program representation is in static single assignment
(SSA) form, wherein each variable is assigned exactly once and assignments can hence be
treated as logical equivalences.
LLBMC subsequently converts the LLVM-IR program into its internal logical representa-
tion ILR in the logic of bit-vectors and arrays with some extensions in order to handle the
special semantics of memory allocation instructions, simplifies it by the usage of rewrite
rules, and annotates it with LLBMC’s built-in checks. Therein, LLBMC uses a bit-precise
and untyped memory model, where arbitrary data can be read from any valid address,
and memory is just an array of bytes with accomplishing stores and loads by a sequence
of reads and writes on the logic level [SFM10]. By these means, common constructs in
C code, such as casting blocks of memory containing a structure to a byte-array, are
supported with dynamic memory and casts. Furthermore, LLBMC accomplishes function
inlining and loop unrolling by using code from the LLVM libraries and the basic block
graph becomes a directed acyclic graph (DAG) afterwards.
Finally, LLBMC passes the ILR formula, which is satisfiable if and only if the program
violates the given conditions, to an SMT solver, which is STP [GD07] with either
a configurable version of MiniSat or CryptoMiniSat [ES03]. Small and bit-precise
counterexamples are generated if any of the conditions does not hold.

4. Deductive Verification of Plurality
Voting with VCC

In this chapter, we examine annotation-based modular deductive verification with the tool
VCC for the first-past-the-post (FPTP) voting scheme plurality voting from Section 2.3.1
with the monotonicity criterion from Section 2.4.1. We have seen in Section 3.1.1 that
this “medium-weight” approach makes use of the modular structure of programs as it
uses method or block contracts and loop invariants instead of inlining methods, blocks or
loop statements. The idea of this modular approach is to reason about an abstract heap
or set of program elements, which does not need to reflect the actual whole program
state, but only an abstract representation of it. This modular approach usually needs a
lot of manual specification, but has the benefit of a more concise and understandable
specification and also speeds up the automatic verification process (once the specification
is complete) and gives a universally valid (i.e. unbounded) proof.
In the following, we examine the feasibility of this approach for our verification target
and furthermore explore VCC’s capability to give bounded guarantees in case we have no
loop invariant, but do loop unrolling, which is aimed to be done automatically without
any user interaction. Loop unrolling means that, as we know how many loop iterations
there are, we translate a loop into nested if-statements with a given nesting depth,
which is determined by the number of possible loop iterations. On the one hand, this
means we lose universal validity, but instead we do not need to specify a loop invariant,
which is in general hard to determine.

4.1. FPTP Implementation and Specification of
Monotonicity Criterion

This section describes the verification of the monotonicity criterion for FPTP plurality
voting using VCC. As in Section 2.3, we use some common constants for all voting
schemes. V always denotes the number of voters and C the number of candidates. For
the implementation, we do not use two method calls which would enable performing
modular verification for calling the voting scheme, but instead decide to inline both calls.
As we aim at reducing the necessary user interaction in the verification process, the
inlining is done in order to be able to selectively replace parts of the implementation
by a more declarative description in terms of VCC annotations. Furthermore, our
implementation uses only ghost code, i.e. ghost parameters, ghost variables and ghost
statements. This is done as to firstly simplify reasoning and abstract away from C specific

36 4. Deductive Verification of Plurality Voting with VCC

issues as e.g. aliasing between different arrays which is not possible for ghost variables,
and secondly for convenience as to be able to use lambda-expressions describing contents
of a ballot box, as well as to let a method return more than one value by using ghost out
parameters instead of integer pointers. However, the fact that we only use ghost code
also means that the code is not read by a C compiler and hence cannot be executed as a
C program, but only serves for our verification purposes.

Implementation of Plurality Voting In the following, we present and describe the
implementation of plurality voting as used for the experiments in this chapter. The
implementation is as shown in Listing 4.1, having the three parameters votes, res and
elect. The array votes is the input and represents the ballot box, which contains
V votes, each an integer between 1 and C, meaning the voter has cast a vote for the
according candidate. The two parameters res and elect are the output. Therein elect
stands for the election outcome, which is denoted by either an integer between 1 and C for
the according elected candidate, or 0 in case there is a tie and no candidate gets elected.
The array res is used to count the given votes for each candidate i in the according entry
res[i]. It is actually not a necessary output of the election, but rather an intermediate
value. However, we specify it as an output parameter as to be able to use it in the
VCC annotation for the whole method as an enhancement for the verification process.
Additionally to these three variables, our implementation uses the two helper variables i
and max. The variable i is used for iterating through loops and max to determine the
maximum amount of votes for a candidate.

1 void voting(_(ghost int votes[int])
2 _(ghost int res[int])
3 _(ghost int elect)) {
4 _(ghost int i = 0;)
5 _(ghost int max = -1;)
6 _(ghost elect = 0;)
7 _(ghost int res[int] = \lambda int i; 0;)
8 _(ghost for (i = 0; i < V; i++) res[votes[i]]++;)
9 _(ghost for (i = 1; i <= C; i++) {

10 if (max < res[i]) {
11 max = res[i];
12 elect = i;
13 } else if (max == res[i]) elect = 0;
14 })
15 }

Listing 4.1: Plurality Voting

We start by initialising all these variables to zero respectively or a negative value for max
as to distinguish the preset value from the number of votes for candidates without any
votes. In Line 7, we benefit from the usage of ghost code by using a lambda-expression

4.1. FPTP Implementation and Specification of Monotonicity Criterion 37

as an easy means to initialise a whole array. The actual vote tallying is done in Line 8
by reading the candidate, which voter i has voted for and incrementing the according
entry in res. Subsequently starting in Line 9, we iterate through all candidates and
compare the numbers of votes each candidate received, which are stored in the array
res. Thereby, we determine the maximum amount of votes for one candidate and the
according candidate, and store these values in max and elect respectively. In case there
is more than one candidate, who received the maximum amount of votes, we set elect
to zero. As the method voting does not return any value visible to the C compiler and
there are only ghost variables, there is no return statement or anything similar.

Specification of Monotonicity Criterion The correctness property we want to prove
for this voting scheme is monotonicity (as in Definition 6 on page 19). For voting schemes
as plurality voting, where each voter can only vote for one candidate, we can simplify
this definition as follows:

Definition 9 (Monotonicity for Plurality Voting) For a set of candidates C, a set
of voters V and a set of ballot boxes B, we call a plurality voting scheme s monotone iff

∀m ∈ C, n ∈ V, b, b′ ∈ B :
(bn 6= m ∧ b′n = m ∧ ∀i ∈ V : i 6= n⇒ bi = b′i)

⇒ (s(b) = m⇒ s(b′) = m).

Therein we reason about two different ballot box inputs b and b′ for plurality voting,
herein denoted by the function s. Hence, in the C implementation, we need to call
the voting-method (Listing 4.1) with the actual voting scheme twice, each time with
slightly different parameters v1 and v2 (corresponding to the abstract ballot boxes b and
b′). However, we actually inline both method calls in order to enable reasoning about
all parameters of the voting-method in the contract for the monotonicity criterion, as
specified in Listing 4.2 as a VCC contract for the method correctness:

38 4. Deductive Verification of Plurality Voting with VCC

1 #define valid_cand (a) ((0 < a) && (a <= C))
2 #define valid_voter (a) ((0 <= a) && (a < V))
3

4 void correctness (_(ghost int v1[int]) _(ghost int v2[int])
5 _(out int elect1) _(out int elect2)
6 int m, int n)
7 _(requires 0 < V && V < INT_MAX - 1)
8 _(requires 0 < C && C < INT_MAX - 1)
9 _(requires \forall int i; {v1[i]}

10 (valid_voter (i) ==> valid_cand (v1[i]))
11 && (valid_voter (i) ==> valid_cand (v2[i])))
12 _(requires v1[n] != v2[n])
13 _(requires valid_cand (m) && valid_voter (n))
14 _(requires v2 == \lambda int i; i == n ? m : v1[i])
15 _(ensures (m == elect1) ==> (elect1 == elect2))
16 { ... }

Listing 4.2: Monotonicity Specification for Plurality Voting in VCC

In addition to the two ballot boxes v1 and v2 and the two respectively elected candidates
(or zero if no candidate gets elected) elect1 and elect2, we use the two parameters m and
n as to denote the raised candidatem and its raising vote n from the monotonicity criterion
in Definition 9. The conjoined formulas of the precondition are denoted with the keyword
requires , whereas ensures denotes the postcondition. In order to ease readability, the
definitions valid_cand and valid_voter in Lines 1 and 2 are abbreviations to express
that a variable denotes a valid candidate or valid voter respectively. Another definition
(Line 7), which we use for our specification, is INT_MAX, which denotes the maximum
value a C integer variable can hold. Hence, our specification is technically bounded and
does not deal with integers above this value. However, for the deductive methodology
of VCC the precise number of INT_MAX does not matter and is only specified to avoid
considering an integer overflow as the integer data type in C is bounded. It is thus
justified to assume that a proof for this specification is also valid for greater numbers,
when we neglect the potential occurrence of the C specific technicality of an integer
overflow.
We start our contract by limiting the numbers of voters and candidates to an appropriate
range, i.e. they are both strictly positive and less than INT_MAX. Furthermore (Line 13),
we use valid_cand and valid_voter as to make m and n a valid candidate and a valid
voter, respectively. The same well-formedness assumption is made for the votes in ballot
boxes v1 and v2 in Line 10, i.e. every valid voter votes for a valid candidate. The term
{v1[i]} after the quantified variable is a so-called matching trigger, which is a pattern
specified in order to guide the SMT solver for instantiating the variable with appropriate
terms. The usage of triggers is necessary as quantifier instantiation is a task, which
is generally undecidable and thus provides a means to support this process through
knowledge by the user. In the remaining lines, we specify the monotonicity criterion

4.2. Full Verification with Auxiliary Specifications 39

with v1 and v2 differing precisely in the vote cast by voter n in Line 12. We use a
lambda-expression in Line 14 to specify that the ballot box v2 is identical to v1 for all
voters, except for voter n who votes for candidate m. Finally, we conclude the contract
with the postcondition in Line 15 by asserting that both elected candidates elect1 and
elect2 are identical if candidate m has won the first election.
In the the following we examine VCC’s capabilities in performing a deductive proof that
the monotonicity criterion as specified in Listing 4.2 is satisfied by our implementation
of plurality voting as illustrated in Listing 4.1. For this analysis and all experiments
throughout this chapter, we use VCC 2.3.10214.0, Boogie 2.1.40227.0 and Z3 3.2 on a
dual-core Intel Core 2 Duo E7300 processor at 2.66 GHz with 1.5 GB of available memory
and specify a timeout of 7 hours (the script which we used can be found in Listing A.1
in Appendix A).

4.2. Full Verification with Auxiliary Specifications
In this section, we explore a verification process using VCC with the goal to have a general
and comprehensive proof of the monotonicity criterion for our implementation of plurality
voting. Having given the implementation of the voting scheme and the property to be
proven for it, we still need some auxiliary specifications for VCC’s auto-active approach.
In our case these are loop invariants to specify the two loop statements. Therein, we
must find an appropriate trade-off between invariants that are strong and expressive
enough to eventually deduce the postcondition of the monotonicity specification, but
also simple enough to prove that they hold before entering the loop as well as for every
loop iteration. Moreover as our specification comprises quantified formulas, we need
to support the E-matching process in finding useful quantifier instantions, which is in
general undecidable. This means that we need to guide quantifier instantiation using
pattern matching by providing a useful combination of triggers and specification elements
in order to advance the solver task. Another step towards a full verification consists in
supplying a recursive specification function count (Listing 4.3) for the specification of
the first loop. We denote a function without any side-effects by the keyword pure , the
return value by the keyword returns , and variant, which decreases in each invocation,
by the keyword decreases . We could have used an abstract map at this point, but
experiments have shown that the resulting term would have been to complex and is thus
outperformed by using the following specification function:

40 4. Deductive Verification of Plurality Voting with VCC

1 _(ghost _(pure) \integer count(int votes[int],
2 int upto ,
3 int cand)
4 _(decreases upto)
5 _(returns (upto <= 0) ?
6 0 : count(votes , upto -1, cand)
7 + (votes[upto -1] == cand ? 1 : 0))
8 {
9 return (upto <= 0) ?

10 0 : count(votes , upto -1, cand)
11 + (votes[upto -1] == cand ? 1 : 0);
12 })

Listing 4.3: Auxiliary Recursive Specification Function

This function is used to ease specifying which votes in the ballot box are already counted.
Therein the parameters are the ballot box votes, the variable upto to denote up to which
index the votes are counted, and the variable cand to specify the candidate whose votes
are being counted. We count all votes starting from the index specified by upto until the
first entry and recursively sum them all up all. The function terminates when upto is
equal to or smaller than zero. Hence, we can use this function in the loop invariant in
Listing 4.4 for the first loop of the voting scheme implementation as in Listing 4.1 at
Line 8, which tallies all votes and aggregates them by candidate in the array res.

1 _(ghost for (int i = 0; i < V; i++)
2 _(invariant 0 <= i && i <= V
3 && valid_cand (votes[i]))
4 _(invariant \forall int k;
5 (valid_cand (k) ==> 0 <= res[k] && res[k] <= i))
6 _(invariant \forall int k; {res[k], count(votes , i, k)}
7 (valid_cand (k) ==>
8 (res[k] == count(votes , i, k))))
9 { ... })

Listing 4.4: Loop Invariant for Tallying Votes

In Line 2, we specify the loop iteration variable to be in range and also the referenced
vote in the ballot box to denote a valid candidate. We specify furthermore in Line 4
that the counted votes for each candidate in the array res are a positive number and
not greater than the loop iteration variable, i.e. in each iteration at most one vote is
counted. Finally in Line 7, all entries in the array res are specified by using the function
count in Listing 4.3 to exactly denote the amount of votes up to the current entry for
the according candidate. This quantification relating the array res with calls of the
specification function count necessitates the specification of according triggers to guide

4.2. Full Verification with Auxiliary Specifications 41

the instantiation with correct values. Having specified the vote tallying process of one
line of code in three lines of specification, the loop invariant of the loop determining the
winner of the election in four lines of code necessitates an even more complex specification.
For this specification in Listing 4.5, we define another abbreviation along the lines of
the previously defined ones for a valid voter and a valid candidate in Listing 4.2. In
this case we define the abbreviation valid_candZero in Line 1 to describe either a valid
candidate or the value zero, as in the following the result is set to zero in case of a tie.

1 #define valid_candZero (a) ((0 <= a) && (a <= C))
2

3 _(ghost for (int i = 1; i <= C; i++)
4 _(invariant valid_candZero (i -1)
5 && valid_candZero (elect))
6 _(invariant elect != 0 ==> res[elect] == max)
7 _(invariant elect != 0
8 <==> (\ exists int k; {res[k]}
9 {\ match_long (k)} {:hint \match_long(k)}

10 0 < k && k < i
11 && (\ forall int j; 0 < j && j < i && j != k
12 ==> res[j] < res[k])))
13 _(invariant 0 <= max
14 ==> \exists int k; 0 < k && k < i && res[k] == max)
15 _(invariant \forall int k; 0 < k && k < i
16 ==> res[k] <= max)
17 { ... })

Listing 4.5: Loop Invariant for Determining Candidate with Most Votes

Accordingly, we specify the iteration variable to be in range and the variable elect for
the elected candidate in Line 4 of Listing 4.5 to either denote a valid candidate or the
value zero. If furthermore (Line 6), the variable elect denotes a valid candidate, the vote
count for this candidate is the value of the variable max with the current maximum. We
then specify in Line 7 that if and only if elect contains a valid candidate, there exists a
candidate among the ones already considered (i.e. smaller than the iteration variable),
who received strictly more votes than all other candidates already considered, i.e. there
really exists a unique maximum. This rather complex formula necessitates a trigger
for instantiating the array index for res as well as a trigger and a hint in order to get
the instantiation of the quantified variable k started. The function \match_long() is a
trivial specification function, which is true for all signed integer values. Subsequently, we
specify in Line 13 that if the value of the variable max (initialised with −1) has changed,
then there exists a vote count entry in the array res which is equal to the value of max.
It finally remains to specify in Line 15 that all vote counts in the array res are either
smaller than or equal to the value of max.

42 4. Deductive Verification of Plurality Voting with VCC

First Verification Attempt We specified both loop invariants for our implementation
of the plurality voting scheme in Listing 4.1 and also a contract for the monotonicity
criterion in Listing 4.2. Subsequently, we inline both calls of the voting scheme and
rename its variables votes, res, elect and max by suffixing “1” for the first and “2” for
the second call and shorten votes1 and votes2 to v1 and v2 in order to reason about
them in the method contract, which specifies the monotonicity criterion. The complete
specification can be found in Listing A.2 in Appendix A. When attempting to verify the
contract, we observe that the loop invariant for the determination of the first elected
candidate (Listing 4.5) verifies, whereas the loop invariant for determining the winner
of the second election cannot be successfully proven (both in Listing 4.5). We suspect
this to be based on the limited available memory supply as the E-matching process
for non-trivial and nested combinations of quantifiers in complex formulas is a memory
intensive task. In order to prove the whole contract with all loop invariants, we make
the following changes to the second loop invariant, which are shown in Listing 4.6:

1 _(ghost for (int i = 1; i <= C; i++)
2 _(invariant valid_candZero (i -1)
3 && 0 <= elect && elect < i)
4 _(invariant elect != 0 ==> res[elect] == max)
5 _(invariant elect == 0 && 1 < i ==>
6 \exists int j, k; 0 < j && j < i && 0 < k && k < i
7 && k != j && res[k] == res[j])
8 _(invariant 0 <= max
9 ==> \exists int k; 0 < k && k < i && res[k] == max)

10 _(invariant \forall int k; 0 < k && k < i
11 ==> res[k] <= max)
12 _(invariant (\ forall int j; {res[j]}
13 0 < j && j < i && elect != j
14 ==> (\ exists int k; 0 < k && k < i
15 && k != j && res[j] <= res[k])))
16 { ... })

Listing 4.6: Second Loop Invariant for Determining Candidate with Most Votes

Therein, the complex formula from Line 7 of the first loop invariant in Listing 4.5 does
not advance the verification, but impedes the verification process, and we drop it. Instead
the following three changes in Lines 3, 5 and 12 bring the verification process forward.
Firstly, we limit the value of the variable elect in Line 3 to be smaller than the iteration
variable, i.e. it can only specify a candidate, who has already been considered in the
iteration. Secondly in Line 5, we specify the case that elect is equal to zero and we
have already done at least one iteration. In this case, there exist at least two candidates
in the set of already considered candidates, who have received exactly the same amount
of votes. This formula holds as elect is only equal to zero before the loop and if there
are at least two tied candidates in the set of candidates already considered. Thirdly

4.2. Full Verification with Auxiliary Specifications 43

and lastly, we state in Line 12 that for all candidates already considered other than the
one currently stored in the variable elect, there exists another candidate we already
considered (possibly the candidate currently holding the maximum amount of votes) with
at least the same number of votes, i.e. none of the already considered candidates who are
not elected has the maximum amount votes. As this is a formula with nested quantifiers,
making it comparatively complex, we need to specify a trigger for the instantiation of
the outer quantified variable. We do this with the knowledge that it is an index of the
array res.

Results For this implementation with the shown auxiliary specifications (the complete
specification can be found in Listing A.2 in Appendix A), VCC is neither able to give a
universal proof nor a counterexample, but the memory consumption exceeded the limit
of 1.5 GB. However, when specifying a bound for the number of voters, VCC is able to
show that plurality voting satisfies the monotonicity criterion for up to 5 voters and any
number of candidates. The run-times of the VCC depending on the number of voters
are shown in Fig. 4.1. The graph does not indicate a strong effect of the number of
voters on VCC’s run-time, but instead VCC fails to give results for a higher number of
voters. By using the “Z3 Inspector” (Section 3.2.1), we observe that the postcondition
“(m == elect1) ==> (elect1 == elect2))” causes the generation of a great number
of instantiation samples, which we suspect to be the main cause for the unsuccessful
universal verification. However, VCC does not allow us to guide the sample generation
in this case as no quantifier is used in the formula.

1 2 3 4 50

10

20

30

40

50

Voters

Ru
n-
tim

e
[s]

Figure 4.1.: VCC Verification Performance with Monotonicity Criterion for Plurality
Voting Fully Annotated

Using an Intermediate Lemma to Simplify the Verification In order to further
investigate on the capabilities of VCC for our means, we replace the postcondition of
the monotonicity criterion by the lemma given as assertions with the keyword assert

44 4. Deductive Verification of Plurality Voting with VCC

in Listing 4.7. This is done in order to help the verification mechanism as we found
the sample generation for the postcondition for the monotonicity criterion to be the
crucial part in the verification process. Firstly, we assert that the precondition still holds
in Lines 1 to 5 as well as that the two ballot boxes v1 and v2 can be distinguished.
Furthermore, we assert in Lines 6 and 8 that the counting in the arrays res1 and res2
is done correctly, i.e. as specified by the specification function count from Listing 4.3.
In Line 10, the first elected candidate elect1 is asserted to have the unique maximum
amount of votes as counted and stored in the array res1. Then we assert in Line 13
that for all candidates other than the candidate elect2 elected in the second election,
there exists another candidate with at least the same amount of votes as stored in the
array res2. Finally, we provide formulas in Lines 17 and 18 in order to provide easy
triggers for the instantiation of nested array operations as res1[v1[j]] and res2[v2[j]].
Essentially, this is an aggregation of all loop invariants in our program combined with
the repetition of the precondition.

1 _(assert 0 < V && V < INT_MAX - 1)
2 _(assert 0 < C && C < INT_MAX - 1)
3 _(assert v1 != v2)
4 _(assert valid_cand (m) && valid_voter (n))
5 _(assert v2 == \lambda int i; i == n ? m : v1[i])
6 _(assert \forall int k;
7 (valid_candZero (k) ==> (res1[k] == count(v1 , V, k))))
8 _(assert \forall int k;
9 (valid_candZero (k) ==> (res2[k] == count(v2 , V, k))))

10 _(assert elect1 != 0
11 ==> (\ forall int k; 0 < k && k <= C && k != elect1
12 ==> res1[k] < res1[elect1]))
13 _(assert (\ forall int j; {res2[j]}
14 0 < j && j <= C && elect2 != j
15 ==> (\ exists int k; 0 < k && k <= C && k != j
16 && res2[j] <= res2[k])))
17 _(assert \forall int j; \match_long(res1[v1[j]]))
18 _(assert \forall int j; valid_voter (j)
19 ==> \match_long(res2[v2[j]]))

Listing 4.7: Specification of Lemma Which Implies Monotonicity for Plurality Voting

The lemma stated in Listing 4.7 (the complete specification can be found in Listing A.3
in Appendix A) can thus be successfully proven to hold our implementation of plurality
voting by VCC without specifying any bounds other than those preventing an overflow
as in the monotonicity specification in Listing 4.2. We subsequently attempt to prove
the monotonicity criterion for a completely empty program with the same parameters
as in Listing 4.2 and having the lemma from Listing 4.7 as its precondition and the
postcondition of the monotonicity specification in Listing 4.2. During this task, we

4.2. Full Verification with Auxiliary Specifications 45

observed that changing the order of the specification may greatly impede the verification
process. Again, we do not achieve a universal proof, but bounded guarantees with
run-times as shown in Fig. 4.2:

1 2 3 4 5 6 7 8 90

1,000

2,000

3,000

Voters

Ru
n-
tim

e
[s]

Figure 4.2.: VCC Verification Performance with Monotonicity Criterion for a Lemma
Satisfied by Plurality Voting

Therein, we see that VCC proves the monotonicity criterion for up to 5 voters by using
the specified lemma in Listing 4.7 almost instantaneously, i.e. in less than a second.
However, the run-times for the verification with 6, 7, 8 and 9 voters quickly increases its
memory consumption and indicates exponentially increasing run-times. The reason for
this behaviour only for the number of voters might be based on the fact that there are
CV possible ballot boxes and Z3 does an exhaustive search as it fails to give universal
guarantees. At this point, we should also note that there are various different quantified
formulas as well as a recursive specification function are involved, which all have to be
combined in order to deduce the postcondition in a non-linear manner. Our experiments
foster the suspicion that this complex combination is highly impractical for VCC.

Verification Challenges As stated above in this section and shown in Listing 4.6, the
successful verification of all loop invariants needed some asymmetrical changes. This is
surprising as the other parts verified successfully and the remaining loop invariant was
identical modulo renaming to another one in the first election, which verified successfully.
Here, the complex instantiation process of Z3 plays a large role, as we discovered in
our analysis with the “Z3 Inspector” (Section 3.2.1). After the successful verification
of the first three loop invariants (i.e. the whole first election and the vote tallying for
the second election), Z3 created too many samples for the instantiations in order to
prove the last loop invariant (i.e. the determination of the candidate with the most
votes). Providing the right combination of matching hints and triggers is a difficult
task, especially as our verification indicates that this is not completely modular. We
observe that a specification for a loop leading to a successful proof of the loop invariant

46 4. Deductive Verification of Plurality Voting with VCC

can be insufficient for verifying the same loop at a later point in the program. This
makes the program specification very fragile, the verification partially unpredictable and
consequently more error-prone. We suspect this behaviour to be at least partially based
on the length and thereby the higher complexity of our program as VCC provides a great
extent of means to enhance modularisation and abstract as its methodology heavily relies
on these principles. In the following, we investigate on means in order to simplify the
program specification.

4.3. Simplifying the Specification with Loop Unrolling
From the previous experiments in Section 4.2 with VCC in proving the monotonicity
criterion for plurality voting, we have gained confidence that the complex specification is
the main reason for the poor verification results. However, we achieved proofs, which
are only bounded in the number of voters. On this basis, we examine whether VCC
can produce bounded verification results for higher input boundaries. In this section we
therefore apply the bounded verification technique of loop unrolling in order to minimise
complex specifications and to analyse VCC’s potential with this technique.

Loop Unrolling in VCC When we mention loop unrolling throughout the remaining
part of this section, we refer to the following technique. We assume a program containing
a ghost for-loop with an initial value α and a non-inclusive upper bound β for the
iteration variable i as well as a loop body Φ which depends on the current value of i as
follows (Listing 4.8):

_(ghost for (int i = α; i < β; i++) { Φ(i); })

Listing 4.8: Ghost For-Loop in VCC

Then we can transform this loop into an if-cascade if we know the value of β beforehand.
Let us assume without loss of generality – as to simplify the demonstration – that β has
the value 2. We hence complement the precondition with “_(requires β == 2)” and
the unrolled loop is of the form as shown in Listing 4.9:

4.3. Simplifying the Specification with Loop Unrolling 47

_(ghost int i = α;)
_(ghost if (i < β) {

Φ(i);
i++;
if (i < β) {

Φ(i);
i++;
_(assert i == β)

}
})

Listing 4.9: Unrolled Ghost Loop in VCC for β Equals Two

This technique can be applied for any bound of β in a straightforward fashion by further
nesting of the if-statement right after the last incremental of the iteration variable i
and accordingly putting the assertion in the body of the innermost if-statement.

Results for Fully Unrolled Loops In the following experiment, we apply this technique
to all loops in our implementation of FPTP plurality voting and attempt to prove
the monotonicity criterion for bounded numbers of candidates and voters. For this
implementation, VCC is able to show that plurality voting satisfies the monotonicity
criterion for up to 3 candidates and 6 voters, 5 candidates and 5 voters or 7 candidates
and 2 voters within the timeout of seven hours. The run-times of VCC depending on the
number of voters are shown in Fig. 4.3 (separate curves for 1, 3, 5, and 7 candidates).
The graph indicates an exponential time complexity in the number of voters. We learn
from these measurements that VCC is not apt for our implementation where all loops
are unrolled.

48 4. Deductive Verification of Plurality Voting with VCC

1 2 3 4 5 6 70

2,000

4,000

6,000

8,000

10,000

1
3

5

7

Voters

Ru
n-
tim

e
[s]

Run-times for 1, 3, 5 and 7 Candidates

Figure 4.3.: VCC Verification Performance with Monotonicity Criterion for Plurality
Voting with Manually Unrolled Loops

Results for Selective Loop Unrolling Hence, we examine whether only unrolling some
loops advances VCC’s verification process and thus apply the unrolling technique from
Listing 4.9 selectively. In the following, the results for selective unrolling of either only
the vote counting loop (in the following abbreviated as “count loop”) or only the loop
to determine the maximum and the elected candidate (in the following abbreviated as
“max loop”) are shown in Fig. 4.4, where the run-times are shown for a number of five
candidates as this was the highest bound wherein meaningful results could be found.

1 2 3 4 50

1,000

2,000

3,000

4,000

5,000

Voters

Ru
n-
tim

e
[s]

Run-times for Unrolled Count and Max Loop

Figure 4.4.: VCC Verification Performance with Monotonicity Criterion for Plurality
Voting with Partial Unrolling

4.3. Simplifying the Specification with Loop Unrolling 49

The graph in Fig. 4.4 shows that unrolling the “count loop” only achieves proofs for up
to 2 voters, which terminates after only 35 seconds, but exceeds the available memory of
1.5 GB for a higher number of voters. However, the unrolling of the “max loop” achieves
proofs for up to 5 voters where run-times are growing exponentially in the number of
voters. If we compare this experiment to the one in Fig. 4.3 where all votes are unrolled,
we observe that the achieved number of voters is the same, but the performance for
the unrolled “max loop” is considerably better, however still showing an exponential
run-time development.
Finally, we can conclude that VCC appears impractical for proving that the monotonicity
criterion holds for two sequential runs of a small voting scheme such as plurality voting.
Our findings indicate that problems involving combinatorics, such as the potentially
complex effects of a specific structure of a ballot box, provide challenges to the matching
mechanism used by VCC, which are hard to specify and thus make the verification
process fragile and difficult.

5. Bounded Verification with LLBMC
and Counterexample Generation

In this chapter, we examine the verification technique software bounded model checking
(SBMC) with the tool LLBMC for the voting schemes plurality voting, approval voting,
instant-runoff voting and single transferable vote (STV) with respect to appropriate
correctness criteria from Section 2.4. We have seen in Section 3.1.2 that contrary to
deductive verification, this approach does not provide any general correctness guarantee,
as it analyses up to a certain program length. As such, this technique relies on the small
scope hypothesis, which states that a high proportion of bugs can be found for test inputs
within some small scope [ADK03]. Using the SBMC approach, correctness guarantees
within the specified bounds can be achieved fully automatically without user support.
Furthermore, the SBMC approach can also generate counterexamples for specifications
which are not satisfied by the program within the specified bounds.
Technically, the bound is always the length of the execution path, which can be bound
by giving a maximum number of loop iterations and a maximum function call depth. For
the matter of this case study, there are no recursive function calls and hence only the
maximum number of loop iterations must be considered. Analysing voting schemes, the
bounds always only depend on the number of voters, the number of candidates and for
STV (Section 2.3.4) also the number of seats to be elected.

5.1. General Setup and Encoding
We analyse different voting schemes and correctness properties, but the setups for all
experiments using LLBMC are very similar to each other. First off, all experiments are
done with LLBMC 2013.1 and LLVM 3.3 with a timeout at 1500 seconds on a dual-core
Intel Core 2 Duo E7300 processor at 2.66 GHz with 4 GB of memory. As in Section 2.3,
we use some common constants for all voting schemes. V always denotes the number of
voters, C the number of candidates, and S the number of seats in case the voting scheme
is not resolute (in our case study only STV).
As LLBMC provides a whole program analysis, we start with a main entry point
(exemplary shown in Listing 5.1 on the next page for one-vote voting schemes and
a relational correctness criterion), where all the program variables and specification
variables of the pre-state are initialised with symbolic values. These variables can be
understood as implicitly universally quantified within the scope of the whole contract
to be proven, making use of underspecification. Since only simple assumptions and
assertions without quantifiers are allowed within LLBMC, we use this mechanism to

52 5. Bounded Verification with LLBMC and Counterexample Generation

establish implicitly universally quantified variables in order to formalise correctness
properties for arbitrary but fixed input values. In the example in Listing 5.1, all values
in the array of votes are initialised as undefined positive (including zero) integer values
with the LLBMC primitive “__llbmc_nondef_unsigned_int()”. Instead of using this
primitive in order to explicitly set the parameters to undefined or non-deterministically
chosen values, we could have also used undetermined parameters and hence omitted the
main entry point. As however the understanding of undetermined parameters can differ
in general (e.g. some standards consider them to be initialised with zero values), we
justify this to be the more comprehensive approach.
In the example in Listing 5.1, we initialise two sets of votes, which are needed for voting
scheme properties that relate two runs of the voting scheme, as e.g. the monotonicity
criterion (Section 2.4.1). However, for other criteria as e.g. the Condorcet loser criterion
(Section 2.4.2), one set of votes suffices. Additionally to the input values for the actual
voting scheme, we use the same primitive to initialise further variables, in order to
reference specific votes and voters in the ballot box and use them in the contract for the
correctness property. For the example in Listing 5.1, these are two values which represent
a symbolic vote and a symbolic voter.

1 int main(int argc , char *argv []) {
2 uint v1[V], v2[V];
3 for (uint i = 0; i < V; i++) {
4 v1[i] = __llbmc_nondef_unsigned_int ();
5 v2[i] = __llbmc_nondef_unsigned_int ();
6 }
7 uint vote = __llbmc_nondef_unsigned_int ();
8 uint voter = __llbmc_nondef_unsigned_int ();
9

10 correctness (v1 , v2 , vote , voter);
11 return 0;
12 }

Listing 5.1: Main Method for One-Vote Voting Schemes and Relational Properties

From the main entry point, we pass the initialised variables (in this case v1, v2, vote and
voter) as parameters and call the correctness-method, where we specify the correctness
property as well as some well-formedness assumptions concerning the input parameters
and call the voting scheme. The specification for LLBMC is done using assumptions
with the keyword assume for the precondition and assertions with the keyword assert
for the postcondition. As these assumptions and assertions only allow legal C statements
and not full first order logic, we need to translate the missing specification primitives, i.e.
quantifiers, into C statements.
In the following, we demonstrate the translation process using a formula in the precon-
dition with the keyword assume . For formulas in the postcondition, the translation is
identical, except that the keyword assert is used instead of assume . We translate a

5.1. General Setup and Encoding 53

universally quantified formula in the precondition (keyword assume) as in listing 5.2a
into a for-loop, which iterates over the quantified variable i with the inner formula in
its body as in listing 5.2b. This translation does however not work for general quantifi-
cation, but the analysis of voting schemes only uses bounded quantification. Moreover,
nested quantification also necessitates an adaption of this technique, which is usually a
straightforward task, but not shown here as to simplify the demonstration.

assume (∀i : α ≤ i < β → ϕ(i));

a: In First Order Logic

for (int i = α; i < β; i++)
assume (ϕ(i));

b: Formula in C Code

Listing 5.2: Exemplary Translation of Universal Formula (a) into C Code (b) for LLBMC

An existentially quantified formula as in listing 5.3a then translates into a for-loop with
a helper variable v as in listing 5.3b.

assume (∃i : α ≤ i < β ∧ ϕ(i));

a: In First Order Logic

int v = 0;
for (int i = α; i < β; i++)

v = v || ϕ(i);
assume (v);

b: Formula in C Code

Listing 5.3: Exemplary Translation of Existential Formula (a) into C Code (b) for LLBMC

As described in Section 3.2.2, LLBMC can check for a great variety of low-level bugs, which
are rather technical and mostly C specific. However, our focus is not the C implementation
itself, but the correctness of the abstract voting scheme, where the major part of these
checks is only of minor concern regarding the properties we want to prove. As these
checks impede the performance of the overall verification process, we only check them
for some small inputs and from then on assume our program to pass all these tests
successfully. Thus, we use the LLBMC option “only-custom-assertions” in order to
omit all these checks for our experiments. Furthermore, the two voting schemes instant-
runoff voting (the script which we used can be found in Listing A.11 in Appendix A)
and single transferable vote Listing A.16 in Appendix A) both include a rather complex
while-loop, of which an upper bound for the number of loop iterations cannot be easily
determined. We hence specify an upper bound n for these two voting schemes calculated
by multiplying the number of candidates C by the number of seats S (for IRV, S is equal
to one). This enables us to omit the according check with the option “no-max-loop-
iterations-checks”, which again speeds up the performance of our experiments.
Another measure in order to reduce verification time is the choice of the SMT solver as
a back end. For most examined voting schemes, the default option STP with MiniSat
outperforms the other solvers. In the case of plurality voting, experimental testing has
shown that using STP with CryptoMiniSat (by using the option “smt-solver=stp-cms”)
and furthermore eagerly encoding array-read axioms in STP (with the option “stp-eager-

54 5. Bounded Verification with LLBMC and Counterexample Generation

read-axioms”) is the better option (the scripts which we used for plurality voting and
approval voting can be found in Listing A.4 and Listing A.8 respectively in Appendix A).

5.2. Plurality Voting
For plurality voting, the method for the main entry point is the one shown in Listing 5.1
on page 52. Each voter has exactly one vote for one candidate of his or her choice
and thus for a ballot box b, a voter i and a candidate j, bi = j means that voter i
has cast a vote for candidate j. The correctness property we want to prove for this
voting scheme is monotonicity, as defined in Definition 9 on page 37 for voting schemes,
where each voter can only vote for one candidate. Therein we reason about two different
ballot box inputs b and b′ for plurality voting, in the defiition denoted by the function
s. Hence, in the C implementation, we need to call the voting-method (Listing 5.5 on
the facing page) with the actual voting scheme twice, each time with slightly different
parameters v1 and v2 (corresponding to the abstract ballot boxes b and b′) as specified
in the correctness-method (Listing 5.4).
The specification of the monotonicity criterion in Listing 5.4 consists of the following
precondition. We firstly (Lines 3 to 7) make well-formedness assumptions such that
the implicitly quantified variables m and n denote a valid candidate and a valid voter
respectively and all votes being cast in v1 and v2 are assumed to be valid candidates as
well. Secondly (Lines 8 to 11), we determine the relationship between v1 and v2 such
that all votes by voters other than voter n are the same in both sets of votes (Line 8)
and voter n does not vote for candidate m in v1, but does so in v2 (Line 11). The
postcondition finally states for the case that candidate m is elected in the election with
votes v1 that m gets also elected with the votes in v2 (Line 13).

5.2. Plurality Voting 55

1 void correctness (uint v1[V], uint v2[V],
2 uint m, uint n) {
3 assume (0 < m && m <= C);
4 assume (0 <= n && n < V);
5 for (uint i = 0; i < V; i++) {
6 assume (0 < v1[i] && v1[i] <= C);
7 assume (0 < v2[i] && v2[i] <= C);
8 if (i != n)
9 assume (v1[i] == v2[i]);

10 }
11 assume (v1[n] != m && v2[n] == m);
12 uint elect1 = voting(v1), elect2 = voting(v2);
13 if (m == elect1)
14 assert (elect1 == elect2);
15 }

Listing 5.4: Monotonicity Specification for Plurality Voting

Precondition

Postcondition

The method for plurality voting itself in Listing 5.5 contains the declaration and initiali-
sation of an auxiliary array res in order to store the amounts of votes for each candidate
(Lines 2 and 3). The main part of the program then consists of two for-loops. In the first
loop in Listing 5.5 (Line 4), all the votes are tallied for each candidate and stored in the
auxiliary array res. The second loop (Line 6) finally determines the maximum amount
of votes for one candidate and also the according candidate. If this maximum is unique,
the result is the according candidate. Otherwise, the result is zero.

1 uint voting(uint votes[V]) {
2 uint res[C + 1];
3 for (uint i = 0; i <= C; i++) res[i] = 0;
4 for (uint i = 0; i < V; i++) res[votes[i]]++;
5 uint max = 0, elect = 0;
6 for (uint i = 1; i <= C; i++) {
7 if (max < res[i]) {
8 max = res[i];
9 elect = i;

10 } else if (max == res[i]) elect = 0;
11 }
12 return elect;
13 }

Listing 5.5: Plurality Voting

56 5. Bounded Verification with LLBMC and Counterexample Generation

Results For this implementation (the complete specification can be found in Listing A.5
in Appendix A), LLBMC is able to show that plurality voting satisfies the monotonicity
criterion for up to 15 candidates and 10 voters. The run-times of the tool depending
on the number of voters and candidates are shown in Fig. 5.1 (separate curves for 3,
6, 9, 12, and 15 candidates) and Fig. 5.2 (separate curves for 2, 4, 6, 8, and 10 voters)
respectively. The graphs indicate at least an exponential time complexity in the number
of voters (Fig. 5.1) and an at most quadratic time complexity in the number of candidates
(Fig. 5.2).
In general, the reasons for the results can be based on the length of the execution
paths, the number of possible symbolic execution paths, the complexity of program
operations or combinations of those. Considering the length of the execution path,
plurality voting has linear complexity in the numbers of voters and candidates, and
the invoking correctness-method has linear complexity in the number of voters as
well as two calls of the actual voting scheme, which leads to a linear overall complexity.
When we also analyse the complexity with respect to the possible number of execution
paths, the potential number of different ballot box instances is CV . We initialise two
ballot boxes, which have a very close relation to each other and differ in only one vote,
precisely determined by the parameters m and n. These two parameters are symbolic
representations of a random candidate and a random voter, effectively multiplying the
total complexity by the number of voters V and candidates C. This hence computes to
a total number of execution paths of C ∗ V ∗ CV .
When considering the complexity of program operations, we essentially find numerical
comparisons, boolean operations and array read and write operations. We suspect
the array write operations to have the biggest impact, which mainly depends on the
number of voters. However, as LLBMC uses a bit-precise memory model, the number of
potentially written bits per array write operation depends on the number of candidates.
In conclusion, the analysis about the number of possible execution paths, which we justify
to be asymptotically V ∗ CV +1, comes very close to the results of our measurements and
also indicates a big impact of the number of voters.

5.2. Plurality Voting 57

1 2 3 4 5 6 7 8 9 100

200

400

600

800

1,000

3

6
9

12
15

Voters

Ru
n-
tim

e
[s]

Run-times for 3, 6, 9, 12 and 15 Candidates

Figure 5.1.: LLBMC Verification Performance with Monotonicity Criterion for Plurality
Voting per Voter

Furthermore, our experiments show unusual deviations with respect to the number of
candidates for the second graph in Fig. 5.2. Therein, we notice a significant oscillation of
run-time for different numbers of candidates. Unfortunately, we did not get justifications
from the experiments for this surprising behaviour yet and this result gives rise to further
investigations on this issue for future work.

2 4 6 8 10 12 140

200

400

600

800

1,000

1,200

2 4 6
8

10

Candidates

Ru
n-
tim

e
[s]

Run-times for 2, 4, 6, 8 and 10 Voters

Figure 5.2.: LLBMC Verification Performance with Monotonicity Criterion for Plurality
Voting per Candidate

58 5. Bounded Verification with LLBMC and Counterexample Generation

5.3. Approval Voting
As for approval voting, the method at the main entry point is slightly different to
Listing 5.1, but only in the data type for the sets of votes v1 and v2. In this case, these
are two-dimensional arrays with the voters as the first dimension and the candidates as
the second dimension. Each voter can either approve or disapprove of each candidate
separately and thus for a ballot box b, a voter i and two candidates j and k, bi,j = 1
means that voter i approves of candidate j and bi,k = 0 that voter i disapproves of
candidate k. The correctness property we want to prove for this voting scheme is again
monotonicity. Particularly referring to approval voting, we can adapt the definition of
monotonicity as follows (with 1 and 0 corresponding to true and false respectively):

Definition 10 (Monotonicity for Approval Voting) For a set of candidates C, a
set of voters V and a set of ballot boxes B, we call an approval voting scheme s monotone
iff

∀c ∈ C, v ∈ V, b, b′ ∈ B :
(¬bv,c ∧ b′v,c ∧ ∀i ∈ V, j ∈ C : (i 6= v ∨ j 6= c)⇒ bi,j = b′i,j)

⇒ (s(b) = c⇒ s(b′) = c).

Thereto we need to reason about two different ballot box inputs b and b′ for approval
voting, the voting function is denoted by the function s, and hence need to call the
voting-method with the actual voting scheme twice, each time with slightly different
parameters v1 and v2 as specified in the correctness-method (Listing 5.6).
The specification of the monotonicity criterion in Listing 5.6 goes along the lines of the
specification for plurality voting, except for the fact that it deals with a different data
type for the sets of votes. The well-formedness assumptions only differ with respect to
the ones for plurality voting in the values and the dimensions for the ballot boxes v1 and
v2. In Lines 7 and 8 of Listing 5.6, we determine the values to be either zero or one, and
iterate over both the numbers of voters and candidates.
Furthermore (Lines 9 to 13), we determine the relationship between v1 and v2 such that
all votes by voters other than the (dis-)approval of voter n for candidate m are the same
in both sets of votes (Line 9) and voter n does not approve of candidate m in v1, but
does so in v2 (Line 13). The following postcondition reads exactly as the one of plurality
voting.

5.3. Approval Voting 59

5 for (uint i = 0; i < V; i++) {
6 for (uint j = 0; j < C; j++) {
7 assume (0 <= v1[i][j] && v1[i][j] <= 1);
8 assume (0 <= v2[i][j] && v2[i][j] <= 1);
9 if ((i != n) || (j != (m -1)))

10 assume (v1[i][j] == v2[i][j]);
11 }
12 }
13 assume (v1[n][m -1] == 0 && v2[n][m -1] == 1);

Listing 5.6: Monotonicity Precondition for Approval Voting

Compared to plurality voting, the only difference in the procedure for the voting scheme
itself is the vote tallying. Here, we have a nested loop, iterating over both the numbers
of voters and candidates and summing up the votes for each candidate. The rest of
the voting scheme is exactly the same as for plurality voting, as we are looking for the
candidate with a unique maximum of approvals, and we omit the listing at this point.

1 2 3 4 5 6 7 8 9 100

20

40

60

80

100

3 6

9
12

15

Voters

Ru
n-
tim

e
[s]

Run-times for 3, 6, 9, 12 and 15 Candidates

Figure 5.3.: LLBMC Verification Performance with Monotonicity Criterion for Approval
Voting per Voter

Results For this implementation (the complete specification can be found in Listing A.9
in Appendix A), LLBMC is able to show that approval voting satisfies the monotonicity
criterion for up to 15 candidates and 22 voters. The run-times of the tool depending
on the number of voters and candidates are shown in Fig. 5.3 (separate curves for 3,
6, 9, 12, and 15 candidates) and Fig. 5.4 (separate curves for 2, 4, 6, 8, and 10 voters)
respectively. The graphs indicate an exponential time complexity in the number of voters
(Fig. 5.1) and also an exponential time complexity in the number of candidates (Fig. 5.2).
Analysing the number of possible execution paths similarly to the analysis of plurality

60 5. Bounded Verification with LLBMC and Counterexample Generation

voting, we get a number of possible ballot boxes of 2C∗V and hence a total number of
execution paths of C ∗ V ∗ 2C∗V . The execution path length hence computes to C ∗ V .
Consequently, this explains the exponential complexity in the numbers of candidates and
voters with the number of possible execution paths.

2 4 6 8 10 12 140

20

40

60

80

100

2 46

8

10

12
Candidates

Ru
n-
tim

e
[s]

Run-times for 2, 4, 6, 8, 10 and 12 Voters

Figure 5.4.: LLBMC Verification Performance with Monotonicity Criterion for Approval
Voting per Candidate

Similar to the experiments for plurality voting, these experiments also show some unusual
deviations with respect to the number of candidates for the second graph in Fig. 5.4.
This time, the run-time oscillation for different numbers of candidates is not as significant
as for plurality voting. Again, this observation needs further examination as future work.
Compared to plurality voting, the results for approval voting are better in performance
even though the voting scheme is more complex. We suspect this to be based on the
amount of possible values in the ballot boxes as LLBMC uses a bit-precise memory
model [MFS12], which is more efficient for small numbers. Whereas the votes for plurality
voting are numbers representing valid candidates, for approval voting we have one more
dimension, but only two possible values expressing either approval or disapproval for the
according candidate.

5.4. Instant-Runoff Voting
In the case of instant-runoff voting (IRV), the analysis grows in complexity compared to
the previous voting schemes as the voting scheme itself is significantly more complex.
One reason for the higher complexity is that we now have preferential votes, i.e. each
voter can cast his or her vote as a ranked list of candidates. This means for a ballot
box b, a voter v, a candidate c and a rank position p, bv,p = c means that voter v has
ranked candidate c on his or her preferential vote on position p. We also allow a voter

5.4. Instant-Runoff Voting 61

to not cast a complete ranked list of all candidates, but to rank only a part of them.
In this case, bv,p = 0 means voter v has not ranked any candidate on position p. We
assume a voter does not leave any gaps between ranked candidates, i.e. for any p with
bv,p = 0 that for any rank position p′ with p′ ≥ p, bv,p′ = 0 holds as well. Furthermore,
we assume that each voter can rank each candidate only once. This also has the effect
that for all rank positions p, we have 1 ≤ p ≤ C. We also do not allow empty votes, i.e.
for all voters v, we assume bv,1 6= 0. Another reason for the more complex voting scheme
is that instant-runoff voting simulates a number of election rounds, thereby it deletes
candidates in a specified manner from the ballot box if a winner cannot be determined
in the current round.
As instant-runoff voting does not comply with the monotonicity criterion, instead we
analyse it with respect to the Condorcet loser criterion (Definition 8 on page 22), which
is well-known to hold for instant-runoff voting [Fel12b] and in the following defined for
this voting scheme:

Definition 11 (Condorcet Loser Criterion for Preferential Voting) For a set of
candidates C, a set of voters V , a set of preferences P and a set of ballot boxes B, we
say a single-winner preferential voting scheme s satisfies the Condorcet loser criterion iff

∀b ∈ B, c ∈ C :
(∀k ∈ C : k 6= c⇒ #{v ∈ V | ∃p ∈ P : bv,p = c

∧ ((∃p′ ∈ P : p < p′ ∧ bv,p′ = k) ∨ ∀p′ ∈ P : bv,p′ 6= k)}
< #{v ∈ V | ∃p ∈ P : bv,p = k

∧ ((∃p′ ∈ P : p < p′ ∧ bv,p′ = c) ∨ ∀p′ ∈ P : bv,p′ 6= c)})
⇒ s(b) 6= c

In Definition 11, we use “#{. . . }” to denote the cardinality of the set, which is described
in the curly braces by set comprehension. For the Condorcet loser criterion, we only
need to reason about one ballot box input b for the instant-runoff voting scheme s and
hence, in the implementation, need to call the voting-method with the actual voting
scheme only once. However, the definition of the Condorcet loser criterion in Definition 11
compares the cardinality of two different sets with each other and hence we need to
translate this into C code in order to verify with LLBMC.
Additionally to the specification of this correctness property (Definition 11), we also need
a number of well-formedness assumptions for ballot boxes in preferential voting schemes.
Therein, we assume there are no empty votes, all preferences of a vote either contain a
valid candidate or are empty, in any preference list each candidate can appear only once,
and if any preference rank in a vote is empty, then all subsequent ranks in this vote are
also empty, leaving no gap in a preference list. These are stated in Definition 12 and
translated into C code as explained in the beginning of this chapter.

62 5. Bounded Verification with LLBMC and Counterexample Generation

Definition 12 (Well-Formedness Conditions for Preferential Votes) For a set
of candidates C, a set of voters V and a set of preferences P , we call a preferential ballot
box b well-formed iff

∀v ∈ V : bv,1 ∈ C
∧ ∀p ∈ P : (bv,p ∈ C ∨ bv,p = ⊥)

∧ ∀p′ ∈ P : (bv,p ∈ C ∧ p 6= p′ ⇒ bv,p 6= bv,p′)
∧ (bv,p = ⊥ ∧ p ≤ p′ ⇒ bv,p′ = ⊥)

Furthermore for the Condorcet loser criterion (Definition 11), the actual correctness
property we want to verify, we need a symbolic value for a valid candidate representing
the Condorcet loser. We assume this value to represent a valid candidate and translate
the definition of the criterion in Definition 11 to C code according to the described
translation methods in Section 5.1. For this matter we need to apply a combination of the
methods for universally quantified formulas in Listing 5.2 and for existentially quantified
formulas in Listing 5.3 as well as a variation for the computation of the set cardinality.
The set cardinality can be translated very similarly to a universally quantified formula
with the only difference that instead of assuming or asserting the program corresponding
to the formula to hold, we use a helping numerical variable, which is incremented each
time the formula holds. The remaining translation is a composition of the methods in
Section 5.1. Thereby, we precisely describe the Condorcet loser for a given ballot box
votes with V valid votes and C valid candidates and also finalise the precondition of
the Condorcet loser criterion. Now we simply call the actual voting scheme and assert as
a postcondition that the Condorcet loser, represented by the symbolic value described in
the precondition, is never elected by the voting scheme. In the following, we explain the
implementation of the two variations exhaustive instant-runoff voting and deterministic
instant-runoff voting concerning the tie-breaking procedure as described in Section 2.3.3.

5.4. Instant-Runoff Voting 63

14 min = quota;
15 weakest = 0;
16 for (i = 1; i <= C; i++) {
17 if (count[i] < min && count[i] != 0) {
18 min = count[i];
19 weakest = 1;
20 } else if (count[i] == min) weakest ++;
21 }
22 choice = __llbmc_nondef_unsigned_int ();
23 assume (0 < choice && choice <= weakest);
24 weakest = 0;
25 for (i = 1; i <= C; i++) {
26 if (count[i] == min) weakest ++;
27 if (count[i] == min && weakest == choice) {
28 // delete candidate i from array v
29 // (as in the delete subroutine).
30 }
31 }

Listing 5.7: Repetitive Step in Instant-Runoff Voting

Breaking Ties (Two Variations) The C implementation of the voting scheme itself
is very close to the algorithm for instant-runoff voting given in Algorithm 2.4 with the
subroutine for candidate deletion from Algorithm 2.3 being inlined where it is called.
However, the implementation of the tie-breaking procedure needs some clarification.
This procedure consists of the computation of the set of equally weakest candidates, the
determination of the minimum number of first preferences a candidate currently has, and
the abstract function chooseCandidate as in Algorithm 2.4. We compute the amounts
of first preferences for every continuing (i.e. not yet eliminated) candidate in the array
count, of the same size as there are valid candidates (for this array, we do not use the
entry 0 as to avoid confusion), in order to compare them to the quota (not shown in
Listing 5.7). Hence, we also have access to count when we need to compute the set of
equally weakest candidates. We also assume the quota to be calculated beforehand and
stored in the variable quota.
Having made these assumptions, for standard instant-runoff voting (i.e. exhaustive
instant-runoff voting, partly shown in Listing 5.7) we start by setting the variable min,
which contains the minimum number of first preferences a candidate currently has, to
the value of quota and weakest, which contains the number of currently equally weakest
candidates, to zero. We then iterate over the number of candidates and look for the
minimum by comparing each positive value in count to the current value of min, which
cannot be greater than the quota, because otherwise he or she would have already won the
election. In the same iteration, we count the number of these equally weakest candidates
in weakest by setting it to one when finding a new minimum and otherwise in case the

64 5. Bounded Verification with LLBMC and Counterexample Generation

value in count for the currently observed candidate is equal to min, increase weakest by
one. By performing this procedure, we find out the minimum amount of first preferences
for a candidate as well as the number of these candidates. Subsequently, we introduce
a numerical variable choice by initialising it randomly with the LLBMC primitive
“__llbmc_nondef_unsigned_int()” and assume it to denote a valid candidate, but not
a higher number than declared by weakest. At this point, there are as many options
and hence possible paths for the variable choice as there are equally weakest candidates.
Now, we still have to find out the actual equally weakest candidates, as until now we only
have their amount. This can be done by resetting weakest to zero and iterating again
over all candidates, while therein incrementing weakest by one and calling the delete
procedure in case we reached the actually by choice chosen candidate. We subsequently
simply delete this candidate from the ballot box and redo the subroutine delete for the
chosen candidate.
Alternatively, the implementation of deterministic instant-runoff voting (the complete
specification can be found in Listing A.12 and Listing A.14 in Appendix A) starts off
similarly, i.e. it iterates over the whole set of candidates and searches for the set of
weakest candidates. But instead of using a randomly initialised variable in order to choose
one of them, we simply delete all of them from the ballot box. Hence, we follow only one
execution branch and possibly delete more than one candidate in one round, applying
the (inlined) subroutine delete to each of them. This version differs from standard
instant-runoff voting and this presumably small change also affects the compliance with
formal criteria for voting schemes. It notably does not comply with the Condorcet loser
criterion anymore, which can be seen in the following example.

Counterexample for the Condorcet Loser Criterion with Deterministic IRV Let us
consider an election with three candidates A, B, C, and seven voters with the following
votes being cast:

2 Votes 2 Votes 2 Votes 1 Votes
A B C C
B A A B
C C B A

Table 5.1.: Exemplary Aggregated Ballot Box for Instant-Runoff Voting

In order to determine the Condorcet loser, we need to count all head-to-head matches.
Comparing candidates A and B, A wins 4 and B wins 3 matches. For A and C, A wins 4
and C wins 3 matches, and for B and C, B wins 4 and C wins 3 matches. Hence, candidate
A wins all head-to-head matches and candidate C loses all head-to-head matches with
other candidates. This makes A the Condorcet winner and candidate C the Condorcet
loser.
Moreover, we examine an election with deterministic instant-runoff voting. As there are
7 voters, the quota is 4 in order to elect one candidate. Considering the first preferences,
no candidate has enough votes to reach this quota. Therefore, we need to eliminate the

5.4. Instant-Runoff Voting 65

weakest candidates, which are the candidates A and B. Eliminating these two candidates
thus means electing candidate C, who is the Condorcet loser, and this voting scheme
hence violates the Condorcet loser criterion.

1 2 3 4 5 6 7 8 9 100

5,000

10,000

15,000

20,000

2

3

4
5

6

Voters

Ru
n-
tim

e
[s]

Run-times for 2, 3, 4, 5 and 6 Candidates

Figure 5.5.: LLBMC Verification Performance with Condorcet Loser Criterion for Instant-
Runoff Voting per Voter

Results For the implementation of standard (or exhaustive) instant-runoff voting (the
complete specification can be found in Listing A.13 and Listing A.14 in Appendix A),
LLBMC is able to show that instant-runoff voting satisfies the Condorcet loser criterion
for up to 3 candidates and 5 voters or 2 candidates and 10 voters before the timeout
of 1500 seconds. The run-times of the tool depending on the number of voters and
candidates are shown in Fig. 5.5 (separate curves for 2, 3, 4, 5, and 6 candidates) and
Fig. 5.6 (separate curves for 2, 4, 6, and 8 voters) respectively, wherein also results up to
16472 seconds are shown for a better comparison, as the experiments within the original
timeout of 1500 seconds do not lead to a sufficient amount of results. The graphs indicate
an exponential time complexity in the number of voters (Fig. 5.5) and the same behaviour
in the number of candidates (Fig. 5.6). As we have seen in the previous experiments,
the verification performance appears to be largely dependant on the number of possible
execution paths or ballot boxes in the case of voting schemes. For a preferential voting
schemes as instant-runoff voting, this is very problematic as the number of different ballot
boxes (and hence also the number of execution paths) asymptotically exceeds 2V ∗ C!V
whereas the length of the whole execution path is only V ∗C2. Compared to the previous
two voting schemes and the considered properties, plurality voting and approval voting
with the monotonicity criterion, the verification performance for instant-runoff voting
with the Condorcet loser criterion is much worse and the timeout is reached for even
smaller numbers, hampering a comprehensive analysis.

66 5. Bounded Verification with LLBMC and Counterexample Generation

2 3 4 5 60

5,000

10,000

15,000

20,000

2

4

6

8
Candidates

Ru
n-
tim

e
[s]

Run-times for 2, 4, 6 and 8 Voters

Figure 5.6.: LLBMC Verification Performance with Condorcet Loser Criterion for Instant-
Runoff Voting per Candidate

5.5. Single Transferable Vote
The voting scheme single transferable vote is largely based on instant-runoff voting
(Section 5.4 on page 60) and is equivalent if there is only one vacancy. If, however, there
are more vacancies to fill, single transferable vote differs in the following aspects from
instant-runoff voting:
The first difference is the distribution of surplus votes of a candidate who is elected
(Listing 5.8). Therein, the variable e denotes a counting variable for the already elected
candidates and res denotes the currently elected candidate to be stored in the output
array r. For this matter, all votes exceeding the number of votes needed to fulfil
the necessary quota for a candidate a to be elected are being redistributed to other
candidates according to the second preferences. This can be done in various ways and
in the real-world scenario, there are different implementations for the redistribution of
surplus votes. To simplify matters, we simply take the first Q votes having the previously
elected candidate a as their first preference. Naturally, this results in the voting scheme
lacking anonymity, i.e. in this implementation the order of the votes may matter. There
are also methods ensuring anonymity as e.g. transferring fractional votes. However,
many existing versions of STV proceed by either randomly choosing the votes to be
redistributed, by also taking either the first or last Q votes in a predefined order, or by
combining some of these methods. This is usually based on the time-consuming process
of manual vote counting once there are fractional votes involved. Taking into account
that our experiments do not involve fixed sets of votes, but rather symbolic values with
predetermined bounds and hence cover all possible orders of votes, not using fractional
votes is justified as we do not lose any possible execution paths.

5.5. Single Transferable Vote 67

15 if (res != 0) {
16 r[e++] = res;
17 for (t = 0; t <= quota; t++) {
18 for (i = 0; votes[i][1] != res; i++);
19 for (j = 1; j <= C; j++) votes[i][j] = 0;
20 }
21 // delete candidate "res" from ballot box "votes",
22 // set "res" to zero and decrement "cc" by one.
23 }

Listing 5.8: Vote Redistribution for Single Transferable Vote

The second difference to instant-runoff voting is the election of candidates in case the
quota is too high to fill all available seats (5.9). In this case, we simply elect remaining
candidates if there is a first preference for this candidate and delete all preferences for
this candidate each time subsequently. We do this until all vacancies are filled or there
are no more candidates who received votes.

58 if (e < S - 1) {
59 for (i = e; i < S && 0 < cc; i++) {
60 for (res = 0, k = 1; k <= C && res == 0; k++)
61 for (j = 0; j < V && res == 0; j++)
62 if (votes[j][1] == k) res = k;
63 r[i] = res;
64 // delete candidate "res" from ballot box "votes"
65 // and decrement "cc" by one.
66 }
67 }

Listing 5.9: Allocation of Remaining Seats for Single Transferable Vote

Having one more parameter and hence one more dimension compared to instant-runoff
voting, we also need to adjust our correctness criterion for STV, i.e. we need to modify
the Condorcet loser criterion for voting schemes with multiple seats. Originally, the
Condorcet loser criterion is not defined for voting schemes wherein multiple candidates
are elected. We leave the precondition as it was for instant-runoff voting, because there
is only one Condorcet loser, whose definition does not change if we elect more candidates.
However, we need to modify the postcondition and thus propose the one in Definition 13:

68 5. Bounded Verification with LLBMC and Counterexample Generation

Definition 13 (Condorcet Loser Criterion for Multi-Seat Pref. Voting) For a
set of candidates C, a set of voters V and a set of ballot boxes B, we say a multi-winner
preferential voting scheme s satisfies the Condorcet loser criterion iff

∀b ∈ B, c ∈ C :
(∀k ∈ C : k 6= c⇒ #{v ∈ V | (∃p, p′ ∈ P : p′ < p ∧ bv,p = c ∧ bv,p′ = k)}

< #{v ∈ V | (∃p, p′ ∈ P : p < p′ ∧ bv,p = c ∧ bv,p′ = k)})
⇒ (|s(b)| = |C| ∨ c /∈ s(b))

Translated to an assertion for LLBMC, we get the postcondition in Listing 5.10. Therein,
elect denotes the array of elected candidates, which is returned by the voting scheme
function. The variable loser denotes the Condorcet loser, which is computed in the
beginning of the implementation.

33 uint *elect = voting(votes);
34 for (i = 0; i < S; i++)
35 assert (C == S || elect[i] != loser);

Listing 5.10: Postcondition of Condorcet Loser Specification for STV

Therein, we assert every elected candidate to differ from the Condorcet loser, except if the
number of candidates is equal to the number of seats. As we assumed in our precondition
that there can be no more candidates than available seats, this condition is sufficient.

Results For this implementation (the complete specification can be found in Listing A.17
and Listing A.18 in Appendix A), LLBMC quickly needs more than 4 GB of memory and
inputs of three candidates, two seats and five voters or more do not return any results.

1 2 3 4 5 6 7 8 9 100

100

200

300

Voters

Ru
n-
tim

e
[s]

Run-times for 2, 3 and 4 Candidates with one and two Vacancies

Figure 5.7.: LLBMC Verification Performance with Condorcet Loser Criterion for STV
per Voter

5.5. Single Transferable Vote 69

The performance results for all successful proofs depending on the number of voters and
candidates can be seen in Fig. 5.7 (separate curves for 2, 3, 4, 5, and 6 candidates) and
Fig. 5.8 (separate curves for 2, 4, 6, and 8 voters) respectively. Furthermore, we observe
that for some numbers with one vacancy and the same numbers for candidates and
voters, the performance is better than for instant-runoff voting, which is exactly the same
voting scheme when only one candidate gets elected. In our experiment, this appears for
increasing numbers of voters, e.g. for 2 candidates and 8 voters the verification takes
138 seconds for instant-runoff voting and 5 seconds for STV, even though the generated
formula is bigger (30398 expressions for IRV and 47614 expressions for STV). However,
for some numbers the verification performance for instant-runoff voting is better than
for STV, e.g. for 4 candidates and 3 voters this is 64 seconds and a formula with 66246
expressions for IRV and 344 seconds and a formula with 99189 expressions for STV. As
we have only a small set of numbers for comparison, we do not have an explanation for
the different performance for one vacancy. The reason that LLBMC much earlier exceeds
the available memory can be explained by the size of the generated formula for STV as
the number of possible execution paths is equal for both voting schemes when S is equal
to one.

2 3 4 50

100

200

300

Candidates

Ru
n-
tim

e
[s]

Run-times for 1, 2, 3, 4, 5 and 6 Voters with one and two Vacancies

Figure 5.8.: LLBMC Verification Performance with Condorcet Loser Criterion for STV
per Candidate

Counterexample for the Condorcet Loser Criterion with STV However, LLBMC is
able to create the following counterexample for an input of three candidates, two seats
and three voters in 6.4 seconds:
In order to rule out bugs in our implementation or our formalisation of the Condorcet
loser criterion, we check that this is not a spurious counterexample. Firstly, we determine
the Condorcet loser by comparing all head-to-head matches. Therein, candidate B wins
against candidate A with two winning matches and one loss, candidate C wins against
candidate A with two winning matches and one loss, and candidate B achieves a tie

70 5. Bounded Verification with LLBMC and Counterexample Generation

Voter 1 Voter 2 Voter 3
B C A
C B
A

Table 5.2.: Counterexample for Condorcet Loser Criterion with STV

of one to one with candidate C. This means there is no Condorcet winner, but the
Condorcet loser is candidate A, since this candidate is defeated by every other candidate
in head-to-head matches. Secondly, we examine possible outcomes of an election with
single transferable vote considering this example as an input. As no candidate attains the
necessary quota in the first preferences, we start by eliminating one candidate. However,
all three candidates have the same number of first preferences and we consequently need
to choose at random. Taking into account that we need to fill two seats, this shows
already that any combination of two elected candidates is possible, since the voting
scheme is designed in such a way that every seat is filled with a candidate. Thus, either
the elimination of candidate B or the elimination of candidate C results in a seat for
candidate A, who is the Condorcet loser, and consequently the Condorcet loser criterion
is violated by this implementation of STV.

5.6. Summary
In the preceding part of this chapter, we analysed the four voting schemes plurality voting,
approval voting, instant-runoff voting (IRV), and single transferable vote (STV) with the
two correctness properties monotonicity criterion (for the former two voting schemes)
and Condorcet loser criterion (for the latter two voting schemes). For this matter, we
used the SBMC approach as to do automatic verification within some specified bounds,
which were determined by the number of candidates, voters, and seats. In Fig. 5.9 and
Fig. 5.10 The run-times of LLBMC depending on the number of voters and candidates
are shown in Fig. 5.9 (separate curves for 3, 6, 9, 12, and 15 candidates) and Fig. 5.10
(separate curves for 2, 4, 6, 8, and 10 voters) respectively.

5.6. Summary 71

1 2 3 4 5 6 7 8 9 100

200

400

600

800

1,000

Voters

Ru
n-
tim

e
[s]

Run-times for 3, 6, 9, 12 and 15 Candidates

Figure 5.9.: LLBMC Verification Performance per Voter

Therein, the solid lines show the results for plurality voting, the dashed lines for approval
voting, the dotted lines for IRV, and the dash-dotted lines show the results for STV with
one vacancy. Clearly, the results for IRV show the highest run-times and the verification
of the monotonicity criterion for approval voting outperforms all other results.

2 4 6 8 10 12 140

200

400

600

800

1,000

1,200

Candidates

Ru
n-
tim

e
[s]

Run-times for 2, 4, 6, 8 and 10 Voters

Figure 5.10.: LLBMC Verification Performance per Candidate

The results indicate the general feasibility of the approach, but show great variations
between the different voting schemes and especially IRV and STV seem impractical for
the SBMC approach. When comparing, STV with IRV, the run-times are surprisingly low
for STV, but for bigger numbers, the available memory quickly impedes the experiments.
We also learned in the experiments with STV that the compliance of a single-seat

72 5. Bounded Verification with LLBMC and Counterexample Generation

voting scheme with a correctness property does not easily imply the same for a similarly
constructed multi-seat voting scheme. This observation gives rise to investigations on
more specialised or tailor-made properties for such voting schemes.

5.7. Generation of Counterexamples
As we have seen in Section 5.5, LLBMC can produce precise counterexamples for assertions
which do not hold. Additionally to bounded correctness proofs, this is a strength of
the SBMC approach. Although this is often only possible for small numbers, we base
our justification for its validity on the small scope hypothesis (Section 3.1.2) and argue
that a high proportion of bugs can be found for test inputs within some small scope and
it is unlikely that a bug occurs only for high numbers. In the following, we examine
the two complex voting schemes instant-runoff voting and single transferable vote with
the Condorcet criterion as correctness property. Both voting schemes are well-known
to violate the Condorcet criterion [Fel12b] and we hence explicitly want to analyse the
disproof of this formal property and generate counterexamples.

5.7.1. Instant-Runoff Voting
In this experiment, we want to disprove for our implementation of instant-runoff voting
that the Condorcet winner is always elected if a Condorcet winner exists. As in the
previous experiments, we assume a well-formed preferential ballot box as in Definition 12
on page 62. Based on the general Condorcet criterion (Definition 7 on page 21) and very
similarly to the Condorcet loser criterion (general version in Definition 8 on page 22 and
in Definition 11 on page 61 for preferential voting schemes), we formulate the Condorcet
criterion for instant-runoff voting as follows:

Definition 14 (Condorcet Criterion for Preferential Voting) For a set of candi-
dates C, a set of voters V , a set of preferences P and a set of ballot boxes B, we say a
single-winner preferential voting scheme s satisfies the Condorcet winner criterion or
Condorcet criterion iff

∀b ∈ B, c ∈ C :
(∀k ∈ C : k 6= c⇒ #{v ∈ V | ∃p ∈ P : bv,p = k

∧ ((∃p′ ∈ P : p < p′ ∧ bv,p′ = c) ∨ ∀p′ ∈ P : bv,p′ 6= c)}
< #{v ∈ V | ∃p ∈ P : bv,p = c

∧ ((∃p′ ∈ P : p < p′ ∧ bv,p′ = k) ∨ ∀p′ ∈ P : bv,p′ 6= k)})
⇒ s(b) = c

We perform the translation to C code along the lines of the previous sections as explained
in Section 5.1 and performed in Section 5.4, and embed this implementation of instant-
runoff voting in our usual experiment setup as in Section 5.4.

5.7. Generation of Counterexamples 73

When running LLBMC on it, we observe that the smallest counterexample can be
generated in 2.6 seconds for three candidates and three voters and within our timeout
we find the biggest counterexample in 776 seconds for four candidates and 19 voters. In
the following, we present the smallest counterexample and demonstrate its validity in
order to justify our approach.

Counterexample for the Condorcet Criterion with IRV Let us take three candidates
A, B and C, and the following three votes:

Voter 1 Voter 2 Voter 3
A B C
C C
B A

Table 5.3.: Counterexample for Condorcet Criterion with Instant-Runoff Voting

We need to check that this is not a spurious counterexample. Firstly, we determine
the Condorcet winner by comparing all head-to-head matches. Therein, candidate C
wins against candidate A with two winning matches and one loss, candidate C wins
against candidate B with two winning matches and one loss, and candidate A achieves
a tie of one to one with candidate B. This means there is no Condorcet loser, but the
Condorcet winner is candidate C, since this candidate is defeated by every other candidate
in head-to-head matches. Secondly, we examine possible outcomes of an election with
instant-runoff voting considering this example as an input. As no candidate attains the
necessary quota in the first preferences, we start by eliminating one candidate. However,
all three candidates have the same number of first preferences and we consequently
need to choose at random. Taking into account that we can also eliminate candidate
C, this shows already that there is an outcome where the Condorcet winner, who is
candidate C, is not elected. Thus, we have a violation with the Condorcet criterion
for this implementation (the complete specification can be found in Listing A.13 and
Listing A.15 in Appendix A) of instant-runoff voting and have a valid counterexample.

Results As expected, finding a counterexample is significantly faster than doing a
bounded proof as we were not able to prove the Condorcet loser criterion for four
candidates and more than 6 voters within 1500 seconds, but found a counterexample
for the Condorcet winner criterion for four candidates and 8 voters in only 77 seconds.
As we can see in Fig. 5.11, we find many counterexamples in less than 500 seconds and
compared to the number of possible ballot boxes of more than 2V ∗ C!V , the run-times
seem much faster. The results indicate an exponential run-time complexity in the number
of voters (Fig. 5.11) and an at most quadratic run-time complexity in the number of
candidates (Fig. 5.12) However, as we only have results for 3, 4 and 5 candidates, the
data pool for comparing different numbers of candidates is too small for a meaningful
justification of a quadratic complexity.

74 5. Bounded Verification with LLBMC and Counterexample Generation

4 6 8 10 12 14 16 18 200

500

1,000

1,500

3

4

5

Voters

Ru
n-
tim

e
[s]

Run-times for 3, 4 and 5 Candidates

Figure 5.11.: LLBMC Performance of Counterexample Generation with Condorcet Crite-
rion for Instant-Runoff Voting per Voter

In Fig. 5.11, we also observe occasionally faster run-times for higher numbers of voters.
However, this is not very surprising when looking for counterexamples as we do not
need to make a proof for the whole search space, but instead only need to find one
counterexample for the disproof. Assuming a higher number of counterexamples for
higher numbers of voters, a better performance for some higher numbers appears likely
at times.

4 50

200

400

600

46

8

10

Candidates

Ru
n-
tim

e
[s]

Run-times for 4, 6, 8 and 10 Voters

Figure 5.12.: LLBMC Performance of Counterexample Generation with Condorcet Crite-
rion for Instant-Runoff Voting per Candidate

5.7. Generation of Counterexamples 75

5.7.2. Single Transferable Vote
Having gained confidence in the generation of counterexamples for instant-runoff voting in
Section 5.7.1, we examine the same for single transferable vote, which is more complex, but
largely based on instant-runoff voting. Now we want to disprove for our implementation
of single transferable vote the same property as for IRV (that the Condorcet winner is
always elected if a Condorcet winner exists). We take exactly the same precondition
as for instant-runoff voting in Section 5.7.1, since the possible ballot boxes are exactly
identical.
Hence, the Condorcet criterion for STV is also almost identical to the Condorcet criterion
for instant-runoff voting (Definition 14 on page 72) and only differs in the postcondition.
As STV elects a set of candidates, only one of them can be the Condorcet winner. We
hence formulate the Condorcet criterion for single transferable vote as follows:

Definition 15 (Condorcet Criterion for Multi-Seat Preferential Voting) For a
set of candidates C, a set of voters V , a set of preferences P and a set of ballot boxes
B, we say a multi-winner preferential voting scheme s satisfies the Condorcet winner
criterion or Condorcet criterion iff

∀b ∈ B, c ∈ C :
(∀k ∈ C : k 6= c⇒ #{v ∈ V | ∃p ∈ P : bv,p = k

∧ ((∃p′ ∈ P : p < p′ ∧ bv,p′ = c) ∨ ∀p′ ∈ P : bv,p′ 6= c)}
< #{v ∈ V | ∃p ∈ P : bv,p = c

∧ ((∃p′ ∈ P : p < p′ ∧ bv,p′ = k) ∨ ∀p′ ∈ P : bv,p′ 6= k)})
⇒ (s(b) = ∅ ∨ c ∈ s(b))

Then, we translate this formula to C code, include our implementation of single transfer-
able vote as in Section 5.5 and run LLBMC on our program. The smallest counterexample
can be generated in 4.1 seconds for three candidates and three voters with one vacancy.
Within our timeout we find the biggest counterexample for three candidates, seven voters
and one vacancy within 35 seconds. As STV with only one vacancy effectively does not
differ from instant-runoff voting, we present the smallest counterexample with at least
two vacancies and demonstrate its validity. Therein, we have three candidates, three
voters and two vacancies.

Counterexample for the Condorcet Criterion with STV Let us take three candidates
A, B and C, and the following three votes:
Hence, we need to check that this is not a spurious counterexample. Firstly, we determine
the Condorcet winner by comparing all head-to-head matches. Therein, candidate C wins
against candidate A with two winning matches and one loss, candidate C wins against
candidate B with two winning matches and one loss, and candidate A wins against
candidate B with two winning matches and one loss. This means the Condorcet loser is
candidate B and the Condorcet winner is candidate C, since this candidate is defeated by
every other candidate in head-to-head matches. Secondly, we examine possible outcomes

76 5. Bounded Verification with LLBMC and Counterexample Generation

Voter 1 Voter 2 Voter 3
A B C
C C A
B A B

Table 5.4.: Counterexample for Condorcet Criterion with Single Transferable Vote

of an election with instant-runoff voting considering this example as an input. As no
candidate attains the necessary quota in the first preferences, we start by eliminating
one candidate. However, all three candidates have the same number of first preferences
and we consequently need to choose at random. Taking into account that we can also
eliminate candidate C, this shows already that there is an outcome where the Condorcet
winner, who is candidate C, is not elected, as also for second vacancy this candidate stays
eliminated in STV. There are variations of STV, which resurrect eliminated candidates
after a seat is allocated, but these are argued to not belong to the STV family [BGS13].
Thus, we have a violation with the Condorcet criterion for this implementation of single
transferable vote.

Results For this implementation (the complete specification can be found in Listing A.17
and Listing A.19 in Appendix A), LLBMC is able to disprove that single transferable
vote satisfies the Condorcet criterion for up to three candidates and seven voters or
four candidates and three voters. Only for three candidates and three voters, we get a
counterexample for more than one vacancy. The run-times depending on the number of
voters are shown in Fig. 5.13 for three candidates and one seat. The run-times for all
disproofs are shown in Table 5.5, where besides the numbers of candidates (C), seats (S)
and voters (V) as well as the actual run-time in seconds, we also depict the size of the
generated formula (Formula) in terms of the number of expressions.

C S V Formula Size [# expressions] Run-time [s]
3 1 3 49082 4.040
3 1 5 75326 14.516
3 1 6 88798 29.670
3 1 7 101567 34.269
3 2 3 120223 6.874
4 1 3 99255 8.406

Table 5.5.: Generation of Counterexamples for the Condorcet Criterion with STV

In fact all run-times in Table 5.5 are very fast. However, LLBMC quickly exceeds the
memory resources (leading to segmentation faults) and compared to the results of the
experiments in Section 5.7.1, the number of successful disproofs is very small. This is
also the case for only one vacancy, where the actual procedure is the same for both
voting schemes, but detecting this simplification seems to be difficult for LLBMC. The
generation of a counterexample for more than one vacancy succeeds only in one case.

5.7. Generation of Counterexamples 77

3 4 5 6 70

10

20

30

40

Voters

Ru
n-
tim

e
[s]

Run-times for 3 Candidates with 1 Vacancy

Figure 5.13.: LLBMC Verification Performance with Condorcet Criterion for STV per
Voter

Yet when examining the results for three candidates and one vacancy depending on the
number of voters in Fig. 5.13, the measurements only indicate an at most quadratic
run-time complexity. But for a meaningful complexity analysis, the data pool of this
experiment is too small and we would need to repeat our experiment on a faster machine
with more memory in order to obtain meaningful results.

6. Improving Performance of Bounded
Verification by Symmetry Reduction

In this chapter, we examine the potential of narrowing or reducing the search space, i.e.
the set of all possible solutions, within the given boundaries. Therein we verify the voting
scheme to be correct with respect to the given correctness criteria. The idea for this
examination is based on and inspired by the so-called “symmetry-breaking predicates”,
which are a means to prevent redundant search space exploration [Cra+96]. The essential
idea is to only check a subset of states or a representative from each class of symmetric
states. Thereby, we can alleviate the effect of the state space explosion, which is inherent
to model checking. Applications of this technique, as e.g. in the Alloy Analyzer, often lead
to reductions in performance of several orders of magnitude [Jac06]; [Tur+07]. Generating
these symmetry predicates or constraints automatically is justified to be challenging or
even intractable in the general case [TBL10]. As such, this section explores the feasibility
and potential of symmetry-breaking predicates for the field of voting schemes with respect
to the verification of their correctness. We base our investigations on the well-known
symmetry properties anonymity and neutrality of voting schemes and their formalisation
in first order logic.

6.1. Plurality Voting with Anonymity
As we have seen in the first proofs of the monotonicity criterion for plurality voting
in Section 5.2, the run-times grow especially quickly for increasing numbers of voters.
We have found out that for C candidates and V voters the number of possible ballot
boxes is CV , meaning that the number of voters has a large effect on the run-time,
much more than the number of candidates. However, this is also based on our program
implementation of a ballot box, which is a simple array, having the voter number as
index and the candidate number a value. This means e.g. that for the candidates 1 and
2, the ballot boxes b1 = {1, 1, 2}, b2 = {1, 2, 1} and b3 = {2, 1, 1} are three separately
considered ballot boxes, although we expect identical election results for all three ballot
boxes in plurality voting.
In Section 2.1, we defined voting schemes to be anonymous, i.e. renaming or permuting
any voters does not affect the election result. This is also something one would expect
for any real-world election as usually the votes in a ballot box are not ordered and
permutations in the order can easily happen also when the votes are being tallied.
As for renaming, a voter would also expect the same election result in the event of a
voter changing his or her name without changing his or her actual vote. However, this

80 6. Improving Performance of Bounded Verification by Symmetry Reduction

abstraction is not reflected in the ballot boxes considered for our verification as many
ballot box instances are now redundant with respect to anonymity. A solution to this is
the reduction of the ballot box instances to only one representative for each group of
ballot boxes which are equal modulo anonymity. E.g., for the exemplary set of ballot
boxes b1, b2 and b3 as described above, we only need to examine one of them, e.g. the
ballot box b1. This ballot box contains the same votes as the other two, but therein the
votes are ordered by their names (in our case, these are natural numbers). When we
apply this observation to the general case for plurality voting, it suffices to only examine
ballot boxes, where the next vote is always equal to or greater than the vote before.
Thereby, we achieve a reduced search space of ballot box instances (compared to the set
of all ballot box instances). In first order logic, this can be formalised with the following
formula:

Definition 16 (Symmetry Reduction for Anonymous Plurality Voting) For an
ordered set of voters V , a plurality voting ballot box b belongs to the anonymously
symmetry-reduced search space iff

∀i : 0 < i < |V | : b(Vi−1) ≤ b(Vi)

Coverage of Entire Relevant Search Space Yet, the intuition or expectancy that our
implementation of first-past-the-post plurality voting satisfies anonymity still needs a
formal justification as the reduction of ballot box instances may cause us to miss out
on relevant instances and not cover the whole relevant search space. By relevant, we
mean that the instance behaves differently than its representative with respect to (a)
the elected candidate and (b) the elected candidate when one vote is being raised as in
the precondition for the monotonicity criterion. We start by proving that an election
with an arbitrary ballot box has the same outcome as in the election with an ordered
representative ballot box (case a):

Proof Let us consider an arbitrary ballot box b containing n votes and b’s sorted
representative r also containing n votes, which are the same as the votes in b, but in a
different order. Then there exists a bijective permutation p : N→ N, which returns the
position in the representative ballot box r for every position in ballot box b such that

∀i : 0 < i ≤ n⇒ rp(i) = bi.

As the elements in b and r are exactly the same, we also have

∀i : 0 < i ≤ n⇒ #{rp(i) ∈ r} = #{bi ∈ b}.

Let us assume without loss of generality that if the election with ballot box b elects a
candidate, the elected candidate is be with 0 < e ≤ n. In our implementation of plurality
voting, we elect a candidate if this candidate receives strictly more votes than any other
candidate, i.e.:

∀i : 0 < i ≤ n ∧ bi 6= be ⇒ #{bi ∈ b} < #{be ∈ b}.

6.1. Plurality Voting with Anonymity 81

Hence, we can deduce the following:

be = rp(e) ∧ ∀i : 0 < i ≤ n ∧ rp(i) 6= rp(e) ⇒ #{rp(i) ∈ b} < #{rp(e) ∈ b}.

Consequently, if a candidate gets elected by plurality voting with ballot box b, the same
candidate also gets elected with ballot box r. In case there is a tie in the election with b,
this means the following:

∀i : 0 < i ≤ n ∧ 1 < |n| ⇒ ∃i′ : bi 6= bi′ ∧#{bi ∈ b} ≤ #{bi′ ∈ b}.

As such, there is no candidate with strictly more votes than any other candidate. But
then we can also deduce the following:

∀i : 0 < i ≤ n ∧ 1 < |n| ⇒ ∃i′ : rp(i) 6= rp(i′) ∧#{rp(i) ∈ b} ≤ #{rp(i′) ∈ b}.

Thus, there is also no winner in the election with ballot box r. Taking these two results,
we can conclude that the outcomes are indeed the same. �

We proved that plurality voting elects the same candidate for a ballot box b as for its
representative r. In the following, we prove that this also holds for the relationship
between b′ and r′, where b′ is identical to b in all votes except for one and the same holds
for the relationship of r′ and r (case b). The changed vote is the raised vote from the
monotonicity criterion (Definition 9 on page 37), where the voter identity as well as the
candidate, which is being voted for in the raised vote, are fixed. Our formal justification
is as follows:

Proof For an arbitrary valid voter x and an arbitrary valid candidate y, we define the
ballot box b′ to match with b, except for the element at position x, for which we define
b′x = y. This means the two ballot boxes b and b′ differ only in the one vote cast by
voter x. We denote the vote by voter x in ballot box b as bx = y′. Hence, we have the
following formal relationship:

bx = y′ ∧ b′x = y ∧ ∀i : 0 < i ≤ n ∧ i 6= x⇒ bi = b′i.

And hence we can make a statement about the number of occurrences:

#{y′ ∈ b} = #{y′ ∈ b′}+ 1 ∧#{y ∈ b′} = #{y ∈ b}+ 1
∧ ∀i : 0 < i ≤ n ∧ i 6= x⇒ #{bi ∈ b \ {y, y′}} = #{b′i ∈ b′ \ {y, y′}}.

We then specify the representative r by ordering the votes in b as in the previous proof,
where we know the following:

∀i : 0 < i ≤ n⇒ rp(i) = bi.

And also the representative r′ by ordering the votes in b′ likewise, hence:

∀i : 0 < i ≤ n⇒ r′p(i) = b′i.

82 6. Improving Performance of Bounded Verification by Symmetry Reduction

We then need to establish a relationship between r′ and r. For this, we take the equality
of occurrences between b and r:

∀i : 0 < i ≤ n⇒ #{rp(i) ∈ r} = #{bi ∈ b}.

And the same relationship between b′ and r′:

∀i : 0 < i ≤ n⇒ #{r′p(i) ∈ r′} = #{b′i ∈ b′}.

Thus, we can deduce the following relationship between r and r′ as between b and b′:

#{y′ ∈ b} = #{y′ ∈ b′}+ 1 ∧#{y ∈ b′} = #{y ∈ b}+ 1
∧ ∀i : 0 < i ≤ n ∧ i 6= x⇒ #{bi ∈ b \ {y, y′}} = #{b′i ∈ b′ \ {y, y′}}.

Hence, we can conclude the outcome of our implementation of plurality voting with
ballot box r′ is the same as with b′ and we have proven that our symmetry reduction
condition does not eliminate any relevant instances for the analysis of monotonicity with
first-past-the-post plurality voting. �

Results By applying the symmetry reduction in Definition 16 to the input ballot box,
we reduce the original CV instances to (C+V−1)!

V !∗(C−1)! ballot box instances, which is considerably
less than for plurality voting without this symmetry reducing assumption. LLBMC
is able to show that our implementation (the complete specification can be found in
Listing A.6 in Appendix A) of plurality voting with these symmetry assumptions satisfies
the monotonicity criterion for up to 5 candidates and 40 voters. The run-times of the
tool depending on the number of voters and candidates are shown in Fig. 6.1 (separate
curves for 3, 6, 9, 12, and 15 candidates) and Fig. 6.2 (separate curves for 2, 4, 6, 8, and
10 voters) respectively. The lower number of ballot box instances is also clearly visible in
the run-times of our experiment, when we compare our results to Fig. 5.1 and Fig. 5.2.

1 2 3 4 5 6 7 8 9 100

20

40

60

80

3
6

9
12

15

Voters

Ru
n-
tim

e
[s]

Run-times for 3, 6, 9, 12 and 15 Candidates

Figure 6.1.: LLBMC Verification Performance with Monotonicity Criterion for Plurality
Voting with Symmetry Breaking (Anonymity) per Voter

6.2. Plurality Voting with Anonymity and Neutrality 83

Similar to the previous experiments for plurality voting, we notice again some unusual
deviations with respect to the number of candidates for the graph in Fig. 6.2. As the
run-times of the results using the symmetry-breaking predicates outperform the ones from
the previous chapter to a big extent, we learn that the number of ballot box instances
has a great effect in the verification of the monotonicity criterion for plurality voting
and might also be adaptable to other correctness criteria and voting schemes. However,
the number of ballot box instances can still be reduced even further without losing any
significance of our verification results, as demonstrated in the following section.

2 4 6 8 10 12 140

20

40

60

80

100

24
6

8
10

Candidates

Ru
n-
tim

e
[s]

Run-times for 2, 4, 6, 8 and 10 Voters

Figure 6.2.: LLBMC Verification Performance with Monotonicity Criterion for Plurality
Voting with Symmetry Breaking (Anonymity) per Candidate

6.2. Plurality Voting with Anonymity and Neutrality
In the definition of voting schemes in Section 2.1 we also defined voting schemes to
be neutral, i.e. renaming or permuting candidates does not affect the election result.
E.g. for three candidates, we could have the ballot boxes b1 = {1, 2, 3}, b2 = {1, 2, 5},
b2 = {1, 3, 5}, b3 = {1, 9, 13} and b4 = {7, 17, 42}. All these ballot boxes b1 through
b4 satisfy anonymity, but we expect identical election results for all four ballot boxes
in plurality voting modulo renaming some candidates. In our implementation, all four
ballot boxes are different instances, which are analysed separately. However, the actual
representation of candidate does not matter if there is a one-to-one mapping, where no
two distinguishable candidates get the same names. Hence, we can also apply such a
renaming to the previously mentioned ballot boxes, such that the ballot boxes above have
one representative b = {1, 2, 3}, wherein the first vote is always for the first candidate
and for a consecutive vote, the candidates being voted for have a “distance” of one or
zero, when having a one-to-one mapping from the candidate names to the set of natural
numbers.

84 6. Improving Performance of Bounded Verification by Symmetry Reduction

In first order logic, this can be formalised with the following formula:

Definition 17 (Symmetry Reduction for Neutral Plurality Voting) For an or-
dered set of voters V , an ordered set of candidates C and a candidate index function
I : C → N0 with I : Ci 7→ i, we say a plurality voting ballot box b belongs to the neutrally
symmetry-reduced search space iff

bV0 = C0 ∧ ∀i : 0 < i < |V | ⇒ 0 ≤ |I(b(Vi))− I(b(Vi−1))| ≤ 1

The basic intuition for the correctness is essentially the same as for anonymity, only
considering a different dimension.

Results We can apply the symmetry-breaking predicates from Definition 17 considering
neutrality additionally to the symmetry-breaking predicates from Definition 16 considering
anonymity to the ballot box instances, and thereby reduce the previous (C+V−1)!

V !∗(C−1)! instances
even further. In our experiments, LLBMC is able to show that this implementation (the
complete specification can be found in Listing A.7 in Appendix A) of plurality voting
with these even stricter symmetry assumptions satisfies the monotonicity criterion for up
to 5 candidates and 45 voters or 30 candidates and 21 voters.

1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

3

6

9

12

15

Voters

Ru
n-
tim

e
[s]

Run-times for 3, 6, 9, 12 and 15 Candidates

Figure 6.3.: LLBMC Verification Performance with Monotonicity Criterion for Plurality
Voting with Strict Symmetry Breaking per Voter

The run-times depending on the number of voters and candidates are shown in Fig. 6.3
(separate curves for 3, 6, 9, 12, and 15 candidates) and Fig. 6.2 (separate curves for 2, 4,
6, 8, and 10 voters) respectively. Now we run into memory problems before we reach the
timeout for most of our executions, from which we can deduce that the generated formula
is much more concise and holds much less redundancies than without the symmetry
reduction. However, we are still not rid of the unusual deviations in Fig. 6.4 depending
on the number of candidates.

6.3. Approval Voting with Anonymity and Neutrality 85

2 4 6 8 10 12 140

1

2

3

4

5

2 4
6

8

10

Candidates

Ru
n-
tim

e
[s]

Run-times for 2, 4, 6, 8 and 10 Voters

Figure 6.4.: LLBMC Verification Performance with Monotonicity Criterion for Plurality
Voting with Strict Symmetry Breaking per Candidate

6.3. Approval Voting with Anonymity and Neutrality
Also for approval voting, our implementation for the ballot box comprises a high percent-
age of symmetric instances. We found out in Section 5.3 that the number of ballot box
instances is 2C∗V and hence suspect a big potential to reduce this number similarly to the
previous experiments with plurality voting. This time, both the number of candidates as
well as the number of voters are part of the exponent and hence have a large effect on
the complexity of the bounded verification. However, this is also based on our program
implementation of a ballot box, which is a two-dimensional array, having the voter number
as first index, the candidate number as a second one and either 1 or 0 as value. Very
similarly to the previous section on symmetry reduction for plurality voting, we assume
anonymity and neutrality as defined in Section 2.1. From these assumptions we can
assume an ordered relation along both array dimensions, the one along the first dimension
reflecting anonymity and the one along the second dimension reflecting neutrality. Hence,
it suffices to only examine ballot boxes, where the approval or disapproval for a certain
candidate is always equal to or greater than in the vote before and where for any voter
the approval or disapproval for a candidate is always equal to or greater than for the
candidate before. In first order logic, this can be formalised with the following formula:

Definition 18 (Symmetry Reduction for Approval Voting) For an ordered set
of voters V and an ordered set of candidates C, we say an approval voting ballot box b
belongs to the symmetry-reduced search space iff

∀i, j :((0 < i < |V | ∧ 0 ≤ j < |C|)⇒ b(Vi−1,Cj) ≤ b(Vi,Cj))
∧((0 ≤ i < |V | ∧ 0 < j < |C|)⇒ b(Vi,Cj−1) ≤ b(Vi,Cj))

86 6. Improving Performance of Bounded Verification by Symmetry Reduction

The basic intuition for the correctness is essentially the same as for plurality, only
considering a slightly different data structure for the ballot box.

Results By applying the symmetry-breaking predicates from Definition 18 to our
verification of the monotonicity criterion for approval voting, we can reduce the run-times
even further (compared to the results for approval voting from the last chapter) and
LLBMC is able to show that our implementation (the complete specification can be
found in Listing A.10 in Appendix A) of approval voting with the symmetry assumptions
satisfies the monotonicity criterion for up to 5 candidates and 161 voters or 20 candidates
and 39 voters. The run-times depending on the number of voters and candidates are
shown in Fig. 6.5 (separate curves for 2, 4, 8, 12, 16 and 20 candidates) and Fig. 6.6
(separate curves for 8, 16, 24, 32, and 40 voters) respectively. When we compare these
results to the outcome of the experiments for approval voting without any symmetry-
breaking constraints in Fig. 5.3 and Fig. 5.4, we observe a drastic reduction of the
development of run-times depending on the number of candidates, but also considering
the development based on the number of voters. Although we cannot give an explicit
formula for the reduction in run-time complexity or reduction of ballot box instances,
these findings are very promising and indicate a potential in adapting this approach to
similar voting schemes or further correctness criteria for approval voting.

10 20 30 40 500

50

100

150

200

24

8

12

16
20

Voters

Ru
n-
tim

e
[s]

Run-times for 2, 4, 8, 12, 16 and 20 Candidates

Figure 6.5.: LLBMC Verification Performance with Monotonicity Criterion for Approval
Voting with Symmetry Breaking per Voter

6.3. Approval Voting with Anonymity and Neutrality 87

5 10 15 200

50

100

150

200

250

8
16

24

32

40

Candidates

Ru
n-
tim

e
[s]

Run-times for 8, 16, 24, 32 and 40 Voters

Figure 6.6.: LLBMC Verification Performance with Monotonicity Criterion for Approval
Voting with Symmetry Breaking per Candidate

7. Conclusion
Voting schemes, as a fundamental part of democratic elections, are essential for the
establishment of trust, credibility and thus legitimacy in a democratic system as a
whole. However, designing a voting scheme without flaws, which still gives significant
democratic guarantees, is a difficult task as a trade-off between desirable properties is
non-trivial and error-prone. For this matter, various differing and growingly complex
voting schemes are used throughout the world and some of them have revealed serious
flaws and undesired side-effects. We tackle this issue by proposing an incremental
and iterative process in order to develop correct voting schemes with appropriate and
understandable correctness criteria based on automated formal methods of reasoning. In
particular, this thesis analyses two different forms of verification with respect to their role
in this development process targeting formal correctness of voting schemes. Thereby, we
perform a comprehensive set of case studies by using “medium-weight” and “light-weight”
verification techniques.

7.1. Related Work
Other research related to our work exists in various areas. The first and perhaps most
obvious relation concerns other approaches in the analysis of voting schemes. Besides
the examination of abstract voting schemes as done within this work and closely tied to
the field of social choice theory, some approaches consider concrete implementations of
voting schemes, sometimes on a more technical level, i.e. considering concrete real-world
implementations. A mostly different level relates to the formal verification techniques,
which we use and examine in our analysis.

Analysis of Voting Schemes Regarding the analysis of voting schemes, there does
not appear to be much research using automated reasoning methods by the means of
formal logics. There are some case studies on specifying very specific voting schemes
given by national jurisdictions and they commonly reveal serious flaws [Coc12][YS97].
Besides well-known formal criteria for voting systems, also more informal criteria or
vulnerabilities such as strategic manipulation [Bas14] or fairness and efficiency [BCE13]
are examined. As well as analysing existent voting schemes, there is research on designing
new voting schemes based on existent ones [AK11]. Some more fundamental research
analyses general approaches on how to deal with existing notions of correctness with
respect to voting schemes as there is already a multitude of different criteria, which
are often mutually exclusive with each other [Nur12]. Moreover, the specification and

90 7. Conclusion

verification of existing complex voting schemes according to their jurisdictions is often a
difficult and labour-intensive task [Meu14].
There exists extensive research in the field of social choice theory analysing theoretical
voting schemes on a more intuitive or experimental level involving empirical experiments or
comparisons of previous elections [Pac12]; [Gal13]; [BF88]; [RG98]. Other research in the
field of mathematics and computer science covers algorithmic analysis and classification
of voting schemes [EFS10]. This analysis defines mathematical distances using rather
general voting scheme properties such as neutrality and consistency, which are usually
pre-assumed in our analysis. Furthermore, there is research on the verification of concrete
voting systems or implementations, i.e. considering a concrete voting software [DYJ08].
However, it is argued and justified by the employing bounded model checking using
the SMT solver Z3 that formal methods can and should be used to ensure an intended
behaviour of voting schemes [Bec+14b].

Verification Techniques Within this work, we also examined potential improvements
by adapting the used verification techniques. Some research on the trade-offs between
bounded and modular verification focuses on how to make automatic verification more
efficient and powerful. This involves adding and effectively using some external decision
procedures or SMT solvers e.g. for quantifiers or integer arithmetics [AMP09] or even
using a whole different logical foundation. There is also research on the combination of
bounded and modular verification techniques [HN09], often focused on different logical
theories [GL94]. Evaluations on this field are promising, but commonly envisage general
data structures [DCJ06]. A general integration of deductive verification into bounded
model checking in order to exploit modularisation to achieve bounded guarantees, as
opposed to doing it the other way around as we examined, experienced limited but
promising examination [Bec+12].
Another aspect of our analysis is the improved efficiency of bounded verification tasks by
applying effective symmetry-breaking predicates in order to reduce the search space of
possible input instances. Related work exists that focuses on breaking symmetries on
the problem specification level [MC05][CM05] and also on methods for automatically
generating symmetry-breaking predicates on classes of combinatorial objects for search
problems [Shl07]. More applied work on this task provides tools, which detect symmetries
in structured graphs generated from CNF formulas [Dar+04].
Finally, related work on relational verification, as we did in analysing the relation
between two runs of a voting scheme with a given relation on their input for checking
the monotonicity criterion, using product programs [BCK11] seems promising for small
implementations of voting schemes.

7.2. Summary and Results
In this thesis, we analysed the general applicability of two verification techniques software
bounded model checking (SBMC) and auto-active deductive annotation-based verifica-
tion, which we classify as “light-weight” and “medium-weight” verification techniques

7.2. Summary and Results 91

respectively, to the formal verification of voting schemes. Thereto, we examined general
implementations of the widely used voting schemes: plurality voting, approval voting,
instant-runoff voting (IRV) and single transferable vote (STV) with respect to the three
well-known voting scheme criteria monotonicity, Condorcet loser and Condorcet winner.
The verification was realised with the Verifying C Compiler (VCC) and the Low-Level
Bounded Model Checker (LLBMC). For the process of this analysis, we formalised the
voting scheme criteria in first-order predicate logic and translated them to the spec-
ification languages of VCC and LLBMC and provided auxiliary specifications where
necessary. Whereas the translation for VCC did not include significant transformations
as its specification language directly supports first-order predicate logic, we established a
translation method for LLBMC, which supports a specification language with the set of
legal C/C++ statements of type boolean.
Furthermore, the specification for VCC included the formalisation of auxiliary specifica-
tions to enable its modular verification methodology, in particular for a verification of the
involved loop-statements. This process turned out surprisingly difficult with a significant
amount of user interaction regarding the finding of useful auxiliary specifications. In
particular, the complex combination of quantified formulas demanded an efficient and
effective mechanism to provide sensible quantifier instantiations, which was not feasible
with our case study to provide a full and general proof within our limits of memory
capacity. Yet, we were able to push the number of voters by using an intermediate
lemma in order to benefit from VCC’s possibilities for modularisation and abstraction.
As however we did achieve a successful verification for a bounded number of voters, we
analysed the applicability of bounded verification methods such as loop unrolling to
VCC’s verification process. This approach did only lead to increased run-times, but no
meaningful advances considering the verification achievements. For the applicability of
VCC’s verification methodology for the simple voting scheme implementation, we can
conclude this poses a major challenge as the specification elements and especially their
combination turned out to be too complex for an effective and efficient deduction.
The verification with LLBMC necessitated a translation of our problem specification
to be handled by LLBMC, but the verification was fully automatic without any user
interaction. We achieved successful proofs for small numbers of voters and candidates,
however with an exponential run-time in the number of voters for all voting schemes
and properties. The more complex preferential voting schemes IRV and STV turned out
to produce hardly any meaningful results. Furthermore, we analysed the capability of
LLBMC to produce counterexamples for non-complying criteria, which is a more general
purpose of SBMC. This is a desirable verification scenario for real voting schemes as
violated properties are often hidden in the intricate structure of voting schemes and
discovered only when it is already too late. Our analysis showed a better applicability to
the complex voting schemes IRV and STV than for proving correctness criteria. Still,
the numbers were small, but we observed a smaller increase in run-times for increasing
numbers of voters and candidates. Moreover, we established improved results in proving
correctness criteria for voting schemes with non-preferential ballots as plurality voting
and approval voting by exploiting the inherent symmetric structures anonymity and
neutrality of the set of possible ballot boxes. We formalised these two properties for

92 7. Conclusion

plurality voting and approval voting in first-order predicate logic as symmetry-breaking
predicates and were able to achieve successful verification results for meaningful numbers
of candidates and voters with respect to the small scope hypothesis.

7.3. Outlook and Future Work
The verification of voting schemes is a challenging task. We observed a promising
applicability of bounded verification techniques and that using auto-active annotation-
based deductive verification turns out challenging. Apart from investigations for a better
performance of SMT solvers for complex combinations of quantified formulas, an enhanced
support of auto-active verification tools for user interaction with respect to quantifier
instantiation has potential to achieve progress towards our objective. Furthermore,
the technique of relational verification as introduced in the section of related work
(Section 7.1) seems promising for simple voting schemes. In this thesis, we analysed the
use of the bounded verification technique loop unrolling within a modular deductive
verification tool, but the application of modular deductive verification techniques within
a bounded model checking tool remains to be analysed for verifying voting schemes. We
also analysed the potential of symmetry-breaking predicates within bounded verification
and achieved promising results. Hence, we see potential in expanding these investigations
on several levels. This is firstly the expansion on voting schemes with a more complex
ballot structure as an input, and secondly the advance of even more effective predicates
to break further existing symmetries and establish a framework for sensible symmetry
properties.
Moreover, we want to apply our approach to more concrete (i.e. less abstract) voting
schemes as used in real elections. Further future work concerns applying “heavy-weight”
verification techniques as to observe the benefit of more powerful user interaction to the
case studies within this thesis. More in the long-term, we envision the integration of
our approach in a development process for new voting schemes with formally verified
correctness properties.

A. Implementations and Specifications

A.1. Plurality Voting for VCC
In Listing A.1, the first argument is the upper bound of voters and the second one is the
filename.

1 @call vcc /p:"/DBOUND =%%1" /z3:" memory:1500 " %%2

Listing A.1: Script with Parameters for VCC Call

A.1.1. Full Specification of Monotonicity for Plurality Voting

1 # include <vcc.h>
2 # include <limits.h>
3

4 extern int C, V;
5

6 #ifndef BOUND
7 #define BOUND 3
8 #endif
9 #define valid_cand (a) ((0 < a) && (a <= C))

10 #define valid_candZero (a) ((0 <= a) && (a <= C))
11 #define valid_voter (a) ((0 <= a) && (a < V))
12 #define valid_voteCount (a) ((0 <= a) && (a <= V))
13

14 _(ghost _(pure) \integer count(int votes[int],
15 int upto ,
16 int cand)
17 _(decreases upto)
18 _(returns (upto <= 0) ?
19 0 : count(votes , upto -1, cand)
20 + (votes[upto -1] == cand ? 1 : 0))
21 {
22 return (upto <= 0) ?
23 0 : count(votes , upto -1, cand)
24 + (votes[upto -1] == cand ? 1 : 0);
25 })

94 A. Implementations and Specifications

26

27 void main(_(ghost int v1[int]) _(ghost int v2[int])
28 _(out int elect1) _(out int elect2)
29 int m, int n)
30 _(requires 0 < V && V < BOUND)
31 _(requires 0 < C && C < INT_MAX - 1)
32 _(requires \forall int i; {v1[i]}
33 (valid_voter (i) ==> valid_cand (v1[i]))
34 && (valid_voter (i) ==> valid_cand (v2[i])))
35 _(requires v1[n] != v2[n])
36 _(requires valid_cand (m) && valid_voter (n))
37 _(requires v2 == \lambda int i; i == n ? m : v1[i])
38 _(ensures (m == elect1) ==> (elect1 == elect2))
39 {
40 _(ghost int res1[int] = \lambda int i; 0;)
41 _(ghost int res2[int] = \lambda int i; 0;)
42

43 //================ FIRST ELECTION ================
44

45 _(ghost int tmp = 0;)
46 _(ghost for (int i = 0; i < V; i++)
47 _(invariant valid_voteCount (i)
48 && valid_candZero (tmp))
49 _(invariant \forall int k; (valid_candZero (k)
50 ==> 0 <= res1[k] && res1[k] <= i))
51 _(invariant \forall int k;
52 {res1[k], count(v1 , i, k)}
53 (valid_candZero (k) ==>
54 (res1[k] == count(v1 , i, k))))
55 {
56 tmp = v1[i];
57 res1[tmp] = res1[tmp] + 1;
58 })
59

60 _(ghost int max1 = -1;)
61 _(ghost elect1 = 0;)
62

63 _(ghost for (int i = 1; i <= C; i++)
64 _(invariant valid_candZero (i -1) && elect1 <= C)
65 _(invariant elect1 != 0 ==> res1[elect1] == max1)
66 _(invariant elect1 != 0
67 <==> (\ exists int k; {res1[k]}
68 {\ match_long (k)} {:hint \match_long(k)}
69 0 < k && k < i

A.1. Plurality Voting for VCC 95

70 && (\ forall int j;
71 0 < j && j < i && j != k
72 ==> res1[j] < res1[k])))
73 _(invariant 0 <= max1 ==>
74 \exists int k; 0 < k && k < i
75 && res1[k] == max1)
76 _(invariant \forall int k; 0 < k && k < i
77 ==> res1[k] <= max1)
78 {
79 if (max1 < res1[i]) {
80 max1 = res1[i];
81 elect1 = i;
82 } else if (max1 == res1[i]) elect1 = 0;
83 })
84

85 //================ SECOND ELECTION ===============
86

87 _(ghost int tmp = 0;)
88 _(ghost for (int i = 0; i < V; i++)
89 _(invariant valid_voteCount (i)
90 && valid_candZero (tmp))
91 _(invariant \forall int k; (valid_candZero (k)
92 ==> 0 <= res2[k] && res2[k] <= i))
93 _(invariant \forall int k;
94 {count(v2 , i, k), res2[k]}
95 (valid_candZero (k) ==>
96 (res2[k] == count(v2 , i, k))))
97 {
98 tmp = v2[i];
99 res2[tmp] = res2[tmp] + 1;

100 })
101

102 _(ghost int max2 = -1;)
103 _(ghost elect2 = 0;)
104

105 _(ghost for (int i = 1; i <= C; i++)
106 _(invariant valid_candZero (i -1)
107 && 0 <= elect2 && elect2 < i)
108 _(invariant elect2 != 0 ==> res2[elect2] == max2)
109 _(invariant elect2 == 0 && 1 < i ==>
110 \exists int j, k; 0 < j && j < i && 0 < k
111 && k < i && k != j && res2[k] == res2[j])
112 _(invariant 0 <= max2
113 ==> \exists int k; 0 < k && k < i

96 A. Implementations and Specifications

114 && res2[k] == max2)
115 _(invariant \forall int k; 0 < k && k < i
116 ==> res2[k] <= max2)
117 _(invariant (\ forall int j; {res2[j]}
118 0 < j && j < i && elect2 != j
119 ==> (\ exists int k; 0 < k && k < i
120 && k != j && res2[j] <= res2[k])))
121 {
122 if (max2 < res2[i]) {
123 max2 = res2[i];
124 elect2 = i;
125 } else if (max2 == res2[i]) {
126 elect2 = 0;
127 }
128 })
129 }

Listing A.2: VCC Specification of Monotonicity for Plurality Voting

A.1.2. Lemma for Monotonicity Criterion

1 # include <vcc.h>
2 # include <limits.h>
3

4 extern int C;
5 extern int V;
6

7 #define valid_cand (a) ((0 < a) && (a <= C))
8 #define valid_candZero (a) ((0 <= a) && (a <= C))
9 #define valid_voter (a) ((0 <= a) && (a < V))

10

11 _(ghost _(pure) \integer count(int votes[int],
12 int upto ,
13 int cand)
14 _(decreases upto)
15 _(returns (upto <= 0) ?
16 0 : count(votes , upto -1, cand)
17 + (votes[upto -1] == cand ? 1 : 0))
18 {
19 return (upto <= 0) ?
20 0 : count(votes , upto -1, cand)
21 + (votes[upto -1] == cand ? 1 : 0);
22 })

A.2. Plurality Voting for LLBMC 97

23

24 void main(_(ghost int v1[int]) _(ghost int v2[int])
25 _(ghost int elect1) _(ghost int elect2)
26 _(ghost int res1[int]) _(ghost int res2[int])
27 int m, int n)
28 _(requires 0 < V && V < INT_MAX - 1)
29 _(requires 0 < C && C < INT_MAX - 1)
30 _(requires v1 != v2)
31 _(requires v1[n] != v2[n])
32 _(requires valid_cand (m) && valid_voter (n))
33 _(requires v2 == \lambda int i; i == n ? m : v1[i])
34 _(requires \forall int k; (valid_candZero (k)
35 ==> (res1[k] == count(v1 , V, k))))
36 _(requires \forall int k; (valid_candZero (k)
37 ==> (res2[k] == count(v2 , V, k))))
38 _(requires elect1 != 0
39 ==> (\ forall int k; 0 < k && k <= C && k != elect1
40 ==> res1[k] < res1[elect1]))
41 _(requires (\ forall int j; {res2[j]}
42 0 < j && j <= C && elect2 != j
43 ==> (\ exists int k; 0 < k && k <= C && k != j
44 && res2[j] <= res2[k])))
45 _(requires \forall int j; \match_long(res1[v1[j]]))
46 _(requires \forall int j; valid_voter (j)
47 ==> \match_long(res2[v2[j]]))
48 _(ensures (m == elect1) ==> (elect1 == elect2))
49 {
50 }

Listing A.3: VCC Lemma Specification for Monotonicity

A.2. Plurality Voting for LLBMC
In Listing A.4, the first argument is the number of candidates, the second one the number
of voters, the third one the filename (without file extension), and the fourth one is for
optional additional parameters.

1 #!/ bin/bash
2 clang -D C=$1 -D V=$2 -c -g -emit -llvm $3.c -o $3.bc
3 llbmc -log -level= verbose -only -custom - assertions --smt -

solver=stp -cms --stp -eager -read -axioms $4 $3.bc

Listing A.4: Script with Parameters for LLBMC Call of Plurality Voting

98 A. Implementations and Specifications

A.2.1. General Plurality Voting

1 # include <stdlib.h>
2 # include "llbmc.h"
3

4 #ifndef V
5 #define V 3
6 #endif
7

8 #ifndef C
9 #define C 3

10 #endif
11

12 unsigned int voting(unsigned int votes[V]) {
13 unsigned int res[C + 1];
14 for (unsigned int i = 0; i < V; i++) {
15 assume (0 < votes[i]);
16 assume (votes[i] <= C);
17 }
18

19 for (unsigned int i = 0; i <= C; i++) res[i] = 0;
20

21 unsigned int tmp = 1;
22 for (unsigned int i = 0; i < V; i++) {
23 tmp = votes[i];
24 res[tmp] = res[tmp] + 1;
25 }
26

27 unsigned int max = 0;
28 unsigned int elect = 0;
29 for (unsigned int i = 1; i <= C; i++) {
30 if (max < res[i]) {
31 max = res[i];
32 elect = i;
33 } else if (max == res[i]) elect = 0;
34 }
35 return elect;
36 }
37

38 void monotonicity (unsigned int votes1[V],
39 unsigned int votes2[V],
40 unsigned int m,
41 unsigned int n) {
42 assume (0 < m && m <= C);

A.2. Plurality Voting for LLBMC 99

43 assume (0 <= n && n < V);
44

45 for (unsigned int i = 0; i < V; i++) {
46 assume (0 < votes1[i]);
47 assume (0 < votes2[i]);
48 assume (votes1[i] <= C);
49 assume (votes2[i] <= C);
50 if (i != n) assume (votes1[i] == votes2[i]);
51 }
52 assume (votes1[n] != m);
53 assume (votes2[n] == m);
54

55 unsigned int elect1 = voting(votes1);
56 unsigned int elect2 = voting(votes2);
57 if (m == elect1) assert (elect1 == elect2);
58 }
59

60 int main(int argc , char *argv []) {
61 unsigned int v1[V], v2[V];
62 for (unsigned int i = 0; i < V; i++) {
63 v1[i] = __llbmc_nondef_unsigned_int ();
64 v2[i] = __llbmc_nondef_unsigned_int ();
65 }
66 unsigned int vote = __llbmc_nondef_unsigned_int ();
67 unsigned int voter = __llbmc_nondef_unsigned_int ();
68

69 monotonicity (v1 , v2 , vote , voter);
70 return 0;
71 }

Listing A.5: LLBMC Specification for Plurality Voting

A.2.2. FPTP with Symmetry Breaking Predicates for Anonymity

1 # include <stdlib.h>
2 # include "llbmc.h"
3

4 #ifndef V
5 #define V 3
6 #endif
7

8 #ifndef C
9 #define C 3

100 A. Implementations and Specifications

10 #endif
11

12 unsigned int voting(unsigned int votes[V]) {
13 unsigned int res[C + 1];
14 for (unsigned int i = 0; i < V; i++) {
15 assume (0 < votes[i]);
16 assume (votes[i] <= C);
17 if (0 < i) assume (votes[i -1] <= votes[i]);
18 }
19

20 for (unsigned int i = 0; i <= C; i++) res[i] = 0;
21

22 unsigned int tmp = 1;
23 for (unsigned int i = 0; i < V; i++) {
24 tmp = votes[i];
25 res[tmp] = res[tmp] + 1;
26 }
27

28 unsigned int max = 0;
29 unsigned int elect = 0;
30 for (unsigned int i = 1; i <= C; i++) {
31 if (max < res[i]) {
32 max = res[i];
33 elect = i;
34 } else if (max == res[i]) elect = 0;
35 }
36 return elect;
37 }
38

39 void monotonicity (unsigned int votes1[V],
40 unsigned int votes2[V],
41 unsigned int m,
42 unsigned int n) {
43 assume (0 < m && m <= C);
44 assume (0 <= n && n < V);
45

46 for (unsigned int i = 0; i < V; i++) {
47 assume (0 < votes1[i]);
48 assume (0 < votes2[i]);
49 assume (votes1[i] <= C);
50 assume (votes2[i] <= C);
51 if (0 < i) {
52 assume (votes1[i -1] <= votes1[i]);
53 assume (votes2[i -1] <= votes2[i]);

A.2. Plurality Voting for LLBMC 101

54 }
55 if (i != n) assume (votes1[i] == votes2[i]);
56 }
57

58 assume (votes1[n] != m);
59 assume (votes2[n] == m);
60

61 unsigned int elect1 = voting(votes1);
62 unsigned int elect2 = voting(votes2);
63 if (m == elect1) assert (elect1 == elect2);
64 }
65

66 int main(int argc , char *argv []) {
67 unsigned int v1[V];
68 unsigned int v2[V];
69 for (unsigned int i = 0; i < V; i++) {
70 v1[i] = __llbmc_nondef_unsigned_int ();
71 v2[i] = __llbmc_nondef_unsigned_int ();
72 }
73 unsigned int vote = __llbmc_nondef_unsigned_int ();
74 unsigned int voter = __llbmc_nondef_unsigned_int ();
75

76 monotonicity (v1 , v2 , vote , voter);
77 return 0;
78 }

Listing A.6: LLBMC Specification for Anonymous Plurality Voting

A.2.3. FPTP with Predicates for Anonymity and Neutrality

1 # include <stdlib.h>
2 # include "llbmc.h"
3

4 #ifndef V
5 #define V 3
6 #endif
7

8 #ifndef C
9 #define C 3

10 #endif
11

12 unsigned int voting(unsigned int votes[V]) {
13 unsigned int res[C + 1];

102 A. Implementations and Specifications

14 assume (votes [0] == 1);
15 for (unsigned int i = 0; i < V; i++) {
16 assume (0 < votes[i]);
17 assume (votes[i] <= C);
18 if (0 < i) {
19 assume (0 <= (votes[i] - votes[i -1]));
20 assume ((votes[i] - votes[i -1]) <= 1);
21 }
22 }
23

24 for (unsigned int i = 0; i <= C; i++) res[i] = 0;
25

26 unsigned int tmp = 1;
27 for (unsigned int i = 0; i < V; i++) {
28 tmp = votes[i];
29 res[tmp] = res[tmp] + 1;
30 }
31

32 unsigned int max = 0;
33 unsigned int elect = 0;
34 for (unsigned int i = 1; i <= C; i++) {
35 if (max < res[i]) {
36 max = res[i];
37 elect = i;
38 } else if (max == res[i]) elect = 0;
39 }
40 return elect;
41 }
42

43 void monotonicity (unsigned int votes1[V],
44 unsigned int votes2[V],
45 unsigned int m,
46 unsigned int n) {
47 assume (0 < m && m <= C);
48 assume (0 <= n && n < V);
49

50 assume (votes1 [0] == 1);
51 for (unsigned int i = 0; i < V; i++) {
52 assume (0 < votes1[i]);
53 assume (0 < votes2[i]);
54 assume (votes1[i] <= C);
55 assume (votes2[i] <= C);
56 if (0 < i) {
57 assume (0 <= (votes1[i] - votes1[i -1]));

A.3. Approval Voting for LLBMC 103

58 assume ((votes1[i] - votes1[i -1]) <= 1);
59 }
60 if (i != n) assume (votes1[i] == votes2[i]);
61 }
62

63 assume (votes1[n] != m);
64 assume (votes2[n] == m);
65

66 unsigned int elect1 = voting(votes1);
67 unsigned int elect2 = voting(votes2);
68 if (m == elect1) assert (elect1 == elect2);
69 }
70

71 int main(int argc , char *argv []) {
72 unsigned int v1[V];
73 unsigned int v2[V];
74 for (unsigned int i = 0; i < V; i++) {
75 v1[i] = __llbmc_nondef_unsigned_int ();
76 v2[i] = __llbmc_nondef_unsigned_int ();
77 }
78 unsigned int vote = __llbmc_nondef_unsigned_int ();
79 unsigned int voter = __llbmc_nondef_unsigned_int ();
80

81 monotonicity (v1 , v2 , vote , voter);
82 return 0;
83 }

Listing A.7: LLBMC Specification for Anonymous and Neutral Plurality Voting

A.3. Approval Voting for LLBMC
In Listing A.8, the first argument is the number of candidates, the second one the number
of voters, the third one the filename (without file extension), and the fourth one is for
optional additional parameters.

1 #!/ bin/bash
2 clang -D C=$1 -D V=$2 -c -g -emit -llvm $3.c -o $3.bc
3 llbmc -log -level= verbose -only -custom - assertions $4 $3.bc

Listing A.8: Script with Parameters for LLBMC Call of Approval Voting

A.3.1. General Approval Voting

104 A. Implementations and Specifications

1 # include <stdlib.h>
2 # include "llbmc.h"
3

4 #ifndef V
5 #define V 3
6 #endif
7

8 #ifndef C
9 #define C 3

10 #endif
11

12 unsigned int voting(unsigned int votes[V][C]) {
13 unsigned int res[C];
14 for (unsigned int i = 0; i < V; i++) {
15 for (unsigned int j = 0; j < C; j++) {
16 assume (0 <= votes[i][j]);
17 assume (votes[i][j] <= 1);
18 }
19 }
20

21 for (unsigned int i = 0; i < C; i++) res[i] = 0;
22

23 for (unsigned int i = 0; i < V; i++)
24 for (unsigned int j = 0; j < C; j++)
25 res[j] += votes[i][j];
26

27 unsigned int max = 0;
28 unsigned int elect = 0;
29 for (unsigned int i = 0; i < C; i++) {
30 if (max < res[i]) {
31 max = res[i];
32 elect = i+1;
33 } else if (max == res[i]) elect = 0;
34 }
35 return elect;
36 }
37

38 void monotonicity (unsigned int votes1[V][C],
39 unsigned int votes2[V][C],
40 unsigned int m,
41 unsigned int n) {
42 assume (0 < m && m <= C);
43 assume (0 <= n && n < V);

A.3. Approval Voting for LLBMC 105

44

45 for (unsigned int i = 0; i < V; i++) {
46 for (unsigned int j = 0; j < C; j++) {
47 assume (0 <= votes1[i][j]);
48 assume (0 <= votes2[i][j]);
49 assume (votes1[i][j] <= 1);
50 assume (votes2[i][j] <= 1);
51 if ((i != n) || (j != (m -1)))
52 assume (votes1[i][j] == votes2[i][j]);
53 }
54 }
55

56 assume (votes1[n][m -1] == 0);
57 assume (votes2[n][m -1] == 1);
58

59 unsigned int elect1 = voting(votes1);
60 unsigned int elect2 = voting(votes2);
61 if (m == elect1) assert (elect1 == elect2);
62 }
63

64 int main(int argc , char *argv []) {
65 unsigned int v1[V][C];
66 unsigned int v2[V][C];
67 for (int i = 0; i < V; i++) {
68 for (int j = 0; j < C; j++) {
69 v1[i][j] = __llbmc_nondef_unsigned_int ();
70 v2[i][j] = __llbmc_nondef_unsigned_int ();
71 }
72 }
73 unsigned int vote = __llbmc_nondef_unsigned_int ();
74 unsigned int voter = __llbmc_nondef_unsigned_int ();
75

76 monotonicity (v1 , v2 , vote , voter);
77 return 0;
78 }

Listing A.9: LLBMC Specification for Approval Voting

A.3.2. Approval Voting with Symmetry Breaking Predicates

1 # include <stdlib.h>
2 # include "llbmc.h"
3

106 A. Implementations and Specifications

4 #ifndef V
5 #define V 3
6 #endif
7

8 #ifndef C
9 #define C 3

10 #endif
11

12 unsigned int voting(unsigned int votes[V][C]) {
13 unsigned int res[C];
14 for (unsigned int i = 0; i < V; i++) {
15 for (unsigned int j = 0; j < C; j++) {
16 assume (0 <= votes[i][j]);
17 assume (votes[i][j] <= 1);
18 if (0 < i)
19 assume (votes[i -1][j] <= votes[i][j]);
20 if (0 < j)
21 assume (votes[i][j -1] <= votes[i][j]);
22 }
23 }
24

25 for (unsigned int i = 0; i < C; i++) res[i] = 0;
26

27 for (unsigned int i = 0; i < V; i++)
28 for (unsigned int j = 0; j < C; j++)
29 res[j] += votes[i][j];
30

31 unsigned int max = 0;
32 unsigned int elect = 0;
33 for (unsigned int i = 0; i < C; i++) {
34 if (max < res[i]) {
35 max = res[i];
36 elect = i+1;
37 } else if (max == res[i]) elect = 0;
38 }
39 return elect;
40 }
41

42 void monotonicity (unsigned int votes1[V][C],
43 unsigned int votes2[V][C],
44 unsigned int m,
45 unsigned int n) {
46 assume (0 < m && m <= C);
47 assume (0 <= n && n < V);

A.3. Approval Voting for LLBMC 107

48

49 for (unsigned int i = 0; i < V; i++) {
50 for (unsigned int j = 0; j < C; j++) {
51 assume (0 <= votes1[i][j]);
52 assume (0 <= votes2[i][j]);
53 assume (votes1[i][j] <= 1);
54 assume (votes2[i][j] <= 1);
55 if (0 < i)
56 assume (votes1[i -1][j] <= votes1[i][j]);
57 if (0 < j)
58 assume (votes1[i][j -1] <= votes1[i][j]);
59 if ((i != n) || (j != (m -1)))
60 assume (votes1[i][j] == votes2[i][j]);
61 }
62 }
63

64 assume (votes1[n][m -1] == 0);
65 assume (votes2[n][m -1] == 1);
66

67 unsigned int elect1 = voting(votes1);
68 unsigned int elect2 = voting(votes2);
69 if (m == elect1) assert (elect1 == elect2);
70 }
71

72 int main(int argc , char *argv []) {
73 unsigned int v1[V][C];
74 unsigned int v2[V][C];
75 for (int i = 0; i < V; i++) {
76 for (int j = 0; j < C; j++) {
77 v1[i][j] = __llbmc_nondef_unsigned_int ();
78 v2[i][j] = __llbmc_nondef_unsigned_int ();
79 }
80 }
81 unsigned int vote = __llbmc_nondef_unsigned_int ();
82 unsigned int voter = __llbmc_nondef_unsigned_int ();
83

84 monotonicity (v1 , v2 , vote , voter);
85 return 0;
86 }

Listing A.10: LLBMC Specification for Anonymous and Neutral Approval Voting

108 A. Implementations and Specifications

A.4. Instant-Runoff Voting for LLBMC
In Listing A.11, the first argument is the number of candidates, the second one the
number of voters, the third one the filename (without file extension), and the fourth one
is for optional additional parameters.

1 #!/ bin/bash
2 clang -D C=$1 -D V=$2 -c -g -emit -llvm $3.c -o $3.bc
3 llbmc -log -level= verbose -only -custom - assertions -no -max -

loop -iterations -checks --max -loop - iterations =$1 $4 $3.bc

Listing A.11: Script with Parameters for LLBMC Call of Instant-Runoff Voting

A.4.1. Implementation of Deterministic IRV

1 # include <stdlib.h>
2 # include "llbmc.h"
3

4 #ifndef V
5 #define V 2
6 #endif
7

8 #ifndef C
9 #define C 2

10 #endif
11

12 unsigned int voting(unsigned int votes[V][C+1]) {
13 unsigned int res = 0;
14 unsigned int count[C+1];
15 unsigned int cc = C;
16 unsigned int i = 0, j = 0, j_prime = 0, k = 0, l = 0;
17

18 for (i = 0; i < V; i++) {
19 assume (votes[i][1] != 0);
20 for (j = 1; j <= C; j++) {
21 assume (0 <= votes[i][j]);
22 assume (votes[i][j] <= C);
23 for (j_prime = 1; j_prime <= C; j_prime ++) {
24 if ((votes[i][j] != 0) && (j != j_prime))
25 assume (votes[i][j]
26 != votes[i][j_prime]);
27 if ((votes[i][j] == 0) && (j <= j_prime))
28 assume (votes[i][j_prime] == 0);

A.4. Instant-Runoff Voting for LLBMC 109

29 }
30 }
31 }
32

33 unsigned int quota = 0;
34 if (V % 2 != 0) quota = (V - 1) / 2;
35 else quota = V / 2;
36

37 unsigned int min = quota;
38 while (res == 0 && 0 < cc) {
39 for (i = 0; i <= C; i++) count[i] = 0;
40 for (i = 0; i < V; i++)
41 for (j = 1; j <= C; j++)
42 if (votes[i][1] == j) count[j]++;
43 for (i = 1; i <= C && res == 0; i++)
44 if (quota < count[i]) res = i;
45 if (res == 0) {
46 min = quota;
47 for (i = 1; i <= C; i++)
48 if (count[i] < min && count[i] != 0)
49 min = count[i];
50 for (i = 1; i <= C; i++) {
51 if (count[i] == min) {
52 for (j = 0; j < V; j++) {
53 for (k = 1; k <= C; k++) {
54 if (votes[j][k] == i) {
55 for (l = k; l < C; l++)
56 votes[j][l]
57 = votes[j][l + 1];
58 votes[j][C] = 0;
59 }
60 }
61 }
62 cc --;
63 }
64 }
65 }
66 }
67 return res;
68 }

Listing A.12: LLBMC Specification for Deterministic IRV

110 A. Implementations and Specifications

A.4.2. Implementation of Exhaustive IRV

1 # include <stdlib.h>
2 # include "llbmc.h"
3

4 #ifndef V
5 #define V 2
6 #endif
7

8 #ifndef C
9 #define C 2

10 #endif
11

12 unsigned int voting(unsigned int votes[V][C+1]) {
13 unsigned int res = 0, weakest = 0, choose = 0;
14 unsigned int count[C+1];
15 unsigned int cc = C;
16 unsigned int i = 0, j = 0, j_prime = 0, k = 0, l = 0;
17

18 for (i = 0; i < V; i++) {
19 assume (votes[i][1] != 0);
20 for (j = 1; j <= C; j++) {
21 assume (0 <= votes[i][j]);
22 assume (votes[i][j] <= C);
23 for (j_prime = 1; j_prime <= C; j_prime ++) {
24 if ((votes[i][j] != 0) && (j != j_prime))
25 assume (votes[i][j]
26 != votes[i][j_prime]);
27 if ((votes[i][j] == 0) && (j <= j_prime))
28 assume (votes[i][j_prime] == 0);
29 }
30 }
31 }
32

33 unsigned int quota = 0;
34 if (V % 2 != 0) quota = (V - 1) / 2;
35 else quota = V / 2;
36

37 unsigned int min = quota;
38 while (res == 0 && 0 < cc) {
39 for (i = 0; i <= C; i++) count[i] = 0;
40 for (i = 0; i < V; i++)
41 for (j = 1; j <= C; j++)
42 if (votes[i][1] == j) count[j]++;

A.4. Instant-Runoff Voting for LLBMC 111

43 for (i = 1; i <= C && res == 0; i++)
44 if (quota < count[i]) res = i;
45 if (res == 0) {
46 min = quota;
47 weakest = 0;
48 for (i = 1; i <= C; i++) {
49 if (count[i] < min && count[i] != 0) {
50 min = count[i];
51 weakest = 1;
52 } else if (count[i] == min) weakest ++;
53 }
54 choose = __llbmc_nondef_unsigned_int ();
55 assume (0 < choose && choose <= weakest);
56

57 weakest = 0;
58 for (i = 1; i <= C; i++) {
59 if (count[i] == min) weakest ++;
60 if (count[i] == min && weakest == choose) {
61 for (j = 0; j < V; j++) {
62 for (k = 1; k <= C; k++) {
63 if (votes[j][k] == i) {
64 for (l = k; l < C; l++)
65 votes[j][l]
66 = votes[j][l + 1];
67 votes[j][C] = 0;
68 }
69 }
70 }
71 cc --;
72 }
73 }
74 }
75 }
76 return res;
77 }

Listing A.13: LLBMC Specification for Exhaustive IRV

A.4.3. Specification of Condorcet Loser Criterion for IRV

1 void condorcet_loser (unsigned int votes[V][C+1],
2 unsigned int loser) {
3 assume (0 < loser && loser <= C);

112 A. Implementations and Specifications

4 unsigned int i = 0, j = 0, j_prime = 0, k = 0, tmp = 0;
5 int defeat[C+1], counted [C+1];
6 unsigned int found = 0;
7 for (i = 0; i <= C; i++) {
8 defeat[i] = 0;
9 counted [i] = 0;

10 }
11

12 for (i = 0; i < V; i++) {
13 assume (votes[i][1] != 0);
14 found = 0;
15 for (j = 1; j <= C; j++) {
16 assume (0 <= votes[i][j]);
17 assume (votes[i][j] <= C);
18 for (j_prime = 1; j_prime <= C; j_prime ++) {
19 if ((votes[i][j] != 0) && (j != j_prime))
20 assume (votes[i][j]
21 != votes[i][j_prime]);
22 if ((votes[i][j] == 0) && (j <= j_prime))
23 assume (votes[i][j_prime] == 0);
24 }
25

26 if (votes[i][j] == loser) found = 1;
27 if (votes[i][j] != 0) {
28 tmp = votes[i][j];
29 defeat[tmp] += (found ? (-1) : 1);
30 counted [tmp] = 1;
31 }
32 }
33

34 for (k = 1; k <= C; k++) {
35 if (counted [k] == 0) {
36 if (found) defeat[k]--;
37 } else counted [k] = 0;
38 }
39 }
40

41 defeat[loser] = V + 1;
42 for (i = 1; i <= C; i++) assume (0 < defeat[i]);
43

44 unsigned int elect = voting(votes);
45 assert (elect != loser);
46 }
47

A.4. Instant-Runoff Voting for LLBMC 113

48 int main(int argc , char *argv []) {
49 unsigned int v1[V][C+1];
50 unsigned int i = 0, j = 0;
51 for (i = 0; i < V; i++) {
52 v1[i][0] = 0;
53 for (j = 1; j <= C; j++)
54 v1[i][j] = __llbmc_nondef_unsigned_int ();
55 }
56 unsigned int cand = __llbmc_nondef_unsigned_int ();
57

58 condorcet_loser (v1 , cand);
59 return 0;
60 }

Listing A.14: LLBMC Specification of Condorcet Loser Criterion for IRV

A.4.4. Specification of Condorcet Winner Criterion for IRV

1 void condorcet_winner (unsigned int votes[V][C+1],
2 unsigned int winner) {
3 assume (0 < winner && winner <= C);
4 unsigned int i = 0, j = 0, j_prime = 0, k = 0, tmp = 0;
5 int defeat[C+1], counted [C+1];
6 unsigned int found = 0;
7 for (i = 0; i <= C; i++) {
8 defeat[i] = 0;
9 counted [i] = 0;

10 }
11

12 for (i = 0; i < V; i++) {
13 assume (votes[i][1] != 0);
14 found = 0;
15 for (j = 1; j <= C; j++) {
16 assume (0 <= votes[i][j]);
17 assume (votes[i][j] <= C);
18 for (j_prime = 1; j_prime <= C; j_prime ++) {
19 if ((votes[i][j] != 0) && (j != j_prime))
20 assume (votes[i][j]
21 != votes[i][j_prime]);
22 if ((votes[i][j] == 0) && (j <= j_prime))
23 assume (votes[i][j_prime] == 0);
24 }
25

114 A. Implementations and Specifications

26 if (votes[i][j] == winner) found = 1;
27 if (votes[i][j] != 0) {
28 tmp = votes[i][j];
29 defeat[tmp] += (found ? 1 : (-1));
30 counted [tmp] = 1;
31 }
32 }
33

34 for (k = 1; k <= C; k++) {
35 if (counted [k] == 0) {
36 if (found) defeat[k]++;
37 } else counted [k] = 0;
38 }
39 }
40

41 defeat[winner] = 1;
42 for (i = 1; i <= C; i++) assume (0 < defeat[i]);
43

44 unsigned int elect = voting(votes);
45 assert (elect == 0 || elect == winner);
46 }
47

48 int main(int argc , char *argv []) {
49 unsigned int v1[V][C+1];
50 unsigned int i = 0, j = 0;
51 for (i = 0; i < V; i++) {
52 v1[i][0] = 0;
53 for (j = 1; j <= C; j++)
54 v1[i][j] = __llbmc_nondef_unsigned_int ();
55 }
56 unsigned int cand = __llbmc_nondef_unsigned_int ();
57

58 condorcet_winner (v1 , cand);
59 return 0;
60 }

Listing A.15: LLBMC Specification of Condorcet Winner Criterion for IRV

A.5. Single Transferable Vote for LLBMC
In Listing A.16, the first argument is the number of candidates, the second one the
number of seats, the third one the number of voters, the fourth one the filename (without
file extension), and the fifth one is for optional additional parameters.

A.5. Single Transferable Vote for LLBMC 115

1 #!/ bin/bash
2 clang -D S=$2 -D C=$1 -D V=$3 -c -g -emit -llvm $4.c -o $4.bc
3 llbmc -log -level= verbose -only -custom - assertions -no -max -

loop -iterations -checks --max -loop - iterations =$(($1 * $2))
$5 $4.bc

Listing A.16: Script with Parameters for LLBMC Call of STV

1 # include <stdlib.h>
2 # include "llbmc.h"
3

4 #ifndef C
5 #define C 2
6 #endif
7

8 #ifndef V
9 #define V 2

10 #endif
11

12 #ifndef S
13 #define S 1
14 #endif
15

16 unsigned int *voting(unsigned int votes[V][C+1]) {
17 unsigned int *r = malloc(S*sizeof(unsigned int));
18 unsigned int res = 0;
19

20 unsigned int count[C+1];
21 unsigned int cc = C, e = 0, weakest = 0, choose = 0;
22 unsigned int i = 0, j = 0, j_prime = 0,
23 k = 0, l = 0, t = 0;
24

25 for (i = 0; i < S; i++) r[i] = 0;
26

27 for (i = 0; i < V; i++) {
28 assume (votes[i][1] != 0);
29 for (j = 1; j <= C; j++) {
30 assume (0 <= votes[i][j]);
31 assume (votes[i][j] <= C);
32 for (j_prime = 1; j_prime <= C; j_prime ++) {
33 if ((votes[i][j] != 0) && (j != j_prime))
34 assume (votes[i][j]
35 != votes[i][j_prime]);

116 A. Implementations and Specifications

36 if ((votes[i][j] == 0) && (j <= j_prime))
37 assume (votes[i][j_prime] == 0);
38 }
39 }
40 }
41

42 unsigned int quota = 0;
43 if (V % 2 != 0) quota = (V - 1) / (S + 1);
44 else quota = V / (S + 1);
45

46 unsigned int min = quota;
47 while (res == 0 && 0 < cc && e < S && (S - e) < cc) {
48 for (i = 0; i <= C; i++) count[i] = 0;
49 for (i = 0; i < V; i++)
50 for (j = 1; j <= C; j++)
51 if (votes[i][1] == j) count[j]++;
52 for (i = 1; i <= C && res == 0; i++)
53 if (quota < count[i]) res = i;
54

55 if (res != 0) {
56 r[e] = res;
57 e++;
58 for (t = 0; t <= quota; t++) {
59 i = 0;
60 while (votes[i][1] != res) i++;
61 for (j = 1; j <= C; j++) votes[i][j] = 0;
62 }
63 for (j = 0; j < V; j++) {
64 for (k = 1; k <= C; k++) {
65 if (votes[j][k] == res) {
66 for (l = k; l < C; l++)
67 votes[j][l]
68 = votes[j][l + 1];
69 votes[j][C] = 0;
70 }
71 }
72 }
73 res = 0;
74 cc --;
75 } else {
76 min = quota;
77 weakest = 0;
78 for (i = 1; i <= C; i++) {
79 if (count[i] < min && count[i] != 0) {

A.5. Single Transferable Vote for LLBMC 117

80 min = count[i];
81 weakest = 1;
82 } else if (count[i] == min) weakest ++;
83 }
84 choose = __llbmc_nondef_unsigned_int ();
85 assume (0 < choose && choose <= weakest);
86

87 weakest = 0;
88 for (i = 1; i <= C; i++) {
89 if (count[i] == min) weakest ++;
90 if (count[i] == min && weakest == choose) {
91 for (j = 0; j < V; j++) {
92 for (k = 1; k <= C; k++) {
93 if (votes[j][k] == i) {
94 for (l = k; l < C; l++)
95 votes[j][l]
96 = votes[j][l + 1];
97 votes[j][C] = 0;
98 }
99 }

100 }
101 cc --;
102 }
103 }
104 }
105 }
106

107 if (e < S - 1) {
108 for (i = e; i < S && 0 < cc; i++) {
109 res = 0;
110 for (k = 1; k <= C && res == 0; k++)
111 for (j = 0; j < V && res == 0; j++)
112 if (votes[j][1] == k) res = k;
113 r[i] = res;
114 for (j = 0; j < V; j++) {
115 for (k = 1; k <= C; k++) {
116 if (votes[j][k] == res) {
117 for (l = k; l < C; l++)
118 votes[j][l] = votes[j][l + 1];
119 votes[j][C] = 0;
120 }
121 }
122 }
123 cc --;

118 A. Implementations and Specifications

124 }
125 }
126 return r;
127 }

Listing A.17: LLBMC Specification for STV

A.5.1. Specification of Condorcet Loser Criterion

1 void condorcet_loser (unsigned int votes[V][C+1],
2 unsigned int loser) {
3 assume (0 < loser && loser <= C);
4 unsigned int i = 0, j = 0, j_prime = 0, k = 0, tmp = 0;
5 int defeat[C+1], counted [C+1];
6 unsigned int found = 0;
7 for (i = 0; i <= C; i++) {
8 defeat[i] = 0;
9 counted [i] = 0;

10 }
11

12 for (i = 0; i < V; i++) {
13 assume (votes[i][1] != 0);
14 found = 0;
15 for (j = 1; j <= C; j++) {
16 assume (0 <= votes[i][j]);
17 assume (votes[i][j] <= C);
18 for (j_prime = 1; j_prime <= C; j_prime ++) {
19 if ((votes[i][j] != 0) && (j != j_prime))
20 assume (votes[i][j]
21 != votes[i][j_prime]);
22 if ((votes[i][j] == 0) && (j <= j_prime))
23 assume (votes[i][j_prime] == 0);
24 }
25

26 if (votes[i][j] == loser) found = 1;
27 if (votes[i][j] != 0) {
28 tmp = votes[i][j];
29 defeat[tmp] += (found ? (-1) : 1);
30 counted [tmp] = 1;
31 }
32 }
33

34 for (k = 1; k <= C; k++) {

A.5. Single Transferable Vote for LLBMC 119

35 if (counted [k] == 0) {
36 if (found) defeat[k]--;
37 } else counted [k] = 0;
38 }
39 }
40

41 defeat[loser] = V + 1;
42 for (i = 1; i <= C; i++) assume (0 < defeat[i]);
43

44 unsigned int *elect = voting(votes);
45 for (i = 0; i < S; i++)
46 assert (C == S || elect[i] != loser);
47 }
48

49 int main(int argc , char *argv []) {
50 unsigned int v1[V][C+1];
51 unsigned int i = 0, j = 0;
52 for (i = 0; i < V; i++) {
53 v1[i][0] = 0;
54 for (j = 1; j <= C; j++)
55 v1[i][j] = __llbmc_nondef_unsigned_int ();
56 }
57 unsigned int cand = __llbmc_nondef_unsigned_int ();
58

59 condorcet_loser (v1 , cand);
60 return 0;
61 }

Listing A.18: LLBMC Specification of Condorcet Loser Criterion for STV

A.5.2. Specification of Condorcet Winner Criterion

1 void condorcet_winner (unsigned int votes1[V][C+1],
2 unsigned int winner) {
3 assume (0 < winner && winner <= C);
4 unsigned int i = 0, j = 0, j_prime = 0, k = 0, tmp = 0;
5 int defeat[C+1], counted [C+1];
6 unsigned int found = 0;
7 for (i = 0; i <= C; i++) {
8 defeat[i] = 0;
9 counted [i] = 0;

10 }
11

120 A. Implementations and Specifications

12 for (i = 0; i < V; i++) {
13 assume (votes1[i][1] != 0);
14 found = 0;
15 for (j = 1; j <= C; j++) {
16 assume (0 <= votes1[i][j]);
17 assume (votes1[i][j] <= C);
18 for (j_prime = 1; j_prime <= C; j_prime ++) {
19 if ((votes1[i][j] != 0) && (j != j_prime))
20 assume (votes1[i][j]
21 != votes1[i][j_prime]);
22 if ((votes1[i][j] == 0) && (j <= j_prime))
23 assume (votes1[i][j_prime] == 0);
24 }
25

26 if (votes1[i][j] == winner) found = 1;
27 if (votes1[i][j] != 0) {
28 tmp = votes1[i][j];
29 defeat[tmp] += (found ? 1 : (-1));
30 counted [tmp] = 1;
31 }
32 }
33

34 for (k = 1; k <= C; k++) {
35 if (counted [k] == 0) {
36 if (found) defeat[k]++;
37 } else counted [k] = 0;
38 }
39 }
40

41 defeat[winner] = 1;
42 for (i = 1; i <= C; i++) assume (0 < defeat[i]);
43

44 unsigned int *elect = voting(votes1);
45 int no_elects = 1;
46 int cond_winner = 0;
47 for (i = 0; i < S; i++) {
48 no_elects = no_elects && (elect[i] == 0);
49 cond_winner = cond_winner || elect[i] == winner;
50 }
51 assert (no_elects || cond_winner);
52 }
53

54 int main(int argc , char *argv []) {
55 unsigned int v1[V][C+1];

A.5. Single Transferable Vote for LLBMC 121

56 unsigned int i = 0, j = 0;
57 for (i = 0; i < V; i++) {
58 v1[i][0] = 0;
59 for (j = 1; j <= C; j++)
60 v1[i][j] = __llbmc_nondef_unsigned_int ();
61 }
62 unsigned int cand = __llbmc_nondef_unsigned_int ();
63

64 condorcet_winner (v1 , cand);
65 return 0;
66 }

Listing A.19: LLBMC Specification of Condorcet Winner Criterion for STV

References
[ADK03] Alexandr Andoni, Dumitru Daniliuc, and Sarfraz Khurshid. Evaluating the

”Small Scope Hypothesis”. Tech. rep. Cambridge, MA: MIT Laboratory for
Computer Science, 2003 (cit. on pp. 26, 29, 51).

[AK11] Fuad Aleskerov and Alexander Karpov. A New Method of the Single Trans-
ferable Vote and its Axiomatic Justification. Tech. rep. Moscow, Russia:
National Research University Higher School of Economics, Dec. 2011 (cit. on
p. 89).

[AMP09] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. “Bounded
Model Checking of Software Using SMT Solvers Instead of SAT Solvers”. In:
STTT 11.1 (2009), pp. 69–83. doi: 10.1007/s10009-008-0091-0 (cit. on
p. 90).

[Arr50] Kenneth J. Arrow. “A Difficulty in the Concept of Social Welfare”. In:
Journal of Political Economy 58.4 (1950), pp. 328–346. issn: 00223808. url:
http://www.jstor.org/stable/1828886 (cit. on p. 19).

[Arr51] Kenneth Joseph Arrow. Social Choice and Individual Values. Monographs /
Cowles Commission for Research in Economics ; 12. New York: Wiley [u.a.],
1951 (cit. on pp. iii, v, 2, 7).

[Bar+06] Mike Barnett et al. “Boogie: A Modular Reusable Verifier for Object-Oriented
Programs”. In: Formal Methods for Components and Objects. Ed. by Frank S.
Boer et al. Vol. 4111. LNCS. Springer Berlin Heidelberg, 2006, pp. 364–387.
isbn: 978-3-540-36749-9. doi: 10.1007/11804192_17 (cit. on p. 29).

[Bas14] Anna Bassi. “Voting Systems and Strategic Manipulation: An Experimental
Study”. In: Journal of Theoretical Politics (2014) (cit. on p. 89).

[BCE13] Felix Brandt, Vincent Conitzer, and Ulle Endriss. “Computational Social
Choice”. In: Multiagent Systems. Ed. by G. Weiss. MIT Press, 2013, pp. 213–
283 (cit. on pp. 5–7, 89).

[BCK11] Gilles Barthe, Juan Manuel Crespo, and César Kunz. “Relational Verification
Using Product Programs”. In: FM 2011: Formal Methods - 17th Interna-
tional Symposium on Formal Methods, Limerick, Ireland, June 20-24, 2011.
Proceedings. Ed. by Michael Butler and Wolfram Schulte. Vol. 6664. LNCS.
Springer, 2011, pp. 200–214. isbn: 978-3-642-21436-3. doi: 10.1007/978-3-
642-21437-0_17 (cit. on p. 90).

http://dx.doi.org/10.1007/s10009-008-0091-0
http://www.jstor.org/stable/1828886
http://dx.doi.org/10.1007/11804192_17
http://dx.doi.org/10.1007/978-3-642-21437-0_17
http://dx.doi.org/10.1007/978-3-642-21437-0_17

124 References

[Bec+12] Bernhard Beckert et al. “Integration of Bounded Model Checking and
Deductive Verification”. In: Formal Verification of Object-Oriented Software,
International Conference, FoVeOOS 2011, Turin, Italy, October 5-7, 2011,
Revised Selected Papers. Vol. 7421. LNCS. Springer, 2012, pp. 86–104 (cit. on
p. 90).

[Bec+14a] Bernhard Beckert et al. “Reasoning About Vote Counting Schemes Using
Light-Weight and Heavy-Weight Methods”. In: Proceedings, 8th International
Verification Workshop (VERIFY) in connection with IJCAR 2014 at FLoC
2014, July 23–24, 2014, Vienna, Austria. To appear. 2014 (cit. on p. 2).

[Bec+14b] Bernhard Beckert et al. “Verifying Voting Schemes”. In: Journal of Infor-
mation Security and Applications 19.2 (2014), pp. 115–129 (cit. on p. 90).

[BF88] Steven J. Brams and Peter C. Fishburn. “Does Approval Voting Elect the
Lowest Common Denominator?” In: PS: Political Science & Politics 21.02
(1988), pp. 277–284 (cit. on pp. 23, 90).

[BGB13] Bundesgesetzblatt 2013 1/22. Zweiundzwanzigstes Gesetz zur Änderung des
Bundeswahlgesetzes. May 2013. url: http://www.bgbl.de/banzxaver/
bgbl/text.xav?start=//*[@node_id=’251990’]&skin=pdf (cit. on
pp. iii, v, 1).

[BGS13] Bernhard Beckert, Rajeev Goré, and Carsten Schürmann. “Analysing Vote
Counting Algorithms Via Logic and its Application to the CADE Election
System”. In: Proceedings, 24th International Conference on Automated De-
duction (CADE), Lake Placid, NY, USA. Ed. by Maria Paola Bonacina.
LNCS 7898. Springer, 2013, pp. 135–144. doi: 10.1007/978-3-642-38574-
2_9 (cit. on pp. 17, 76).

[Bie+99] Armin Biere et al. “Symbolic Model Checking without BDDs”. In: Tools and
Algorithms for the Construction and Analysis of Systems. Ed. by W.Rance
Cleaveland. Vol. 1579. LNCS 1597. Springer Berlin Heidelberg, 1999, pp. 193–
207. isbn: 978-3-540-65703-3. doi: 10.1007/3-540-49059-0_14 (cit. on
pp. 26, 28).

[BLS05] Mike Barnett, K Rustan M Leino, and Wolfram Schulte. “The Spec#
Programming System: An Overview”. In: Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices. Springer, 2005, pp. 49–69 (cit. on
p. 31).

[BTD12] Bundestagsdrucksache 17/11819. Entwurf eines Zweiundzwanzigsten Geset-
zes zur Änderung des Bundeswahlgesetzes. Dec. 2012. url: http://dipbt.
bundestag.de/dip21/btd/17/118/1711819.pdf (cit. on p. 1).

[CM05] Marco Cadoli and Toni Mancini. “Using a Theorem Prover for Reasoning on
Constraint Problems”. In: AI* IA 2005: Advances in Artificial Intelligence.
Springer, 2005, pp. 38–49 (cit. on p. 90).

http://www.bgbl.de/banzxaver/bgbl/text.xav?start=//*[@node_id='251990']&skin=pdf
http://www.bgbl.de/banzxaver/bgbl/text.xav?start=//*[@node_id='251990']&skin=pdf
http://dx.doi.org/10.1007/978-3-642-38574-2_9
http://dx.doi.org/10.1007/978-3-642-38574-2_9
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dipbt.bundestag.de/dip21/btd/17/118/1711819.pdf
http://dipbt.bundestag.de/dip21/btd/17/118/1711819.pdf

References 125

[Coc12] Dermot Cochran. “Formal Specification and Analysis of Danish and Irish
Ballot Counting Algorithms”. PhD thesis. IT-Universitetet i København, IT
University of Copenhagen, 2012 (cit. on p. 89).

[Coh+09] Ernie Cohen et al. “VCC: A Practical System for Verifying Concurrent
C”. In: Theorem Proving in Higher Order Logics. Ed. by Stefan Berghofer
et al. Vol. 5674. LNCS. Springer Berlin Heidelberg, 2009, pp. 23–42. isbn:
978-3-642-03358-2. doi: 10.1007/978-3-642-03359-9_2 (cit. on pp. 29,
32, 33).

[Coh+11] Ernie Cohen et al. Verifying C Programs: A VCC Tutorial. Tech. rep. MSR
Redmond, EMIC Aachen, 2011 (cit. on p. 32).

[Con85] Marquis de Condorcet. Essay on the Application of Analysis to the Probability
of Majority Decisions. Tech. rep. 1785 (cit. on p. 21).

[Cra+96] James M. Crawford et al. “Symmetry-Breaking Predicates for Search Prob-
lems”. In: Proceedings of the Fifth International Conference on Principles
of Knowledge Representation and Reasoning (KR’96), Cambridge, Mas-
sachusetts, USA, November 5-8, 1996. Ed. by Luigia Carlucci Aiello, Jon
Doyle, and Stuart C. Shapiro. Morgan Kaufmann, 1996, pp. 148–159. isbn:
1-55860-421-9 (cit. on p. 79).

[CS12] Vincent Conitzer and Tuomas Sandholm. “Common Voting Rules as Maxi-
mum Likelihood Estimators”. In: CoRR (2012). url: http://arxiv.org/
abs/1207.1368 (cit. on p. 3).

[Dar+04] Paul T. Darga et al. “Exploiting Structure in Symmetry Detection for CNF”.
In: Proceedings of the 41st Annual Design Automation Conference. DAC ’04.
San Diego, CA, USA: ACM, 2004, pp. 530–534. isbn: 1-58113-828-8. doi:
10.1145/996566.996712 (cit. on p. 90).

[DB07] Leonardo De Moura and Nikolaj Bjørner. “Efficient E-matching for SMT
Solvers”. In: Automated Deduction–CADE-21. Springer, 2007, pp. 183–198
(cit. on p. 31).

[DB11] Leonardo De Moura and Nikolaj Bjørner. “Satisfiability Modulo Theories:
Introduction and Applications”. In: Communications of the ACM 54.9 (2011),
pp. 69–77 (cit. on p. 27).

[DCJ06] Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. “Modular Verifica-
tion of Code with SAT”. In: Proceedings of the 2006 International Symposium
on Software Testing and Analysis. ACM. 2006, pp. 109–120 (cit. on p. 90).

[DL05] Robert DeLine and K. Rustan M. Leino. BoogiePL: A Typed Procedural Lan-
guage for Checking Object-Oriented Programs. Tech. rep. Microsoft Research,
Mar. 2005 (cit. on p. 29).

http://dx.doi.org/10.1007/978-3-642-03359-9_2
http://arxiv.org/abs/1207.1368
http://arxiv.org/abs/1207.1368
http://dx.doi.org/10.1145/996566.996712

126 References

[Dre72] John Dreijmanis. “Maurice Duverger, Party Politics and Pressure Groups:
A Comparative Introduction, trans. David Wagoner. New York: Thomas Y.
Crowell Company [Don Mills: Fitzhenry & Whiteside, Ltd..], 1972, pp. vii,
168”. In: Canadian Journal of Political Science 5 (03 Sept. 1972), pp. 459–
460. issn: 1744-9324. doi: 10.1017/S0008423900034806 (cit. on p. 11).

[Dut00] Bhaskar Dutta. “Amartya Sen and the Mathematics of Collective Choice”.
In: Resonance 5.6 (2000), pp. 97–103. issn: 0971-8044. doi: 10.1007/
BF02833861 (cit. on p. 7).

[DYJ08] Greg Dennis, Kuat Yessenov, and Daniel Jackson. “Bounded Verification of
Voting Software”. In: VSTTE. Ed. by Natarajan Shankar and Jim Woodcock.
Vol. 5295. Lecture Notes in Computer Science. Springer, 2008, pp. 130–145.
isbn: 978-3-540-87872-8 (cit. on pp. 3, 90).

[EFS10] Edith Elkind, Piotr Faliszewski, and Arkadii M. Slinko. “On The Role of
Distances in Defining Voting Rules”. In: AAMAS. Ed. by Wiebe van der
Hoek et al. IFAAMAS, 2010, pp. 375–382. isbn: 978-0-9826571-1-9. url:
http://dblp.uni-trier.de/db/conf/atal/aamas2010.html (cit. on
pp. 3, 90).

[ES03] Niklas Eén and Niklas Sörensson. “An Extensible SAT-Solver”. In: SAT. Ed.
by Enrico Giunchiglia and Armando Tacchella. Vol. 2919. LNCS. Springer,
2003, pp. 502–518. isbn: 3-540-20851-8. doi: 10.1007/978-3-540-24605-
3_37 (cit. on p. 34).

[FB83] Peter C. Fishburn and Steven J. Brams. “Paradoxes of Preferential Voting”.
In: Mathematics Magazine (1983), pp. 207–214 (cit. on p. 5).

[Fel12a] Dan S. Felsenthal. Electoral Systems : Paradoxes, Assumptions, and Pro-
cedures. Ed. by Moshé Machover. Studies in Choice and Welfare. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012. isbn: 978-3-642-20441-8. doi:
10.1007/978-3-642-20441-8.

[Fel12b] Dan S. Felsenthal. “Review of Paradoxes Afflicting Procedures for Electing a
Single Candidate”. In: Electoral Systems. Ed. by Dan S. Felsenthal and Moshé
Machover. Studies in Choice and Welfare. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 19–91. isbn: 978-3-642-20440-1. doi: 10.1007/978-3-
642-20441-8_3 (cit. on pp. 5, 17, 24, 61, 72).

[Gal13] Michael Gallagher. Monotonicity and Non-Monotonicity at PR-STV Elec-
tions. 2013 (cit. on pp. 20, 90).

[GD07] Vijay Ganesh and David L. Dill. “A Decision Procedure for Bit-Vectors and
Arrays”. In: CAV. Ed. by Werner Damm and Holger Hermanns. Vol. 4590.
LNCS. Springer, 2007, pp. 519–531. isbn: 978-3-540-73367-6. doi: 10.1007/
978-3-540-73368-3_52 (cit. on p. 34).

http://dx.doi.org/10.1017/S0008423900034806
http://dx.doi.org/10.1007/BF02833861
http://dx.doi.org/10.1007/BF02833861
http://dblp.uni-trier.de/db/conf/atal/aamas2010.html
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-642-20441-8
http://dx.doi.org/10.1007/978-3-642-20441-8_3
http://dx.doi.org/10.1007/978-3-642-20441-8_3
http://dx.doi.org/10.1007/978-3-540-73368-3_52
http://dx.doi.org/10.1007/978-3-540-73368-3_52

References 127

[GL94] O. Grumberg and D.E. Long. “Model Checking and Modular Verification”.
In: ACM Transactions on Programming Languages and Systems 16.3 (May
1994), pp. 843–871. url: citeseer.ist.psu.edu/grumberg91model.html
(cit. on p. 90).

[HN09] Yuusuke Hashimoto and Shin Nakajima. “Modular Checking of C Programs
Using SAT-Based Bounded Model Checker”. In: APSEC. Ed. by Shahida
Sulaiman and Noor Maizura Mohamad Noor. IEEE Computer Society, 2009,
pp. 515–522. isbn: 978-0-7695-3909-6. url: http://dblp.uni-trier.de/
db/conf/apsec/apsec2009.html#HashimotoN09 (cit. on p. 90).

[Jac06] Daniel Jackson. Software Abstractions - Logic, Language, and Analysis. MIT
Press, 2006. isbn: 978-0-262-10114-1. url: http://mitpress.mit.edu/
catalog/item/default.asp?ttype=2&tid=10928 (cit. on p. 79).

[JD96] Daniel Jackson and Craig A Damon. “Elements of Style: Analyzing a Software
Design Feature with a Counterexample Detector”. In: Software Engineering,
IEEE Transactions on 22.7 (1996), pp. 484–495 (cit. on p. 28).

[LA04] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation”. In: Proceedings of the 2004
International Symposium on Code Generation and Optimization (CGO’04).
Palo Alto, California, Mar. 2004 (cit. on p. 34).

[Lij87] Arend Lijphart. “The Demise of the Last Westminster System? Comments
on the Report of New Zealand’s Royal Commission on the Electoral System”.
In: Electoral Studies 6.2 (1987), pp. 97–103. issn: 0261-3794. doi: 10.1016/
0261-3794(87)90016-3 (cit. on p. 3).

[LM10] K Rustan M Leino and Michał Moskal. “Usable Auto-Active Verification”.
In: Workshop on Usable Verification (Nov. 2010) (cit. on pp. 26, 27).

[LN95] Jonathan Levin and Barry Nalebuff. “An Introduction to Vote-Counting
Schemes”. In: The Journal of Economic Perspectives (1995), pp. 3–26 (cit. on
pp. 9, 10).

[MB08] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In:
TACAS’08. 2008, pp. 337–340 (cit. on pp. 29, 31).

[MC05] Toni Mancini and Marco Cadoli. “Detecting and Breaking Symmetries by
Reasoning on Problem Specifications”. In: Abstraction, Reformulation and
Approximation. Springer, 2005, pp. 165–181 (cit. on p. 90).

[Meu14] Thomas David Meumann. “Complexity in Electoral Systems: Proving Cor-
rectness Using HOL4”. Bachelor Thesis (Honours). Australian National
University, Aug. 2014 (cit. on pp. 2, 90).

citeseer.ist.psu.edu/grumberg91model.html
http://dblp.uni-trier.de/db/conf/apsec/apsec2009.html#HashimotoN09
http://dblp.uni-trier.de/db/conf/apsec/apsec2009.html#HashimotoN09
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10928
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10928
http://dx.doi.org/10.1016/0261-3794(87)90016-3
http://dx.doi.org/10.1016/0261-3794(87)90016-3

128 References

[MFS12] Florian Merz, Stephan Falke, and Carsten Sinz. “LLBMC: Bounded Model
Checking of C and C++ Programs Using a Compiler IR”. In: Verified Soft-
ware: Theories, Tools, Experiments - 4th International Conference, VSTTE
2012, Philadelphia, PA, USA, January 28-29, 2012. Proceedings. Ed. by Ra-
jeev Joshi, Peter Müller, and Andreas Podelski. Vol. 7152. LNCS. Springer,
2012, pp. 146–161. isbn: 978-3-642-27704-7. doi: 10.1007/978-3-642-
27705-4_12 (cit. on pp. 33, 60).

[Mil07] Nicholas R. Miller. “The Butterfly Effect Under STV”. In: Electoral Studies
26.2 (2007), pp. 503–506. issn: 0261-3794. doi: 10.1016/j.electstud.
2006.10.016 (cit. on p. 5).

[Mil72] Robin Milner. Logic for Computable Functions: Description of a Machine
Implementation. Tech. rep. DTIC Document, 1972 (cit. on p. 26).

[Nur12] Hannu Nurmi. “On the Relevance of Theoretical Results to Voting System
Choice”. In: Electoral Systems. Ed. by Moshé Machover. Studies in Choice
and Welfare. Berlin, Heidelberg: Springer, 2012, pp. 255–274. isbn: 978-3-
642-20441-8. doi: 10.1007/978-3-642-20441-8 (cit. on pp. 19, 89).

[Nur96] Hannu Nurmi. “It’s Not Just the Lack of Monotonicity”. In: Representation
34.1 (1996), pp. 48–52. doi: 10.1080/00344899608522986 (cit. on p. 5).

[Pac12] Eric Pacuit. “Voting Methods”. In: The Stanford Encyclopedia of Philosophy.
Ed. by Edward N. Zalta. Winter 2012. 2012 (cit. on p. 90).

[Pnu+02] Amir Pnueli et al. “The Small Model Property: How Small Can It Be?” In:
Information and Computation 178.1 (2002), pp. 279–293 (cit. on p. 29).

[RG98] Michel Regenwetter and Bernard Grofman. “Approval Voting, Borda Win-
ners, and Condorcet Winners: Evidence from Seven Elections”. In: Manage-
ment Science 44.4 (1998), pp. 520–533 (cit. on pp. 23, 90).

[Sen70] Amartya Kumar Sen. “Collective Rationality”. In: Collective Choice and
Social Welfare. Mathematical Economics Texts ; 5. San Francisco [u.a.]:
Holden-Day, 1970. Chap. 3, pp. 33–46. isbn: 0-8162-7765-6 (cit. on p. 7).

[SFM10] Carsten Sinz, Stephan Falke, and Florian Merz. “A Precise Memory Model
for Low-Level Bounded Model Checking”. In: Proceedings of the 5th Inter-
national Conference on Systems Software Verification. USENIX Association.
2010 (cit. on p. 34).

[Shl07] Ilya Shlyakhter. “Generating Effective Symmetry-Breaking Predicates for
Search Problems”. In: Discrete Applied Mathematics. {SAT} 2001, the Fourth
International Symposium on the Theory and Applications of Satisfiability
Testing 155.12 (2007), pp. 1539–1548. issn: 0166-218X. doi: 10.1016/j.
dam.2005.10.018 (cit. on p. 90).

http://dx.doi.org/10.1007/978-3-642-27705-4_12
http://dx.doi.org/10.1007/978-3-642-27705-4_12
http://dx.doi.org/10.1016/j.electstud.2006.10.016
http://dx.doi.org/10.1016/j.electstud.2006.10.016
http://dx.doi.org/10.1007/978-3-642-20441-8
http://dx.doi.org/10.1080/00344899608522986
http://dx.doi.org/10.1016/j.dam.2005.10.018
http://dx.doi.org/10.1016/j.dam.2005.10.018

References 129

[TBL10] Edd Turner, Michael J. Butler, and Michael Leuschel. “A Refinement-Based
Correctness Proof of Symmetry Reduced Model Checking”. In: Abstract
State Machines, Alloy, B and Z, Second International Conference, ABZ
2010, Orford, QC, Canada, February 22-25, 2010. Proceedings. Ed. by Marc
Frappier et al. Vol. 5977. LNCS. Springer, 2010, pp. 231–244. isbn: 978-3-
642-11810-4. doi: 10.1007/978-3-642-11811-1_18 (cit. on p. 79).

[Tur+07] Edd Turner et al. “Symmetry Reduced Model Checking for B”. In: First
Joint IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering,
TASE 2007, June 5-8, 2007, Shanghai, China. IEEE Computer Society, 2007,
pp. 25–34. doi: 10.1109/TASE.2007.50 (cit. on p. 79).

[Uni13] Economist Intelligence Unit. Democracy Index 2012: Democracy is at a
Standstill. Economist Intelligence Unit Limited, 2013 (cit. on p. 1).

[Woo97] Douglas R. Woodall. “Monotonicity of Single-Seat Preferential Election
Rules”. In: Discrete Applied Mathematics 77.1 (1997), pp. 81–98. url: http:
//dblp.uni-trier.de/db/journals/dam/dam77.html#Woodall97 (cit.
on p. 19).

[YS97] Hongji Yang and Yong Sun. “1st Irish Workshop on Formal Methods”. In:
Proceedings of the 1st Irish Workshop on Formal Methods. Vol. 3. 1997, p. 4
(cit. on p. 89).

http://dx.doi.org/10.1007/978-3-642-11811-1_18
http://dx.doi.org/10.1109/TASE.2007.50
http://dblp.uni-trier.de/db/journals/dam/dam77.html#Woodall97
http://dblp.uni-trier.de/db/journals/dam/dam77.html#Woodall97

	Introduction
	Research Objectives
	Correctness of Voting Schemes
	Outline

	Voting Schemes and Correctness Properties
	A General Definition of Voting Schemes
	Arrow's Impossibility Theorem and its Implications
	Selected Voting Schemes
	Plurality Voting
	Approval Voting
	Instant-Runoff Voting
	Single Transferable Vote

	Selected Voting Scheme Properties
	Monotonicity Criterion
	Condorcet Winner and Loser Criteria

	Techniques and Tools for Verification
	Selected Verification Techniques
	Auto-Active Deductive Program Verification
	Software Bounded Model Checking

	Selected Verification Tools
	Deductive Verification with VCC
	Bounded Verification with LLBMC

	Deductive Verification of Plurality Voting with VCC
	FPTP Implementation and Specification of Monotonicity Criterion
	Full Verification with Auxiliary Specifications
	Simplifying the Specification with Loop Unrolling

	Bounded Verification with LLBMC and Counterexample Generation
	General Setup and Encoding
	Plurality Voting
	Approval Voting
	Instant-Runoff Voting
	Single Transferable Vote
	Summary
	Generation of Counterexamples
	Instant-Runoff Voting
	Single Transferable Vote

	Improving Performance of Bounded Verification by Symmetry Reduction
	Plurality Voting with Anonymity
	Plurality Voting with Anonymity and Neutrality
	Approval Voting with Anonymity and Neutrality

	Conclusion
	Related Work
	Summary and Results
	Outlook and Future Work

	Implementations and Specifications
	Plurality Voting for VCC
	Full Specification of Monotonicity for Plurality Voting
	Lemma for Monotonicity Criterion

	Plurality Voting for LLBMC
	General Plurality Voting
	FPTP with Symmetry Breaking Predicates for Anonymity
	FPTP with Predicates for Anonymity and Neutrality

	Approval Voting for LLBMC
	General Approval Voting
	Approval Voting with Symmetry Breaking Predicates

	Instant-Runoff Voting for LLBMC
	Implementation of Deterministic IRV
	Implementation of Exhaustive IRV
	Specification of Condorcet Loser Criterion for IRV
	Specification of Condorcet Winner Criterion for IRV

	Single Transferable Vote for LLBMC
	Specification of Condorcet Loser Criterion
	Specification of Condorcet Winner Criterion

	References

