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Abstract
We study the problem of automatically analyzing the worst-case
resource usage of procedures with several arguments. Existing au-
tomatic analyses based on amortization, or sized types bound the
resource usage or result size of such a procedure by a sum of unary
functions of the sizes of the arguments.

In this paper we generalize this to arbitrary multivariate polyno-
mial functions thus allowing bounds of the form mn which had to
be grossly overestimated by m2 + n2 before. Our framework even
encompasses bounds like

∑
i,j≤nmimj where themi are the sizes

of the entries of a list of length n.
This allows us for the first time to derive useful resource bounds

for operations on matrices that are represented as lists of lists and
to considerably improve bounds on other super-linear operations
on lists such as longest common subsequence and removal of du-
plicates from lists of lists. Furthermore, resource bounds are now
closed under composition which improves accuracy of the analysis
of composed programs when some or all of the components exhibit
super-linear resource or size behavior.

The analysis is based on a novel multivariate amortized resource
analysis. We present it in form of a type system for a simple first-
order functional language with lists and trees, prove soundness, and
describe automatic type inference based on linear programming.

We have experimentally validated the automatic analysis on a
wide range of examples from functional programming with lists
and trees. The obtained bounds were compared with actual resource
consumption. All bounds were asymptotically tight, and the con-
stants were close or even identical to the optimal ones.

Categories and Subject Descriptors F.3.2 [Logics And Meanings
Of Programs]: Semantics of Programming Languages—Program
Analysis; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

General Terms Performance, Languages, Theory, Reliability

Keywords Functional Programming, Static Analysis, Amortized
Analysis, Resource Consumption, Quantitative Analysis

1. Introduction
A primary feature of a computer program is its quantitative perfor-
mance characteristics: the amount of resources like time, memory
and power the program needs to perform its task.
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Ideally, it should be possible for an experienced programmer
to extrapolate from the source code of a well-written program to
its asymptotic worst-case behavior. But it is often insufficient to
determine the asymptotic behavior of program only. A conservative
estimation of the resource consumption for a specific input or a
comparison of two programs with the same asymptotic behavior
require instead concrete upper bounds for specific hardware. That
is to say, closed functions in the sizes of the program’s inputs that
bound the number of clock cycles or memory cells used by the
program for inputs of these sizes on a given system.

Concrete worst-case bounds are particularly useful in the devel-
opment of embedded systems and hard real-time systems. In the
former, one wants to use hardware that is just good enough to ac-
complish a task in order to produce a large number of units at lowest
possible cost. In the latter, one needs to guarantee specific worst-
case running times to ensure the safety of the system.

The manual determination of such bounds is very cumbersome.
Cf., e.g., the careful analyses carried out by Knuth in The Art of
Computer Programming where he pays close attention to the con-
crete and best possible values of constants for the MIX architecture.
Not everyone commands the mathematical ease of Knuth and even
he would run out of steam if he had to do these calculations over
and over again while going through the debugging loops of pro-
gram development. In short, derivation of precise bounds by hand
appears to be unfeasible in practice in all but the simplest cases.

As a result, automatic methods for static resource analysis are
highly desirable and have been the subject of extensive research.
On the one hand there is the large field of WCET (worst-case
execution time) analysis [27] that is focused on (yet not limited
to) the run-time analysis of sequential code without loops taking
into account low-level features like hardware caches and instruction
pipelines. On the other hand there is an active research community
that employs type systems and abstract interpretation to deal with
the analysis of loops, recursion and data structures [15, 3, 24].1

In this paper we continue our work [16] on the resource analysis
of programs with recursion and inductive data structures. Our ap-
proach is as follows. 1. We consider Resource Aware ML (RAML), a
first-order fragment of OCAML that features integers, lists, binary
trees, and recursion. 2. We define a big-step operational seman-
tics that formalizes the actual resource consumptions of programs.
It is parametrized with a resource metric that can be directly re-
lated to the compiled assembly code for a specific system architec-
ture [23].2 3. We describe an elaborated resource-parametric type
system whose type judgments establish concrete worst-case bounds
in terms of closed, easily understood formulas. The type system al-
lows for an efficient and completely automatic inference algorithm
that is based on linear programming. 4. We prove the non-trivial
soundness of the derived resource bounds with respect to the big-

1 See §8 for a detailed overview of the state of the art.
2 To obtain clock-cycle bounds for atomic steps one has to employ WCET
tools [23].
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step operational semantics. 5. We verify the practicability of our
approach with a publically available implementation and a repro-
ducible experimental evaluation.

As pioneered by Hofmann and Jost [18] to analyze the heap-
space consumption of first-order functional programs, our type sys-
tem relies on the potential-method of amortized analysis to take into
account the interactions between different parts of a computation.
This technique has been successfully applied to object-oriented
programs [19, 20], to generic resource metrics [23, 7], to polymor-
phic and higher-order programs [24], and to Java-like bytecode by
means of separation logic [4]. The main limitation shared by these
analysis systems is their restriction to linear resource bounds which
can be efficiently reduced to solving linear constraints.

A recently discovered technique [16, 17] yields an automatic
amortized analysis for polynomial bounds while still relying on
linear constraint solving only. The resulting extension of the linear
system [18, 23] efficiently computes resource bounds for first-
order functional programs that are sums

∑
pi(ni) of univariate

polynomials pi. For instance, it automatically infers evaluation-step
bounds for the sorting algorithms quick sort and insertion sort that
exactly match the measured worst-case behavior of the functions
[17]. The computation of these bounds takes less then a second.

This analysis system for polynomial bounds has, however, two
drawbacks that hamper the automatic computation of bounds for
larger programs. First, many functions with multiple arguments that
appear in practice have multivariate cost characteristics like m · n.
Secondly, if data from different sources is interlinked in a program
then multivariate bounds like (m + n)2 arise even if all functions
have a univariate resource behavior. In these cases the analysis fails,
or the bounds are hugely over-approximated by 3m2 + 3n2.

To overcome these drawbacks, this paper presents an auto-
matic type-based amortized analysis for multivariate polynomial
resource bounds. We faced three main challenges in the develop-
ment of the analysis.

1. The identification of multivariate polynomials that accurately
describe the resource cost of typical examples. It is necessary
that they are closed under natural operations to be suitable for
local typing rules. Moreover, they must handle an unbounded
number of arguments to tightly cope with nested data structures.

2. The automatic relation of sizes of data structures in function ar-
guments and results, even if data that is scattered over different
locations (like n1 + n2 ≤ n in the partitioning of quick sort).

3. The smooth integration of the inference of size relations and
resource bounds to deal with the interactions of different func-
tions while keeping the analysis technically feasible in practice.

To address challenge one we define multivariate resource polyno-
mials that are a generalization of the resource polynomials that we
used earlier [16]. To address challenges two and three we introduce
a multivariate potential-based amortized analysis (§5 and §6). The
local type rules emit only simple linear constraints and are remark-
ably modest considering the variety of relations between different
parts of the data that are taken into account.

Our experiments with a prototype implementation3 (see §7)
show that our system automatically infers tight multivariate bounds
for complex programs that involve nested data structures such as
trees of lists. Additionally, it can deal with the same wide range of
linear and univariate programs as the previous systems.

As representative examples we present in §7 the analyses of the
dynamic programming algorithm for the length of the longest com-
mon subsequence of two lists and an implementation of insertion
sort that lexicographically sorts a list of lists. Note that the latter

3 See http://raml.tcs.ifi.lmu.de for a web interface, example pro-
grams, and the source code.

example exhibits a worst-case running time of the form O(n2m)
where n is the length of the outer list and m is the maximal length
of the inner lists. The reason is that each of theO(n2) comparisons
performed by insertion sort needs time linear in m.

We also implemented a more involved case study on matrix op-
erations were matrices are lists of lists of integers. It demonstrates
interesting capabilities like the precise automatic tracking of data
sizes when transposing matrices or the automatic analyses of com-
plex functions like the multiplication of lists of matrices of different
(fitting) dimensions. Details are available on the web.

The main contributions we make in this paper are as follows.

1. The definition of multivariate resource polynomials that gener-
alize univariate resource polynomials [16]. (in §4)

2. The introduction of type annotation that correspond to global
polynomial potential functions for amortized analysis which
depend on the sizes of several parts of the input. (in §5)

3. The presentation of local type rules that modify type annota-
tions for global potential functions. (in §6)

4. The implementation of an efficient type inference algorithm that
relies on linear constraint solving only.

2. Background and Informal Presentation
Amortized Analysis Amortized analysis with the potential
method has been introduced [26] to manually analyze the efficiency
of data structures. The key idea is to incorporate a non-negative po-
tential into the analysis that can be used to pay (costly) operations.

To apply the potential method to statically analyze a program,
one has to determine a mapping from machine states to potentials
for every program point. Then one has to show that for every pos-
sible evaluation, the potential at a program point suffices to cover
the cost of the next transition and the potential at the succeeding
program point. The initial potential is then an upper bound on the
resource consumption of the program.

Linear Potential One way to achieve such an analysis is to use
linear potential functions [18]. Inductive data structures are stati-
cally annotated with a positive rational numbers q to define non-
negative potentials Φ(n) = q · n as a function of the size n of
the data. Then a sound albeit incomplete type-based analysis of the
program text statically verifies that the potential is sufficient to pay
for all operations that are performed on this data structure during
any possible evaluation of the program.

The analysis is best explained by example. Consider the func-
tion filter:(int, L(int)) → L(int) that removes the multiples of a
given integer from a list of integers.

filter(p,l) = match l with | nil -> nil
| (x::xs) -> let xs’ = filter(p,xs) in

if x mod p == 0 then xs’ else x::xs’

Assume that we need two memory cells to create a new list cell.
Then the heap-space usage of an evaluation of filter(p,`) is at most
2|`|. To infer an upper bound on the heap-space usage we enrich
the type of filter with a priori unknown potential annotations4

q(0,i), pi ∈ Q+
0 .

filter:((int, L(int)), (q(0,0), q(0,1)))→ (L(int), (p0, p1))

The intuitive meaning of the resulting type is as follows: to
evaluate filter(p,`) one needs q(0,1) memory cells per element
in the list ` and q(0,0) additional memory cells. After the eval-
uation there are p0 memory cells and p1 cells per element of
the returned list left. We say that the pair (p,`) has potential

4 We use the naming scheme of the unknowns that arises from the more
general method introduced in this paper.
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Φ((p, `), (q(0,0), q(0,1))) = q(0,0) + q(0,1) · |`| and that `′ =
filter(p, `) has potential Φ(`′, (p0, p1)) = p0 +p1 · |`′|. A valid po-
tential annotation would be for instance q(0,0) = p0 = p1 = 0 and
q(0,1) = 2. Another valid annotation would be q(0,0) = p0 = 0,
p1 = 2, and q(0,1) = 4. It can be used to type the inner call of filter
in an expression like filter(a,filter(b,`)).

To infer the potential annotations one can use a standard type
inference in which simple linear constraints are collected as each
type rule is applied. For the heap-space consumption of filter the
constraints would state that q(0,0) ≥ p0 and q(0,1) ≥ 2 + p1.

Univariate Polynomials An automatic amortized analysis can be
also used to derive potential functions of the form

∑
i=0,...,k qi

(
n
i

)
with qi ≥ 0 while still relying on solving linear inequalities
only [16]. These potential functions are attached to inductive data
structures via type annotations of the form ~q = (q0, . . . , qk) with
qi ∈ Q+

0 . For instance, the typing `:(L(int), (4, 3, 2, 1)), defines
the potential Φ(`, (4, 3, 2, 1)) = 4 + 3|`|+ 2

(|`|
2

)
+ 1
(|`|

3

)
.

The use of the binomial coefficients rather than powers
of variables has several advantages. In particular, the identity∑

i=0,...,k qi
(
n+1
i

)
=
∑

i=0,...,k−1 qi+1

(
n
i

)
+
∑

i=0,...,k qi
(
n
i

)
gives rise to a local typing rule for list match which allows to type
naturally both, recursive calls and other calls to subordinate func-
tions in branches of a pattern match.

This identity forms the mathematical basis of the additive shift
C of a type annotation which is defined by C(q0, . . . , qk) =
(q0 + q1, . . . , qk−1 + qk, qk). For example, it appears in the typing
tail:(L(int), ~q) → (L(int),C(~q)) of the function tail that removes
the first element from a list. The potential resulting from the con-
traction xs:(L(int),C(~q)) of a list (x::xs):(L(int), ~q), usually in a
pattern match, suffices to pay for three common purposes: (i) to
pay the constant costs q1 after and before the recursive calls, (ii) to
fund, by (q2, . . . , qn), calls to auxiliary functions, and (iii) to pay,
by (q0, . . . , qn), for the recursive calls.

To see how the polynomial potential annotations are used, con-
sider the function eratos:L(int)→L(int) that implements the sieve
of Eratosthenes. It successively calls the function filter to delete
multiples of the first element from the input list. If eratos is called
with a list of the form [2, 3, . . . , n] then it computes the list of
primes p with 2 ≤ p ≤ n.

eratos l = match l with | nil -> nil
| (x::xs) -> x::eratos(filter(x,xs))

Note that it is possible in our system to implement the function filter
with a destructive pattern match (just replace match with matchD).
That would result in a filter function that does not consume heap-
cells and in a linear heap-space consumption of eratos. But to illus-
trate the use of quadratic potential we use the filter function with
linear heap-space consumption from the first example.5 In an eval-
uation of eratos(`) the function filter is called once for every sublist
of the input list ` in the worst case. Then the calls of filter cause
a worst-case heap-space consumption of 2

(|`|
2

)
. This is for exam-

ple the case if ` is a list of pairwise distinct primes. Additionally,
there is the creation of a new list element for every recursive call
of eratos. Thus, the total worst-case heap-space consumption of the
function is 2n+ 2

(
n
2

)
if n is the size of the input list.

To bound the heap-space consumption of eratos, our analysis
system automatically computes the following type.

eratos:(L(int), (0, 2, 2))→ (L(int), (0, 0, 0))

Since the typing assigns the initial potential 2n+2
(
n
2

)
to a function

argument of size n, the analysis computes a tight heap-space bound

5 It is just more convenient to argue about heap space than to argue about
evaluation steps.

for eratos. In the pattern match, the additive shift assigns the type
(L(int), (2, 4, 2)) to the variable xs. The constant potential 2 is then
used to pay for the cons operation (i). The non-constant potential
xs:(L(int), (0, 4, 2)) is shared between the two occurrences of xs
in the following expression by using xs:(L(int), (0, 2, 0)) to pay
the cost of filter(xs) (ii) and by using xs:(L(int)(0, 2, 2) to pay for
the recursive call of eratos (iii).

To infer the typing, we start with an unknown potential annota-
tion as in the linear case.

eratos:(L(int), (q0, q1, q2))→ (L(int), (p0, p1, p2))

The syntax-directed type analysis then computes linear inequalities
which state that q0 ≥ p0, q1 ≥ 2 + p1, and q2 ≥ 2 + p2.

This analysis method works for many functions that admit a
worst-case resource consumption that can be expressed by sums
of univariate polynomials like n2 + m2. However, it often fails
to compute types for functions whose resource consumption is
bounded by a mixed term like n2·m. The reason is that the potential
is attached to a single data structure and does not take into account
relations between different data structures.

Multivariate Bounds This paper extends type-based amortized
analysis to compute mixed resource bounds like 2n ·

(
m
2

)
. To this

end, we introduce a global polynomial potential annotation that can
express a variety of relations between different parts of the input. To
give a flavor of the basic ideas we informally introduce this global
potential in this section for pairs of integer lists.

The potential of a single integer list can be expressed as a
vector (q0, q1, . . . , qk) that defines a potential-function of the form∑k

i=0 qi
(
n
i

)
. To represent mixed terms of degree ≤ k for a pair of

integer lists we use a triangular matrix Q = (q(i,j))0≤i+j≤k. Then
Q defines a potential-function of the form

∑
0≤i+j≤k q(i,j)

(
n
i

)(
m
j

)
where m and n are the lengths of the two lists.

This definition has the same advantages as the univariate version
of the system. Particularly, we can still use the additive shift to as-
sign potential to sublists. To generalize the additive shift of the uni-
variate system, we use the identity

∑
0≤i+j≤k q(i,j)

(
n+1
i

)(
m
j

)
=∑

0≤i+j≤k−1 q(i+1,j)

(
n
i

)(
m
j

)
+
∑

0≤i+j≤k q(i,j)

(
n
i

)(
m
j

)
. It is re-

flected by two additive shifts C1(Q) = (q(i,j) + q(i+1,j))0≤i+j≤k

and C2(Q) = (q(i,j) + q(i,j+1))0≤i+j≤k where q(i,j) : = 0 if i +
j > k. The shift operations can be used like in the univariate case.
For example, we derive the typing tail1: ((L(int), L(int)), Q) →
((L(int), L(int)),C1(Q)) for the function tail1(xs,ys)=(tail xs,ys).

To see how the mixed potential is used, consider the function
dyade that computes the dyadic product of two lists.

mult(x,l) = match l with | nil -> nil
| (y::ys) -> x*y::mult(x,ys)

dyade(l,ys) = match l with | nil -> nil
| (x::xs) -> (mult(x,ys))::dyade(xs,ys)

Similar to previous examples, mult consumes 2n heap cells if n is
the length of input. This exact bound is represented by the typing

mult: ((int, L(int)), (0, 2, 0))→ (L(int), (0, 0, 0))

that states that the potential is 0 + 2n+ 0
(
n
2

)
before and 0 after the

evaluation of mult(x,`) if ` is a list of length n.
The function dyade consumes 2n + 2nm heap cells if n is the

length of first argument andm is the length of the second argument.
This is why the following typing represents a tight heap-space
bound for the function.

dyade: ((L(int), L(int)),

0 0 0
2 2
0

 )→ (L(int, int), 0)
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To verify this typing of dyade, the additive shift C1 is used in the
pattern matching. This results in the potential

(xs,ys): ((L(int), L(int)),

2 2 0
2 2
0

 )

that is used as in the function eratos: the constant potential 2
is used to pay for the cons operation (i), the linear potential
ys:(L(int), (0, 2, 0)) is used to pay the cost of mult(ys) (ii), the
rest of the potential is used to pay for the recursive call (iii).

Multivariate potential is also needed to assign a super-linear po-
tential to the result of a function like append. This is, for exam-
ple, needed to type an expression like eratos(append(`1,`2)). Here,
append would have the type

append: ((L(int), L(int)),

0 2 2
4 2
2

 )→ (L(int), (0, 2, 2)).

The correctness of the bound follows from the convolution formula(
n+m

2

)
=
(
n
2

)
+
(
m
2

)
+nm and from the fact that append consumes

2n resources if n is the length of the first argument. The respective
initial potential 4n+ 2m+ 2(

(
n
2

)
+
(
m
2

)
+mn) furnishes a tight

bound on the worst-case heap-space consumption of the evaluation
of eratos(append(`1,`2)), where |`1| = n, |`2| = m.

3. Resource Aware ML
RAML (Resource Aware ML) is a first-order functional language
with ML-style syntax, booleans, integers, pairs, lists, binary trees,
recursion and pattern match. In the implementation of RAML we
already included a destructive pattern match that we could handle
using the methods described here.

Syntax To simplify typing rules and semantics, we define the
following expressions of RAML to be in let normal form. In the
implementation we transform unrestricted expressions into a let
normal form with explicit sharing before the type analysis.

e ::= () | True | False | n | x | x1 binop x2 | f(x1, . . . , xn)

| let x = e1 in e2 | if x then et else ef
| (x1, x2) | nil | cons(xh, xt) | leaf | node(x0, x1, x2)

| match x with (x1, x2)→ e

| match x with
nil→ e1

 cons(xh, xt)→ e2

| match x with
leaf→ e1

 node(x0, x1, x2)→ e2

binop ::= + | − | ∗ | mod | div | and | or

We skip the standard definitions of integer constants n ∈ Z and
variable identifiers x ∈ VID. For the resource analysis it is unim-
portant which ground operations are used in the definition of binop.
In fact, one can use here every function that has a constant worst-
case resource consumption.

Simple Types We define the well-typed expressions of RAML
by assigning a simple type, a usual ML type without resource
annotations, to well-typed expressions. Simple types are data types
and first-order types as given by the grammars below.

A ::= unit | bool | int | L(A) | T (A) | (A,A) F ::= A→ A

To each simple type A we assign a set of semantic values JAK
in the obvious way. For example JT (int, int)K is the set of finite
binary trees whose nodes are labeled with pairs of integers. It is
convenient to identify tuples like (A1, A2, A3, A4) with the pair
type (A1, (A2, (A3, A4))).

A typing context Γ is a partial, finite mapping from variable
identifiers to data types. A signature Σ is a finite, partial mapping of
function identifiers to first-order types. The typing judgment Γ `Σ

e : A states that the expression e has type A under the signature Σ
in the context Γ. The typing rules that define the typing judgment
are standard and a subset of the resource-annotated typing rules
from §5 if the resource annotations are omitted.

Programs Each RAML program consists of a signature Σ and a
family (ef , yf )f∈dom(Σ) of expressions with a distinguished vari-
able identifier such that yf :A `Σ ef :B if Σ(f) = A→ B.

We write f(y1, . . . , yk) = e′f as an abbreviation to indicate that
Σ(f) = (A1, (A2, (. . . , Ak) · · · )→ B and y1:A1, . . . , yk:Ak `Σ

e′f :B. In this case, f is defined by ef = match yf with (y1, y
′
f )→

match y′f with (y2, y
′′
f ) . . . e′f . Of course, one can use such func-

tion definitions also in the implementation.

Operational Semantics To prove the correctness of our analysis,
we define a big-step operational semantics that measures the quan-
titative resource consumption of programs. It is parametric in the
resource of interest and can measure every quantity whose usage in
a single evaluation step can be bounded by a constant. The actual
constants for a step on a specific system architecture can be derived
by analyzing the translation of the step in the compiler implemen-
tation for that architecture [23].

The semantics is formulated with respect to a stack and a heap
as usual: A value v ∈ Val is either a location ` ∈ Loc, a boolean
constant b, an integer n, a null value NULL or a pair of values
(v1, v2). A heap is a finite partial mapping H : Loc → Val from
locations to values. A stack is a finite partial mapping V : VID →
Val from variables to values.

The operational evaluation rules define an evaluation judgment
of the form V,H ` e  v,H′ | (q, q′) expressing the following.
If the stack V and the initial heap H are given then the expression
e evaluates to the value v and the new heap H′. To evaluate e
one needs at least q ∈ Q+ resource units and after the evaluation
there are q′ ∈ Q+ resource units available. The actual resource
consumption is then δ = q − q′. The quantity δ is negative if
resources become available during the execution of e.

Fig. 1 shows the evaluation rules of the big-step semantics.
There is at most one pair (q, q′) such that V,H ` e  v,H′ |
(q, q′) for a given expression e, a heap H and a stack V . The non-
negative number q is the (high) watermark of resources that are
used simultaneously during the evaluation.

It is handy to view the pairs (q, q′) in the evaluation judgments
as elements of a monoid Q = (Q+

0 × Q+
0 , ·). The neutral element

is (0, 0) which means that resources are neither used nor restituted.
The operation (q, q′) · (p, p′) defines how to account for an eval-
uation consisting of evaluations whose resource consumptions are
defined by (q, q′) and (p, p′), respectively. We define

(q, q′) · (p, p′) =

{
(q + p− q′, p′) if q′ ≤ p
(q, p′ + q′ − p) if q′ > p

If resources are never restituted (as with time) then we can restrict
to elements of the form (q, 0) and (q, 0) · (p, 0) is just (q + p, 0).

We identify a rational number q with an element of Q as fol-
lows: q ≥ 0 denotes (q, 0) and q < 0 denotes (0,−q). This nota-
tion avoids case distinctions in the evaluation rules since the con-
stants K that appear in the rules might be negative.

A notorious dissatisfying feature of classical big-step semantics
is that it does not provide evaluation judgments for non-terminating
evaluations. In a companion paper [17] we describe a big-step oper-
ational semantics for partial evaluations that agrees with the usual
big-step semantics on terminating computations. It inductively de-
fines statements of the form V,H ` e  | q for a stack V , a heap
H, q ∈ Q+

0 and an expression e. The meaning is that there is a par-
tial evaluation of e with the stack V and the heapH that consumes
q resources. This allows for a smooth extension of the soundness
theorem (Theorem 1) to non-terminating evaluations (see [17]).
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x ∈ dom(V)

V,H ` x V(x),H | Kvar (E:VAR) V,H ` () NULL,H | Kunit (E:CONSTU)
n ∈ Z

V,H ` n n,H | K int (E:CONSTI)

b ∈ {True, False}
V,H ` b b,H | Kbool (E:CONSTB)

V(x) = v [yf 7→ v],H ` ef  v′,H′ | (q, q′)
V,H ` f(x) v′,H′ | Kapp

1 · (q, q
′) ·Kapp

2

(E:APP)

x1, x2 ∈ dom(V) v = op(V(x1),V(x2))

V,H ` x1 op x2  v,H | Kop (E:BINOP)
V(x) = True V,H ` et  v,H′ | (q, q′)

V,H ` if x then et else ef  v,H′ | KconT
1 ·(q, q′)·KconT

2

(E:CONDT)

V(x) = False V,H ` ef  v,H′ | (q, q′)
V,H ` if x then et else ef  v,H′ | KconF

1 ·(q, q′)·KconF
2

(E:CONDF)

V,H ` e1  v1,H1 | (q, q′) V[x 7→ v1],H1 ` e2  v2,H2 | (p, p′)
V,H ` let x = e1 in e2  v2,H2 | K let

1 · (q, q′) ·K let
2 · (p, p′) ·K let

3

(E:LET)

x1, x2 ∈ dom(V) v = (V(x1),V(x2))

V,H ` (x1, x2) v,H | Kpair (E:PAIR)
V(x) = (v1, v2) V[x1 7→ v1, x2 7→ v2],H ` e v,H′ | (q, q′)
V,H ` match x with (x1, x2)→ e v,H′ | KmatP

1 · (q, q′) ·KmatP
2

(E:MATP)

V,H ` nil NULL,H | Knil (E:NIL)
xh, xt ∈ dom(V) v = (V(xh),V(xt)) l 6∈ dom(H)

V,H ` cons(xh, xt) l,H[l 7→ v] | Kcons (E:CONS)

V(x) = NULL V,H ` e1  v,H′ | (q, q′)
V,H ` match x with | nil→ e1 | cons(xh, xt)→ e2  v,H′ | KmatN

1 · (q, q′) ·KmatN
2

(E:MATNIL)

V(x)=l H(l)=(vh, vt) V[xh 7→vh, xt 7→vt],H ` e2  v,H′ | (q, q′)
V,H ` match x with | nil→ e1 | cons(xh, xt)→ e2  v,H′ | KmatC

1 · (q, q′) ·KmatC
2

(E:MATCONS)

V,H ` leaf NULL,H | K leaf (E:LEAF)
x0, x1, x2 ∈ dom(V) v = (V(x0),V(x1),V(x2)) l 6∈ dom(H)

V,H ` node(x0, x1, x2) l,H[l 7→ v] | Knode (E:NODE)

V(x) = NULL V,H ` e1  v,H′ | (q, q′)
V,H ` match x with | leaf→ e1 | node(x0, x1, x2)→ e2  v,H′ | KmatTL

1 · (q, q′) ·KmatTL
2

(E:MATLEAF)

V(x)=l H(l)=(v0, v1, v2) V[x0 7→v0, x1 7→v1, x2 7→v2],H ` e2  v,H′ | (q, q′)
V,H ` match x with | leaf→ e1 | node(x0, x1, x2)→ e2  v,H′ | KmatTN

1 · (q, q′) ·KmatTN
2

(E:MATNODE)

Figure 1. Evaluation rules of the big-step operational semantics.

The Cost-Free Resource Metric The type rules in §6 make use
of the cost-free resource metric. This is the metric in which all
constants K that appear in the rules are instantiated to zero. It
follows that if V,H ` e  v,H′ | (q, q′) then q = q′ = 0.
We will use the cost-free metric in §6 to pass on potential in the
typing rule for let expressions.

Well-Formed Environments If H is a heap, v is a value, A is a
type, and a ∈ JAK then we write H � v 7→a :A to mean that v
defines the semantic value a ∈ JAK when pointers are followed in
H in the obvious way. We elide a formal definition of this judgment.

Note that if H � v 7→a :A then v may well point to a data
structure with some aliasing, but no circularity is allowed since this
would require infinitary values a. We do not include them because
in our functional language there is no way of generating such
values; in principle our method can encompass circular data [19].

We also write H � v :A to indicate that there exists a, neces-
sarily unique, semantic value a ∈ JAK so that H � v 7→a :A . A
stack V and a heap H are well-formed with respect to a context Γ
if H � V(x) : Γ(x) holds for every x ∈ dom(Γ). We then write
H � V:Γ. Formal definitions can be found in the literature [24].

4. Resource Polynomials
A resource polynomial maps a value of some data type to a non-
negative rational number. Potential functions are always given by
such resource polynomials.

In the case of an inductive tree-like data type, a resource poly-
nomial will only depend on the list of entries of the data structure
in pre-order. Thus, if D(A) is such a data type with entries of type
A, e.g., A-labelled binary trees, and v is a value of type D(A) then
we write elems(v) = [a1, . . . , an] for this list of entries.

An analysis of typical polynomial computations operating on a
data structure v with elems(v) = [a1, . . . , an] shows that it con-
sists of operations that are executed for every k-tuple (ai1 , . . . , aik )
with 1 ≤ i1 < · · · < ik ≤ n. The simplest examples are linear
map operations that perform some operation for every ai. Another
example are common sorting algorithms that perform comparisons
for every pair (ai, aj) with 1 ≤ i < j ≤ n in the worst case.

Base Polynomials For each data type A we now define a set
P(A) of functions p : JAK → N that map values of type A to
natural numbers. The resource polynomials for type A are then
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given as nonnegative rational linear combinations of these base
polynomials. We define P(A) as follows.

P(A) = {a 7→ 1} if A is an atomic type
P(A1, A2) = {(a1, a2) 7→ p1(a1) · p2(a2) | pi ∈ P(Ai)}

P(D(A)) = {v 7→
∑

1≤j1<···<jk≤n

k∏
i=1

pi(aji) | k ∈ N, pi ∈ P(A)}

In the last clause [a1, . . . , an] = elems(v). Every set P(A) con-
tains the constant function v 7→ 1. In the case of D(A) this arises
for k = 0 (one element sum, empty product).

For example, the function ` 7→
(|`|

k

)
is in P(L(A)) for ev-

ery k ∈ N; simply take p1 = . . . = pk = 1 in the def-
inition of P(D(A)). The function (`1, `2) 7→

(|`1|
k1

)
·
(|`2|

k2

)
is

in P(L(A), L(B)) for every k1, k2 ∈ N and [`1, . . . , `n] 7→∑
1≤i<j≤n

(|`i|
k1

)
·
(|`j |

k2

)
∈ P(L(L(A))) for every k1, k2 ∈ N.

Resource Polynomials A resource polynomial p : JAK → Q+
0

for a data type A is a non-negative linear combination of base
polynomials, i.e.,

p =
∑

i=1,...,m

qi · pi

for qi ∈ Q+
0 and pi ∈ P(A). We writeR(A) for the set of resource

polynomials for A.
An instructive, but not exhaustive, example is given by Rn =

R(L(int), . . . , L(int)). The setRn is the set of linear combinations
of products of binomial coefficients over variables x1, . . . , xn, that
is, Rn = {

∑m
i=1 qi

∏n
j=1

(xj

kij

)
| qi ∈ Q+

0 ,m ∈ N, kij ∈ N}.
These expressions naturally generalize the polynomials used in
our univariate analysis [16] and meet two conditions that are im-
portant to efficiently manipulate polynomials during the analysis.
First, the polynomials are non-negative, and secondly, they are
closed under the discrete difference operators ∆i for every i. The
discrete derivative ∆i p is defined through ∆i p(x1, . . . , xn) =
p(x1, . . . , xi + 1, . . . , xn)− p(x1, . . . , xn).

As in [16] it can be shown thatRn is the largest set of polynomi-
als enjoying these closure properties. It would be interesting to have
a similar characterisation ofR(A) for arbitraryA. So far, we know
that R(A) is closed under sum and product (see Lemma 1) and
are compatible with the construction of elements of data structures
in a very natural way (see Lemmas 2 and 3). This provides some
justification for their choice and canonicity. An abstract character-
ization would have to take into account the fact that our resource
polynomials depend on an unbounded number of variables, e.g.,
sizes of inner data structures, and are not invariant under permuta-
tion of these variables. It seems that some generalization of infinite
symmetric polynomials to subgroups of the symmetric group could
be useful, but this would not serve our immediate goal of accurate
multivariate resource analysis.

5. Annotated Types
The resource polynomials described in §4 are non-negative linear
combinations of base polynomials. The rational coefficients of the
linear combination are present as type annotations in our type sys-
tem. To relate type annotations to resource polynomials we sys-
tematically describe base polynomials and resource polynomials
for data of a given type.

If one considers only univariate polynomials then their descrip-
tion is straightforward. Every inductive data of size n admits a po-
tential of the form

∑
1≤i≤k qi

(
n
i

)
. So we can describe the potential

function with a vector ~q = (q1, . . . , qk) in the corresponding recur-
sive type. For instance can we write L~q(A) for annotated list types.

Since each annotation refers to the size of one input part only, uni-
variatly annotated types can be directly composed. For example, an
annotated type for a pair of lists has the form (L~q(A), L~p(A)). See
[16] for details.

Here, we work with multivariate potential functions, i.e., func-
tions that depend on the sizes of different parts of the input. For a
pair of lists of lengths n and m we have, for instance, a potential
function of the form

∑
0≤i+j≤k qij

(
n
i

)(
m
j

)
which can be described

by the coefficients qij . But we also want to describe potential func-
tions that refer to the sizes of different lists inside a list of lists, etc.
That is why we need to describe a set of indexes I(A) that enu-
merate the basic resource polynomials pi and the corresponding
coefficients qi for a data type A. These type annotations can be, in
a straight forward way, automatically transformed into usual easily
understood polynomials. This is done in our prototype to present
the bounds to the user at the end of the analysis.

Names For Base Polynomials To assign a unique name to each
base polynomial we define the index set I(A) to denote resource
polynomials for a given data type A. Interestingly, but as we find
coincidentally, I(A) is essentially the meaning of A with every
atomic type replaced by unit.

I(A) = {∗} if A ∈ {int, bool, unit}
I(A1, A2) = {(i1, i2) | i1 ∈ I(A1) and i2 ∈ I(A2)}

I(L(B)) = I(T (B)) = {[i1, . . . , ik] | k ≥ 0, ij ∈ I(B)}

The degree deg(i) of an index i ∈ I(A) is defined as follows.

deg(∗) = 0

deg(i1, i2) = deg(i1) + deg(i2)

deg([i1, . . . , ik]) = k + deg(i1) + · · ·+ deg(ik)

Define Ik(A) = {i ∈ I(A) | deg(i) ≤ k}. The indexes i ∈ Ik(A)
are an enumeration of the base polyonomials pi ∈ P(A) of degree
at most k. For each i ∈ I(A), we define a base polynomial
pi ∈ P(A) as follows: If A ∈ {int, bool, unit} then

p∗(v) = 1.

If A = (A1, A2) is a pair type and v = (v1, v2) then

p(i1,i2)(v) = pi1(v1) · pi2(v2)

If A = D(B) (in our type system D is either lists or binary node-
labelled trees) is a data structure and elems(v) = [v1, . . . , vn] then

p[i1,...,im](v) =
∑

1≤j1<···<jm≤n

pi1(vj1) · · · pim(vjm)

We use the notation 0A (or just 0) for the index in I(A) such that
p0A(a) = 1 for all a. We have 0int = ∗ and 0(A1,A2) = (0A1 , 0A2)
and 0D(B) = []. If A = D(B) for B a data type then the index
[0, . . . , 0] ∈ I(A) of length n is denoted by just n. We identify the
index (i1, i2, i3, i4) with the index (i1, (i2, (i3, i4))).

For a list i = [i1, . . . , ik] we write i0::i to denote the list
[i0, i1, . . . , ik]. Furthermore, we write ii′ for the concatenation of
two lists i and i′.

Lemma 1 If p, p′ ∈ R(A) then p+p′, p ·p′ ∈ R(A), and deg(p+
p′) = max{deg(p), deg(p′)} and deg(p·p′) = deg(p)+deg(p′).

By linearity it suffices to show this lemma for base polynomials.
This is done by induction on A.

Corollary 1 For every p ∈ R(A,A) there exists p′ ∈ R(A) with
deg(p′) = deg(p) and p′(a) = p(a, a) for all a ∈ JAK.

This follows directly from Lemma 1 noticing that base polynomials
p ∈ P(A,A) take the form pi · pi′ .
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Lemma 2 Let a ∈ JAK and ` ∈ JL(A)K. Let i0, . . . , ik ∈ I(A)
and k ≥ 0. Then p[i0,i1,...,ik]([]) = 0 and p[i0,i1,...,ik](a::`) =
pi0(a) · p[i1,...,ik](`) + p0(a) · p[i0,i1,...,ik](`).

To prove this, one decomposes the sum in the definition of
p[i0,i1,...,ik](a::`) into two summands, one corresponding to the
case where the first position j1 equals one, thus hits a and where it
is greater than one, thus a is not considered. Note that p0(a) = 1;
this factor is there to achieve the format of the resource polynomials
for types like (A,L(A)).

Lemma 3 characterizes concatenations of lists (written as jux-
taposition) as they will occur in the construction of tree-like data.
Note that, e.g., elems(node(a, t1, t2)) = a::elems(t1) elems(t2).

Lemma 3 Let `1, `2 ∈ JL(A)K. Then `1`2 ∈ JL(A)K and
p[i1,...,ik](`1`2) =

∑k
t=0 p[i1,...,it](`1) · p[it+1,...,ik](`2).

This can be proved by induction on the length of `1 using Lemma 2
or else by a decomposition of the defining sum according to which
indices hit the first list and which ones hit the second.

Annotated Types and Potential Functions We use the indexes
and base polynomials to define type annotations and resource poly-
nomials. We then give examples to illustrate the definitions.

A type annotation for a data type A is defined to be a family

QA = (qi)i∈I(A) with qi ∈ Q+
0

We say QA is of degree (at most) k if qi = 0 for every i ∈ I(A)
with deg(i) > k. An annotated data type is a pair (A,QA) of a
data type A and a type annotation QA of some degree k.

Let H be a heap and let v be a value with H � v 7→a :A for a
data type A. Then the type annotation QA defines the potential

ΦH(v:(A,QA)) =
∑

i∈I(A)

qi · pi(a)

Usually we define type annotations QA by only stating the values
of the non-zero coefficients qi. However, it is sometimes handy to
write annotations (q0, . . . , qn) for a list of atomic types just as a
vector. Similarly, we write annotations (q0, q(1,0), q(0,1), q(1,1), . . .)
for pairs of lists of atomic types sometimes as a triangular matrix.

If a ∈ JAK and Q is a type annotation for A then we also write
Φ(a : (A,Q)) for

∑
i qipi(a).

Examples The simplest annotated types are those for atomic data
types like integers. The indexes for int are I(int) = {∗} and thus
each type annotation has the form (int, q0) for a q0 ∈ Q+

0 . It defines
the constant potential function ΦH(v:(int, q0)) = q0. Similarly,
tuples of atomic types feature a single index of the form (∗, . . . , ∗)
and a constant potential function defined by some q(∗,...,∗) ∈ Q+

0 .
More interesting examples are lists of atomic types like, e.g.,

L(int). The set of indexes of degree k is then Ik(L(int)) =
{[], [∗], [∗, ∗], . . . , [∗, ..., ∗]} where the last list contains k unit el-
ements. Since we identify a list of i unit elements with the integer
i we have Ik(L(int)) = {0, 1, . . . , k}. Consequently, annotated
types have the form (L(int), (q0, . . . , qk)) for qi ∈ Q+

0 . The de-
fined potential function is Φ([a1, . . . , an]:(L(int), (q0, . . . , qn)) =∑

0≤i≤k qi
(
n
i

)
.

The next example is the type (L(int), L(int)) of pairs of inte-
ger lists. The set of indexes of degree k is Ik(L(int), L(int)) =
{(i, j) | i+ j ≤ k} if we identify lists of units with their lengths as
usual. Annotated types are then of the from ((L(int), L(int)), Q)
for a triangular k × k matrix Q with non-negative rational en-
tries. If `1 = [a1, . . . , an], `2 = [b1, . . . , bm] are two lists then
the potential function is Φ((`1, `2), ((L(int), L(int)), (q(i,j)))) =∑

0≤i+j≤k q(i,j)

(
n
i

)(
m
j

)
.

Finally, consider the type A = L(L(int)) of lists of lists of
integers. The set of indexes of degree k is then Ik(L(L(int))) =

{[i1, . . . , im] | m ≤ k, ij ∈ N,
∑

j=1,...,m ij ≤ k − m} =
{0, . . . , k} ∪ {[1], . . . , [k − 1]} ∪ {[0, 1], . . .} ∪ · · · . Let ` =
[[a11, . . . , a1m1 ], . . . , [an1, . . . , anmn ]] be a list of lists and Q =
(qi)i∈Ik(L(L(int))) be a corresponding type annotation. The defined
potential function is then Φ(`, (L(L(int)), Q)) =∑

[i1,...,il]∈Ik(A)

∑
1≤j1<···<jl≤n q[i1,...,il]

(mj1
i1

)
· · ·
(mjl

il

)
In practice the potential functions are usually not very complex
since most of the qi are zero. Note that the resource polynomials
for binary trees are identical to those for lists.

The Potential of a Context For use in the type system we need
to extend the definition of resource polynomials to typing contexts.
We treat a context like a tuple type.

Let Γ = x1:A1, . . . , xn:An be a typing context and let k ∈ N.
The index set Ik(Γ) is defined through

Ik(Γ) = {(i1, . . . , in) | ij ∈ Imj (Aj),
∑

j=1,...,n

mj ≤ k}.

A type annotation Q of degree k for Γ is a family

Q = (qi)i∈Ik(Γ) with qi ∈ Q+
0 .

We denote a resource-annotated context with Γ;Q. LetH be a heap
and V be a stack withH � V : Γ whereH � V(xj)7→axj : Γ(xj) .
The potential of Γ;Q with respect toH and V is

ΦV,H(Γ;Q) =
∑

(i1,...,in)∈Ik(Γ)

q~ı

n∏
j=1

pij (axj )

In particular, if Γ = ∅ then Ik(Γ) = {()} and ΦV,H(Γ; q()) = q().
We sometimes also write q0 for q().

6. Type Rules
If f : JAK → JBK is a function computed by some program and
K(a) is the cost of the evaluation of f(a) then our type system
will essentially try to identify resource polynomials p ∈ R(A)
and p̄ ∈ R(B) such that p(a) ≥ p̄(f(a)) + K(a). The key
aspect of such amortized cost accounting is that it interacts well
with composition.

Proposition 1 Let p ∈ R(A), p̌ ∈ R(B), p̄ ∈ R(C), f : JAK →
JBK, g : JBK → JCK, K1 : JAK → Q, and K2 : JBK → Q. If
p(a) ≥ p̌(f(a)) + K1(a) and p̌(b) ≥ p̄(g(b)) + K2(b) for all
a, b, c then p(a) ≥ p̄(g(f(a))) +K1(a) +K2(f(a)) for all a.

Notice that if we merely had p(a) ≥ K1(a) and p̌(b) ≥ K2(b)
then no bound could be directly obtained for the composition.

Interaction with parallel composition, i.e., (a, c) 7→ (f(a), c),
is more complex due to the presence of mixed multiplicative terms
in the resource polynomials.

Proposition 2 Let p ∈ R(A,C), p̄ ∈ R(B,C), f : JAK → JBK,
and K : JAK → Q. For each j ∈ I(C) let p(j) ∈ R(A)
and p̄(j) ∈ R(B) be such that p(a, c) =

∑
j p

(j)(a)pj(c) and
p̄(b, c) =

∑
j p̄

(j)(b)pj(c).
If p(0)(a) ≥ p̄(0)(f(a)) + K(a) and p(j)(a) ≥ p̄(j)(f(a))

holds for all a and j 6= 0 then p(a, c) ≥ p̄(f(a), c) +K(a).

In fact, the situation is more complicated due to our accounting
for high watermarks as opposed to merely additive cost, and also
due to the fact that functions are recursively defined and may be
partial. Furthermore, we have to deal with contexts and not merely
types. To gain an intuition for the development to come, the above
simplified view should, however, prove helpful.
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Type Judgments The declarative type rules for RAML expres-
sions (see Fig. 2) define a resource-annotated typing judgment of
the form Σ; Γ;Q ` e : (A,Q′) where e is a RAML expression, Σ
is a resource-annotated signature (see below), Γ;Q is a resource-
annotated context and (A,Q′) is a resource-annotated data type.
The intended meaning of this judgment is that if there are more
than Φ(Γ;Q) resource units available then this is sufficient to eval-
uate e. In addition, there are more than Φ(v:(A,Q′)) resource units
left if e evaluates to a value v.

Programs with Annotated Types Resource-annotated first-order
types have the form (A,Q) → (B,Q′) for annotated data types
(A,Q) and (B,Q′). A resource-annotated signature Σ is a finite,
partial mapping of function identifiers to sets of resource-annotated
first-order types.

A RAML program with resource-annotated types consists of a
resource-annotated signature Σ and a family of expressions with
variables identifiers (ef , yf )f∈dom(Σ) such that Σ; yf :A;Q ` ef :
(B,Q′) for every function type (A,Q)→ (B,Q′) ∈ Σ(f).

Notations Families that describe type and context annotations are
denoted with upper case letters Q,P,R, . . . with optional super-
scripts. We use the convention that the elements of the families
are the corresponding lower case letters with corresponding super-
scripts, i.e., Q = (qi)i∈I , Q′ = (q′i)i∈I , and Qx = (qxi )i∈I .

Let Q,Q′ be two annotations with the same index set I . We
write Q ≤ Q′ if qi ≤ q′i for every i ∈ I . For K ∈ Q we
write Q = Q′ + K to state that q~0 = q′~0 + K ≥ 0 and
qi = q′i for i 6= ~0 ∈ I . Let Γ = Γ1,Γ2 be a context, let
i = (i1, . . . , ik) ∈ I(Γ1) and j = (j1, . . . , jl) ∈ I(Γ2) . We
write (i, j) to denote the index (i1, . . . , ik, j1, . . . , jl) ∈ I(Γ).

We write Σ; Γ;Q cf e : (A,Q′) to refer to cost-free type
judgments where all constants K in the rules from Fig. 2 are zero.
We use it to assign potential to an extended context in the let rule.
More explanations will follow later.

Let Q be an annotation for a context Γ1,Γ2. For j ∈ I(Γ2)
we define the projection πΓ1

j (Q) of Q to Γ1 to be the annotation
Q′ with q′i = q(i,j). The essential properties of the projections are
stated by Propositions 2 and 3; they show how the analysis of jux-
taposed functions can be broken down to individual components.

Proposition 3 Let Γ, x:A;Q be an annot. context,H � V : Γ, x:A,
and H � V(x)7→a :A . Then it is true that ΦV,H(Γ, x:A;Q) =∑

j∈I(A) ΦV,H(Γ;πΓ
j (Q)) · pj(a).

Additive Shift A key notion in the type system is the additive
shift that is used to assign potential to typing contexts that result
from a pattern match or from the application of a constructor of an
inductive data type. We first define the additive shift, then illustrate
the definition with examples and finally state the soundness of the
operation.

Let Γ, y:L(A) be a context and let Q = (qi)i∈I(Γ,y:L(A)) be a
context annotation of degree k. The additive shift for lists CL(Q)
of Q is an annotation CL(Q) = (q′i)i∈I(Γ,x:A,xs:L(A)) of degree k
for a context Γ, x:A, xs:L(A) that is defined through

q′(i,j,`) =

{
q(i,j::`) + q(i,`) j = 0
q(i,j::`) j 6= 0

Let Γ, t:T (A) be a context and let Q = (qi)i∈I(Γ,t:T (A)) be a
context annotation of degree k. The additive shift for binary trees
CT (Q) of Q is an annotation CT (Q) = (q′i)i∈I(Γ′) of degree k
for a context Γ′ = Γ, x:A, xs1:T (A), xs2:T (A) that is defined by

q′(i,j,`1,`2) =

{
q(i,j::`1`2) + q(i,`1`2) j = 0
q(i,j::`1`2) j 6= 0

The definition of the additive shift is short but substantial. We be-
gin by illustrating its effect in some example cases. To start with,
consider a context `:L(int) with a single integer list that features
an annotation (q0, . . . , qk) = (q[], . . . , q[0,...,0]). The shift opera-
tion CL for lists produces an annotation for a context of the form
x:int, xs:L(int), namely CL(q0, . . . , qk) = (q(0,0), . . . , q(0,k))
such that q(0,i) = qi + qi+1 for all i < k and q(0,k) = qk. This is
exactly the additive shift that we introduced in our previous work
for the univariate system [16]. We use it in a context where ` points
to a list of length n+ 1 and xs is the tail of `. It reflects the fact that∑

i=0,...,k qi
(
n+1
i

)
=
∑

i=0,...,k−1 qi+1

(
n
i

)
+
∑

i=0,...,k qi
(
n
i

)
.

Now consider the annotated context t:T (int); (q0, . . . , qk)
with a single variable t that points to a tree with n + 1 nodes.
The additive shift CT produces an annotation for a context of
the form x:int, t1:T (int), t2:T (int). We have CT (q0, . . . , qk) =
(q(0,i,j))i+j≤k where q(0,i,j) = qi+j + qi+j+1 if i + j < k and
q(0,i,j) = qi+j if i+ j = k. The intention is that t1 and t2 are the
subtrees of t which have n1 and n2 nodes, respectively (n1 +n2 =
n). The definition of the additive shift for trees incorporates the
convolution

(
n+m

k

)
=
∑

i+j=k

(
n
i

)(
m
j

)
for binomials. It is true

that
∑

i=0,...,k qi
(
n+1
i

)
=
∑

i=0,...,k−1(qi + qi+1)
(
n
i

)
+ qk

(
n
k

)
=∑k−1

i=0

∑
j1+j2=i(qi + qi+1)

(
n1
j1

)(
n2
j2

)
+
∑

j1+j2=k qi
(
n1
j1

)(
n2
j2

)
.

As a last example consider the context l1:L(int), l2:L(int);Q
where Q = (q(i,j))i+j≤k, l1 is a list of length m, and l2 is a list
of length n + 1. The additive shift results in an annotation for a
context of the form l1:L(int), x:int, xs:L(int) and the intention is
that xs is the tail of l2, i.e., a list of length n. From the definition
it follows that CL(Q) = (q(i,0,j))i+j≤k where q(i,0,j) = q(i,j) +
q(i,j+1) if i + j < k and q(i,0,j) = q(i,j) if i + j = k. The
soundness follows from the fact that for every i ≤ k it is true that∑k−i

j=1 q(i,j)

(
m
i

)(
n+1
j

)
=
(
m
i

)(∑k−i−1
j=0 (q(i,j) + q(i,j+1))

(
n
i

)
+

q(i,k−i)

(
n
k

))
.

Lemmas 4 and 5 state the soundness of the shift operations.

Lemma 4 Let Γ, `:L(A);Q be an annotated context, H � V :
Γ, `:L(A), H(`) = (v1, `

′) and let V ′ = V[xh 7→ v1, xt 7→ `′].
Then H � V ′ : Γ, xh:A, xt:L(A) and ΦV,H(Γ, `:L(A);Q) =
ΦV′,H(Γ, xh:A, xt:L(A);CL(Q)).

This is a consequence of Lemma 2. One takes the linear combina-
tion of instances of its second equation and regroups the right hand
side according to the base polynomials for the resulting context.

Lemma 5 Let Γ, t:T (A);Q be an annotated context, H � V :
Γ, t:T (A), H(t) = (v1, t1, t2), and V ′ = V[x0 7→ v1, x1 7→
t1, x2 7→ t2]. If Γ′ = Γ, x:A, x1:T (A), x2:T (A) thenH � V ′ : Γ′

and ΦV,H(Γ, t:T (A);Q) = ΦV′,H(Γ′;CT (Q)).

We remember that the potential of a tree only depends on the list
of nodes in pre-order. So, we can think of the context splitting as
done in two steps. First the head is separated, as in Lemma 4, and
then the list of remaining elements into two lists. Lemma 5 is then
proved like the previous one by regrouping terms using Lemma 2
for the first separation and Lemma 3 for the second one.

Sharing Let Γ, x1:A, x2:A;Q be an annotated context. The shar-
ing operation .(Q) defines an annotation for a context of the form
Γ, x:A. It is used when the potential is split between multiple oc-
currences of a variable. The following lemma shows that sharing is
a linear operation that does not lead to any loss of potential.

Lemma 6 Let A be a data type. Then there are non-negative ratio-
nal numbers c(i,j)

k for i, j, k ∈ I(A) and deg(k) ≤ deg(i, j) such
that the following holds. For every context Γ, x1:A, x2:A;Q and
everyH,V withH � V : Γ, x:A it holds that ΦV,H(Γ, x:A;Q′) =
ΦV′,H(Γ, x1:A, x2:A;Q) where V ′ = V[x1, x2 7→ V(x)] and
q′(`,k) =

∑
i,j∈I(A) c

(i,j)
k q(`,i,j).
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Q = Q′ +Kvar

x:A;Q ` x : (A,Q′)
(T:VAR)

q0 = Kunit q′0 = 0

∅;Q ` () : (unit, Q′)
(T:CONSTU)

n ∈ Z q0 = K int q′0 = 0

∅;Q ` n : (int, Q′)
(T:CONSTI)

b ∈ {True, False} q0 = Kbool q′0 = 0

∅;Q ` b : (bool, Q′)
(T:CONSTB)

op ∈ {+,−, ∗,mod, div} q(0,0) = Kop q′0 = 0

x1:int, x2:int;Q ` x1 op x2 : (int, Q′)
(T:OPINT)

P+Kapp
1 = Q P ′ = Q′+Kapp

2 (A,P )→ (A′, P ′) ∈ Σ(f)

x:A;Q ` f(x) : (A′, Q′)
(T:APP)

op ∈ {or, and} q(0,0)=K
op q′0=0

x1:bool, x2:bool;Q ` x1 op x2 : (bool, Q′)
(T:OPBOOL)

Γ1;P ` e1 : (A,P ′) Γ2, x:A;R ` e2 : (B,R′) P +K let
1 = πΓ1

~0
(Q) P ′ = πx:A

~0 (R) +K let
2 R′ = Q′ +K let

3

∀~0 6= j ∈ I(Γ2): Γ1;Pj
cf
e1 : (A,P ′j) Pj = πΓ1

j (Q) P ′j = πx:A
j (R)

Γ1,Γ2;Q ` let x = e1 in e2 : (B,Q′)
(T:LET)

Γ;P ` et : (A,P ′) P+KconT
1 = πΓ

0 (Q) P ′=Q′+KconT
2

Γ;R ` ef : (A,R′) R+KconF
1 = πΓ

0 (Q) R′=Q′+KconF
2

Γ, x:bool;Q ` if x then et else ef : (A,Q′)
(T:COND)

Γ, x1:A1, x2:A2;P ` e : (B,P ′)

P +KmatP
1 = Q P ′ = Q′ +KmatP

2

Γ, x:A;Q ` match x with (x1, x2)→ e : (B,Q′)
(T:MATP)

Q = Q′ +Kpair

x1:A1, x2:A2;Q ` (x1, x2) : ((A1, A2), Q′)
(T:PAIR)

q0 = Knil q′~0 = 0

∅;Q ` nil : (L(A), Q′)
(T:NIL)

q0 = K leaf q′~0 = 0

∅;Q ` leaf : (T (A), Q′)
(T:LEAF)

Q = CL(Q′) +Kcons

xh:A, xt:L(A);Q ` cons(xh, xt) : (L(A), Q′)
(T:CONS)

Q = CT (Q′) +Knode

x0:A, x1:T (A), x2:T (A);Q ` node(x0, x1, x2) : (T (A), Q′)
(T:NODE)

Γ;R ` e1 : (B,R′) R+KmatN
1 = πΓ

0 (Q)

R′ = Q′ +KmatN
2 Γ, xh:A, xt:L(A);P ` e2 : (B,P ′) P +KmatC

1 = CL(Q) P ′ = Q′ +KmatC
2

Γ, x:L(A);Q ` match x with | nil→ e1 | cons(xh, xt)→ e2 : (B,Q′)
(T:MATL)

Γ;R ` e1 : (B,R′) R+KmatTL
1 = πΓ

0 (Q)

R′ = Q′ +KmatTL
2 Γ, x0:A, x1:T (A), x2:T (A);P ` e2 : (B,P ′) P +KmatTN

1 = CT (Q) P ′ = Q′ +KmatTN
2

Γ, x:T (A);Q ` match x with | leaf→ e1 | node(x0, x1, x2)→ e2 : (B,Q′)
(T:MATT)

Γ, x:A, y:A;P ` e : (B,Q′) Q = .(P )

Γ, z:A;Q ` e[z/x, z/y] : (B,Q′)
(T:SHARE)

Γ;P ` e : (B,P ′) Q ≥ P Q′ ≤ P ′

Γ;Q ` e : (B,Q′)
(T:WEAKEN)

Γ;P ` e : (B,P ′) Q = P + c Q′ = P ′ + c

Γ;Q ` e : (B,Q′)
(T:OFFSET)

Γ;P ` e : (B,P ′) ∀i ∈ I(Γ): pi = q(i,0)

Γ, x:A;Q ` e : (B,Q′)
(T:AUGMENT)

Figure 2. Type rules for annotated types.

Lemma 6 is a consequence of Corollary 1. Moreover, the coeffi-
cients c(i,j)

k can be computed effectively and are natural numbers.
For a context Γ, x1:A, x2:A;Q we define .(Q) to be the Q′ from
Lemma 6.

Type Rules Fig. 2 shows the annotated type rules for RAML
expressions. We assume a fixed global signature Σ that we omit
from the rules. The last four rules are structural rules that apply
to every expression. The other rules are syntax-driven and there is
one rule for every construct of the syntax. In the implementation
we incorporated the structural rules in the syntax-driven ones. The
most interesting rules are explained below.

T:SHARE has to be applied to expressions that contain a variable
twice (z in the rule). The sharing operation .(P ) transfers the
annotation P for the context Γ, x:A, y:A into an annotation Q for
the context Γ, z:A without loss of potential (Lemma 6). This is
crucial for the accuracy of the analysis since instances of T:SHARE
are quite frequent in typical examples. The remaining rules are

affine linear in the sense that they assume that every variable occurs
at most once.

T:CONS assigns potential to a lengthened list. The additive
shift CL(Q′) transforms the annotation Q′ for a list type into an
annotation for the context xh:A, xt:L(A). Lemma 4 shows that
potential is neither gained nor lost by this operation. The potential
Q of the context has to pay for both the potentialQ′ of the resulting
list and the resource cost Kcons for list cons.

T:MATL shows how to treat pattern matching of lists. The initial
potential defined by the annotation Q of the context Γ, x:L(A)
has to be sufficient to pay the costs of the evaluation of e1 or e2

(depending on whether the matched list is empty or not) and the
potential defined by the annotation Q′ of the result type. To type
the expression e1 of the nil case we use the projection πΓ

0 (Q) that
results in an annotation for the context Γ. Since the matched list
is empty in this case no potential is lost by the discount of the
annotations q(i,j) of Q where j 6= 0. To type the expression e2

of the cons case we rely on the shift operation CL(Q) for lists that
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results in an annotation for the context Γ, xh:A, xt:L(A). Again
there is no loss of potential (see Lemma 4). The equalities relate
the potential before and after the evaluation of e1 or e2, to the
potential before the and after the evaluation of the match operation
by incorporating the respective resource cost for the matching.

T:NODE and T:MATT are similar to the corresponding rules for
lists but use the shift operator CT for trees (see Lemma 5).

T:LET comprises essentially an application of Proposition 2
(with f = e1 and C = Γ2) followed by an application of Proposi-
tion 1 (with f being the parallel composition of e1 and the identity
on Γ2 and g being e2). Of course, the rigorous soundness proof
takes into account partiality and additional constant costs for dis-
patching a let. It is part of the inductive soundness proof for the
entire type system (Theorem 1).

The derivation of the type judgment Γ1,Γ2;Q ` let x =
e1 in e2 : (B,Q′) can be explained in two steps. The first starts
with the derivation of the judgment Γ1;P ` e1 : (A,P ′) for the
sub-expression e1. The annotation P corresponds to the potential
that is exclusively attached to Γ1 by the annotation Q plus some
resource cost for the let, namely P = πΓ1

~0
(Q) + K let

1 . Now we
derive the judgment Γ2, x:A;R ` e2 : (B,R′). The potential
that is assigned by R to x:A is the potential that resulted from the
judgment for e1 plus some cost that might occur when binding the
variable x to the value of e1, namely P ′ = πx:A

~0
(R) + K let

2 . The
potential that is assigned by R to Γ2 is essentially the potential
that is assigned by to Γ2 by Q, namely πΓ2

~0
(Q) = πΓ2

0 (R). The
second step of the derivation is to relate the annotations in R that
refer to mixed potential between x:A and Γ2 to the annotations
in Q that refer to potential that is mixed between Γ1 and Γ2.
To this end we remember that we can derive from a judgment
Γ1;S ` e1 : (A,S′) that Φ(Γ1;S) ≥ Φ(v:(A,S′)) if e1 evaluates
to v. This inequality remains valid if multiplied with a potential
for φΓ2 = Φ(Γ2;T ), i.e., Φ(Γ1;S) · φΓ2 ≥ Φ(v:(A,S′)) · φΓ2 .
To relate the mixed potential annotations we thus derive a cost-
free judgment Γ1;Pj

cf e1 : (A,P ′j) for every ~0 6= j ∈ I(Γ2).
(We use cost-free judgments to avoid paying multiple times for
the evaluation of e1.) Then we equate Pj to the corresponding
annotations in Q and equate P ′j to the corresponding annotations
in R, i.e., Pj = πΓ1

j (Q) and P ′j = πx:A
j (R). The intuition is that

j corresponds to φΓ2 . Note that we use a fresh signature Σ in the
derivation of each cost-free judgment for e1.

Soundness The main theorem of this paper states that type
derivations establish correct bounds: an annotated type judgment
for an expression e shows that if e evaluates to a value v in a well-
formed environment then the initial potential of the context is an
upper bound on the watermark of the resource usage and the dif-
ference between initial and final potential is an upper bound on the
consumed resources.

Note that it is possible to prove that the bounds also hold
for non-terminating evaluations as we did for the univariate sys-
tem [17] in a companion paper (see the discussion in §3).

Theorem 1 (Soundness) Let H � V:Γ and Σ; Γ;Q ` e:(A,Q′).
If V,H ` e  v,H′ | (p, p′) then p ≤ ΦV,H(Γ;Q) and
p− p′ ≤ ΦV,H(Γ;Q)− ΦH′(v:(A,Q′)).

Theorem 1 is proved by a nested induction on the derivation of
the evaluation judgment V,H ` e  v,H′ | (p, p′) and the
type judgment Γ;Q ` e:(A,Q′). The inner induction on the type
judgment is needed because of the structural rules. There is one
proof for all possible instantiations of the resource constants. It
is technically involved but conceptually unsurprising. Compared
to earlier works [16], further complexity arises from the new rich
potential annotations. It is mainly dealt with in Lemmas 4, 5, and 6
and the concept of projections as explained in Propositions 2 and 3.

7. Type Inference and Experiments
Type Inference The type-inference algorithm for RAML extends
the algorithm that we have developed for the univariate polynomial
system [17]. It is not complete with respect to the type rules in §6
but it works well for the example programs we tested.

Its basis is a classic type inference generating simple linear con-
straints for the annotations that are collected during the inference,
and that can be solved later by linear programming. In order to ob-
tain a finite set of constraints one has to provide a maximal degree
of the resource bounds. If the degree is too low then the generated
linear program is unsolvable. The maximal degree can either be
specified by the user or can be incremented successively after an
unsuccessful analysis.

A main challenge in the inference is the handling of resource-
polymorphic recursion which we believe to be of very high com-
plexity if not undecidable in general. To deal with it practically,
we employ a heuristic that has been developed for the univariate
system.

In a nutshell, a function is allowed to invoke itself recursively
with a type different from the one that is being justified (polymor-
phic recursion) provided that the two types differ only in lower-
degree terms. In this way, one can successively derive polymorphic
type schemes for higher and higher degrees; for details, see [17].
The generalisation of this approach to the multivariate setting poses
no extra difficulties.

The number of multivariate polynomials our type system takes
into account (e.g., nm,n

(
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)
, n
(
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)
,m
(
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2

)
,m
(
n
3

)
,
(
n
2

)(
m
2

)
for a

pair of integer lists if the max. degree is 4) grows exponentially
in the maximal degree. Thus the number of inequalities we collect
for a fixed program grows also exponentially in the given maximal
degree. Moreover, one often has to analyze function applications
context-sensitively with respect to the call stack. Recall, e.g., the
expression filter(a,filter(b,l)) from §2 where we had to use two
different types for filter.

Experimental Evaluation In our prototype implementation we
collapse the cycles in the call graph and analyze each function once
for every path in the resulting graph. For larger programs this can
lead to large linear constraint systems if the maximal degree is high.
Sometimes they are infeasible for the LP solver6 we use.

Our emphasis was on correctness of the prototype, not on per-
formance. There certainly is room for improvement, either by tun-
ing the configuration of the current LP solver7 or by experimenting
with alternative solvers. Further improvement is possible by find-
ing a suitable heuristic that is in between the (maybe too) flexible
method we use here and the inference for the univariate system that
also works efficiently with high maximal degree for large programs.
For example, we could set certain coefficients qi to zero before even
generating the constraints. Alternatively, we could limit the number
of different types for each function.

However, we are satisfied with the performance of the prototype
on the example programs that do not require high degrees. For
instance, we successfully analyzed longer examples with up to
degree 4 (multiplication of a list of matrices).

Table 1 shows a compilation of the computation of evaluation-
step bounds for several example functions. All computed bounds
are asymptotically tight. The run-time of the analysis varies from
0.02 to 1.96 seconds on an 3.6 GHz Intel Core 2 Duo iMac with
4 GB RAM depending on the needed degree and the complexity of
the source program.

Our experiments show that the constant factors in the com-
puted bounds are generally quite tight and even match the measured

6 lp solve version 5.5.0.1
7 Currently, we use the standard configuration with no additional options.

366



Function Computed Evaluation-Step Bound Simplified Computed Bound Act. Behav. Run Time

isortlist:L(L(int))→L(L(int))
∑

1≤i<j≤n 16mi+16
(
n
2

)
+12n+3 8n2m+8n2−8nm+4n+3 O(n2m) 0.91 s

nub:L(L(int))→L(L(int))
∑

1≤i<j≤n 12mi+18
(
n
2

)
+12n+3 6n2m+9n2−6nm+3n+3 O(n2m) 0.97 s

transpose:L(L(int))→L(L(int))
∑

1≤i≤n 32mi+2n+13 32nm+2n+13 O(nm) 0.04 s
mmult:(L(L(int)))2→L(L(int)) (

∑
1≤i≤x yi)(32 + 28n)+14n+2x+21 28xyn+32xy+2x+14n+21 O(nxy) 1.96 s

dyade:(L(int), L(int))→L(L(int)) 10nx+14n+3 10nx+14n+3 O(nx) 0.03 s
lcs:(L(int), L(int))→int 39nx+ 6x+ 21n+ 19 39nx+ 6x+ 21n+ 19 O(nx) 0.36 s
subtrees:T (int)→L(T (int)) 8

(
n
2

)
+ 23n+ 3 4n2 + 19n+ 3 O(n2) 0.06 s

eratos:L(int)→L(int) 16
(
n
2

)
+12n+ 3 8n2+4n+3 O(n2) 0.02 s

Table 1. The computed evaluation-step bounds, the actual worst-case time behavior, and the run time of the analysis in seconds. All computed
bounds are asymptotically tight and the constant factors are close to the worst-case behavior. In the bounds n is the size of the first argument,
mi are the sizes of the elements of the first argument, x is the size of the second argument, yi are the sizes of the elements of the second
argument, m = max1≤i≤nmi, and y = max1≤i≤x yi.

worst-case running times of many functions. The univariate analy-
sis [16, 17] infers identical bounds for the functions subtrees and
eratos. In contrast, it can infer bounds for the other functions only
after manual source-code transformations. Even then, the resulting
bounds are not asymptotically tight.

We present the experimental evaluation of two functions be-
low. The source code and the experimental validation for the other
examples is available online8. It is also possible to download the
source code of the prototype and to analyze user generated exam-
ples directly on the web.

Example 1: Lexicographic Sorting of Lists of Lists The fol-
lowing RAML code implements the well-known sorting algorithm
insertion sort that lexicographically sorts lists of lists. To lexico-
graphically compare two lists one needs linear time in length of the
shorter one. Since insertion sort does quadratic many comparisons
in the worst-case it has a running time ofO(n2m) if n is the length
of the outer list and m is the maximal length of the inner lists.

leq (l1,l2) = match l1 with | nil -> true
| (x::xs) -> match l2 with | nil -> false

| (y::ys) -> (x<y) or ((x == y) and leq (xs,ys));

insert (x,l) = match l with | nil -> [x]
| (y::ys) -> if leq(x,y) then x::y::ys

else y::insert(x,ys);

isortlist l = match l with | nil -> nil
| (x::xs) -> insert (x,isortlist xs);

Below is the analysis’ output for the function isortlist when instan-
tiated to bound the number of needed evaluation steps. The compu-
tation needs less then a second on typical desktop computers.

isortlist: L(L(int)) --> L(L(int))
Positive annotations of the argument
0 --> 3.0 2 --> 16.0
1 --> 12.0 [1,0] --> 16.0

The number of evaluation steps consumed by isortlist
is at most: 8.0*n^2*m + 8.0*n^2 - 8.0*n*m + 4.0*n + 3.0
where

n is the length of the input
m is the length of the elements of the input

The more precise bound implicit in the positive annotations of the
argument is presented in mathematical notation in Table 1.

8 http://raml.tcs.ifi.lmu.de

We manually identified inputs for which the worst-case behav-
ior of isortlist emerges (namely reversely sorted lists with similar
inner lists). Then we measured the needed evaluation steps and
compared the results to our computed bound. Fig. 3 shows a plot of
this comparison. Our experiments indicate that the computed bound
exactly matches the actual worst-case behavior.

Example 2: Longest Common Subsequence An example of dy-
namic programming that can be found in many textbooks is the
computation of (the length of) the longest common subsequence
(LCS) of two given lists (sequences). If the sequences a1, . . . , an
and b1, . . . , bm are given then an n×m matrix (here a list of lists)
A is successively filled such that A(i, j) contains the length of the
LCS of a1, . . . , ai and b1, . . . , bj . The following recursion is used
in the computation.

A(i, j)=

 0 if i = 0 or j = 0
A(i− 1, j − 1) + 1 if i, j>0 and ai=bj
max(A(i, j−1), A(i−1, j)) if i, j>0 and ai 6=bj

The run time of the algorithm is thus O(nm). Below is the RAML
implementation of the algorithm.

lcs(l1,l2) = let m = lcstable(l1,l2) in
match m with | nil -> 0
| (l1::_) -> match l1 with | nil -> 0

| (len::_) -> len;

lcstable (l1,l2) = match l1 with | nil -> [firstline l2]
| (x::xs) -> let m = lcstable (xs,l2) in

match m with | nil -> nil
| (l::ls) -> (newline (x,l,l2))::l::ls;

newline (y,lastline,l) = match l with | nil -> nil
| (x::xs) -> match lastline with | nil -> nil

| (belowVal::lastline’) ->
let nl = newline(y,lastline’,xs) in
let rightVal = right nl in
let diagVal = right lastline’ in
let elem = if x == y then diagVal+1

else max(belowVal,rightVal)
in elem::nl;

firstline(l) = match l with | nil -> nil
| (x::xs) -> 0::firstline xs;

right l = match l with | nil -> 0 | (x::xs) -> x;

The analysis of the program takes less then a second on a usual
desktop computer and produces the following output for the func-
tion lcs.
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Figure 3. The computed evaluation-step bound (lines) compared to the actual worst-case number of evaluation-steps for sample inputs of
various sizes (crosses) used by isortlist (on the left) and lcs (on the right).

lcs: (L(int),L(int)) --> int
Positive annotations of the argument
(0,0) --> 19.0 (1,0) --> 21.0
(0,1) --> 6.0 (1,1) --> 39.0

The number of evaluation steps consumed by lcs is at
most: 39.0*m*n + 6.0*m + 21.0*n + 19.0
where

n is the length of the first component of the input
m is the length of the second component of the input

Fig. 3 shows that the computed bound is close to the measured
number of evaluation steps needed. In the case of lcs the run time
exclusively depends on the lengths of the input lists.

8. Related Work
Most closely related is the previous work on automatic amortized
analysis [17, 16, 18, 19, 20, 23, 24] (see §1). This paper describes
the first system that can compute multivariate polynomial bounds.

Other resource analyses that can in principle obtain polyno-
mial bounds are approaches based on recurrences pioneered by
Grobauer [12] and Flajolet [11]. In those systems, an a priori un-
known resource bounding function is introduced for each function
in the code; by a straightforward intraprocedural analysis a set of
recurrence equations or inequalities for these functions is then de-
rived. Even for relatively simple programs the resulting recurrences
are quite complicated and difficult to solve with standard methods.

In the COSTA project [1, 2, 3] progress has been made with the
solution of those recurrences. In an automatic complexity analysis
for higher-order Nuprl terms Benzinger uses Mathematica to solve
the generated recurrence equations [5]. The size measures used
in these approaches (like the length of the longest path in the
input data) are less precise for nested data structures than our
resource polynomials which comprise the sizes of all inner data
structures. As a result, our method can deal with compositions of
functions more accurately and is able to express a wider range of
relations between parts of the input. We also find that amortization
yields better results in cases where resource usage of intermediate
functions depends on factors other than input size, e.g., sizes of
partitions in quick sort.

A successful method to estimate time bounds for C++ proce-
dures with loops and recursion was recently developed by Gulwani
et al. [15, 13] in the SPEED project. They annotate programs with
counters and use automatic invariant discovery between their val-
ues using off-the-shelf program analysis tools which are based on
abstract interpretation. A recent innovation for non-recursive pro-
grams is the combination of disjunctive invariant generation via ab-

stract interpretation with proof rules that employ SMT-solvers [14].
In contrast to our method, these techniques can not fully automati-
cally analyze iterations over data structures. Instead, the user needs
to define numerical “quantitative functions”. This seems to be less
modular for nested data structures where the user needs to specify
an “owner predicate” for inner data structures. It is also unclear if
quantitative functions can represent complex mixed bounds such as∑

1≤i<j≤n(10mi+2mj)+16
(
n
2

)
+12n+3 for isortlist. Moreover,

our method infers tight bounds for functions such as insertion sort
that admit a worst-case time usage of the form

∑
1≤i≤n i. In con-

trast, [15] indicates that a nested loop on 1 ≤ i ≤ n and 1 ≤ j ≤ i
is over-approximated with the bound n2.

A methodological difference to techniques based on abstract in-
terpretation is that we infer (using linear programming) an abstract
potential function which indirectly yields a resource-bounding
function. The potential-based approach may be favorable in the
presence of compositions and data scattered over different loca-
tions (partitions in quick sort). As any type system, our approach is
naturally compositional and lends itself to the smooth integration
of components whose implementation is not available. Moreover,
type derivations can be seen as certificates and can be automati-
cally translated into formalized proofs in program logic [6]. On the
other hand, our method does not model the interaction of integer
arithmetic with resource usage.

Other related works use type systems to validate resource
bounds. Crary and Weirich [9] presented a (monomorphic) type
system capable of specifying and certifying resource consumption.
Danielsson [10] provided a library, based on dependent types and
manual cost annotations, that can be used for complexity analyses
of purely functional data structures and algorithms. In contrast, our
focus is on the inference of bounds.

Another related approach is the use of sized types [22, 21, 8]
which provide a general framework to represent the size of the
data in its type. Sized types are a very important concept and we
also employ them indirectly. Our method adds a certain amount of
data dependency and dispenses with the explicit manipulation of
symbolic expressions in favour of numerical potential annotations.

Polynomial resource bounds have also been studied in [25] that
addresses the derivation of polynomial size bounds for functions
whose exact growth rate is polynomial. Besides this strong restric-
tion, the efficiency of inference remains unclear.

9. Conclusion and Directions for Future Work
We have introduced a quantitative amortized analysis for first-order
functions with multiple arguments. For the first time, we have been
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able to fully automatically derive complex multivariate resource
bounds for recursive functions on nested inductive data structures
such as lists and trees. Our experiments have shown that the analy-
sis is sufficiently efficient for the functions we have tested, and that
the resulting bounds are not only asymptotically tight but are also
surprisingly precise in terms of constant factors.

The system we have developed will be the basis of various
future projects. A challenging unsolved problem we are interested
in is the computation of precise heap-space bounds in the presence
of automatic memory management.

We have first ideas for extending the type system to derive
bounds that contain not only polynomial but also involve logarith-
mic and exponential functions. The extension of linear amortized
analysis to polymorphic and higher-order programs [24] seems to
be compatible with our system and it would be interesting to inte-
grate it. Finally, we plan to investigate to what extent our multivari-
ate amortized analysis can be used for programs with cyclic data
structures (following [19, 20, 4]) and recursion (including loops)
on integers. For the latter it might be beneficial to merge the amor-
tized method with successful existing techniques on abstract inter-
pretation [15, 3].

Another very interesting and rewarding piece of future work
would be an adaptation of our method to imperative languages
without built-in inductive types such as C. One could try to employ
pattern-based discovery of inductive data structures as is done, e.g.,
in separation logic.

References
[1] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini.

Cost Analysis of Java Bytecode. In 16th Euro. Symp. on Prog.
(ESOP’07), pages 157–172, 2007.

[2] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic
Inference of Upper Bounds for Recurrence Relations in Cost
Analysis. In 15th Static Analysis Symp. (SAS’08), pages 221–
237, 2008.

[3] E. Albert, P. Arenas, S. Genaim, M. Gómez-Zamalloa,
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