
Linear types and non-size-increasing polynomial time computation

Martin Hofmann�
Synopsis: We propose a linear type system with recursion op-

erators for inductive datatypes which ensures that all definable

functions are polynomial time computable. The system improves

upon previous such systems in that recursive definitions can be ar-

bitrarily nested, in particular no predicativity or modality restric-

tions are made.

1 Summary

Recent work has shown that predicative recursion com-

bined with a linear typing discipline gives rise to type sys-

tems which guarantee polynomial runtime of well-typed

programs while allowing for higher-typed primitive recur-

sion on inductive datatypes.

Although these systems allow one to express all polyno-

mial time functions they reject many natural formulations of

obviously polynomial time algorithms. The reason is that

under the predicativity regime a recursively defined func-

tion is not allowed to serve as step function of a subsequent

recursive definition. However, in most functional programs

involving inductive data structures such iterated recursion

does occur. A typical example is insertion sort which in-

volves iteration of an (already recursively defined) insertion

function.

A closer analysis of such examples reveals that the in-

volved functions do not increase the size of their input and

that this is why their repeated iteration does not lead beyond

polynomial time.

In this work we present a new linear type system based

on this intuition. It contains unrestricted recursion operators

for inductive datatypes such as integers, lists, and trees, yet

ensures polynomial runtime of all first-order programs.

2 Introduction

Suppose we have a type of integers N in binary notation

and constructors 0 : N; S0 : N!N; S1 : N!N with se-

mantics S0(x) = 2x and S1(x) = 2x + 1. The following�LFCS Edinburgh, Mayfield Rd, Edinburgh EH9 3JZ, UK. E-mail: mx-

h@dcs.ed.ac.uk

defines a function f : N!N of quadratic growth:f(0) = 1f(x) = S0(S0(f(�x2�))), when x > 0
More precisely, f(x) = [x]2 where [x] = 2jxj. As usual,jxj = dlog2(x+ 1)e denotes the length of x in binary nota-

tion. We also write jjxjj for jajwhen a = jxj. Iterating f as

in g(0) = 2g(x) = f(g(� x2�)), when x > 0
leads to exponential growth, indeed, g(x) = 2[x].

This example is the motivation behind predicative ver-

sions of recursion as used in [2, 5]. In these systems it is

forbidden to iterate a function which has itself been recurs-

ively defined. More precisely, the step function in a recurs-

ive definition is not allowed to recurse on the result of a

previous function call (here g(�x2�)), but may, however, re-

curse on other parameters.

If higher-order functions are allowed then a new phe-

nomenon appears: If h : N!N!N is defined byh(0) = S0h(x) = h(�x2�) � h(�x2�)
then h(x; y) = 2[x] � y although no recursion on results of

recursive calls takes place. This example suggests to require

that the step function in a recursive definition should be af-

fine linear in the sense of linear logic, i.e., use its argument

at most once.

In [1] and in [4] it has been shown that this restriction

together with predicativity suffices to ensure polynomial

runtime of all first-order programs.

Although these systems are very expressive they rule out

many naturally occurring and obviously polynomial time al-

gorithms. A typical example is the insertion sort algorithm

defined as follows

insert(a; []) = [a]
insert(a; b :: l) = if a � b

then a :: b :: l
else b :: insert(a; l)

sort([]) = []
sort(a :: l) = insert(a; sort(l))

1

The definition of insert is perfectly legal under the regime of

predicative or safe recursion, but the subsequent definition

of sort is not. The reason that nevertheless insertion sort

does not lead to an exponential growth and runtime is that

the insertion function does not increase the size of its input.

Caseiro [3] has noticed this and developed (under the

name “LIN-systems”) partly semantic criteria on first-order

recursive programs which allow one to detect this situation

and which in particular apply to the insertion sort example.

The drawback of her criteria is that they are rather complic-

ated, not obviously decidable, and that they do not general-

ise to higher-order functions in any obvious way.

In this paper we present a type-theoretic approach to

this problem. We will develop a fairly natural linear type

system which has the property that all definable functions

are non-size increasing and which boasts higher-order re-

cursion on datatypes without any predicativity restriction.

We will show that nevertheless all definable first-order func-

tions are polynomial time computable even if they contain

higher-order functions as subexpressions.

As indicated above the type system will in particular en-

sure that programs do not increase the size of their input so

that iterated recursion does not lead to exponential growth.

However, this means that not all polynomial time comput-

able functions can be definable. So, in order to obtain a

complete type system we will have to combine the present

system with the system in [4] based on predicative recur-

sion. In Section 4.3 below we speculate on the expressivity

of the present system alone.

3 Syntax

We use affine linear lambda calculus with products and

certain inductive datatypes such as integers, lists, and trees.

The types are given by the following grammar.A;B ::= B j A(B j A
 B j A� B
where B ranges over a set of base types which is left in-

determinate as yet. For example, we will introduce a base

type N for integers. We will also allow ourselves to extend

the above grammar by new type operators, notably one for

lists, which associates to each type A a type of lists L(A).
Terms are given bye ::= op(e1; : : : ; en) j x j �x:A:e j(e1 e2) j e1
 e2 jlet e1=x
 y in e2 j he1; e2i j e:1 j e:2

Here op ranges over a set of operators to be determined later

and x ranges over a countable set of variables.

As usual, terms are understood as equivalence classes

modulo renaming of bound variables, i.e., �x:A:x and�y:A:y are considered identical.

A context is a partial function from variables to types.

Two contexts �1;�2 are called disjoint if dom(�1) \dom(�2) = ;. In this case we write �1;�2 for the union of�1 and �2. If x 62 dom(�) and A is a type then we write�; x:A for the context � [f(x;A)g.

An arity is an expression of the form (A1; : : : ; An)A
where n � 0 and Ai; A are types.

We fix an assignment of arities to operators.

An operator of arity ()A is called a constant and we writec : A to mean that c is a constant of arity ()A.

The typing judgement � ` e : A read “e has type A in

context �” is defined inductively by the following rules.x 2 dom(�)� ` x : �(x) (T-VAR)�; x:A ` e : B� ` �x:A:e : A(B (T-ARR-I)�1 ` e1 : A(B �2 ` e2 : A�1;�2 ` (e1 e2) : B (T-ARR-E)�1 ` e1 : A1 �2 ` e2 : A2�1;�2 ` e1
 e2 : A1
A2 (T-TENS-I)�1 ` e1 : A1
A2�2; x:A1; y:A2 ` e2 : B�1;�2 ` let e1=x
 y in e2 : B (T-TENS-E)� ` e1 : A1 � ` e2 : A2� ` he1; e2i : A1 �A2 (T-PROD-I)� ` e : A1 � A2 i 2 f1; 2g� ` e:i : Ai (T-PROD-E)

op has arity (A1; : : : ; An)A; ` ei : Ai for i = 1 : : :n� ` op(e1; : : : ; en) : A (T-OP)

The rules are set up in such a way that when � ` e : A
then all the free variables of e are mentioned in � and they

are used at most once in e. To be used at most once is

slightly more generous than to occur at most once. Namely,

by rule T-PROD-I, a variable may occur in both compon-

ents of a cartesian product (A � B). For example, we have

2

�x:A:hx; xi : A(A�A, but not �x:A:x
x : A(A
A.

There is a coercion from tensor product (A
B) to cartesian

product (�), namely �z:A
B:let t=x
y in hx; yi, but not

vice versa. The only “candidate” �z:A�B:z:1
 z:2 is not

well typed because rule TENS-I requires both components

to have disjoint sets of variables.

Notice that an operator is applicable to closed terms only.

This is the reason why it is not possible to encode operators

by constants of functional type.

3.1 Settheoretic interpretation

We assume for every base type A a set [[A]], for example[[N]] = N and extend this inductively to all types by the

clauses [[A(B]] = [[A]]![[B]], [[A
 B]] = [[A]] � [[B]],[[A � B]] = [[A]] � [[B]]. An environment for a context �
is a function � mapping each variable x 2 dom(�) to an

element �(x) 2 [[�(x)]].
We also assume an assignment of functions[[op]] 2 [[A]]1 � � � � � [[An]]![[A]]

for each operator op of arity (A1; : : : ; An)A.

Relative to such interpretation of operators we can inter-

pret a term � ` e : A as a function [[e]] mapping environ-

ments for � to elements of [[A]] in the usual way.

3.2 Size function

We want to assign a partial size function sA : [[A]]!N
to every type A. To do this we assume such size function

for every basic type, for example sN(x) = jxj, and extend

this to all types by the following inductive definitionsA
B((u; v)) = sA(u) + sB(v)sA�B((u; v)) = max(sA(u); sB(v))sA(B(f) = minfc j 8a2 [[A]]:sB(f(a)) � c + sA(a)g
In the last clause a ranges over those elements of [[A]] for

which sA(a) is defined. It is assumed that in this casesB(f(a)) is also defined; otherwise sA(B(f) will be un-

defined. It will likewise be undefined if no c with the re-

quired property exists. This is the primary source for un-

definedness of s.

Now denotations of terms are non-size-increasing in the

following sense.

Proposition 3.1 Suppose that for each operator op of arity(A1; : : : ; An)A and elements vi 2 [[Ai]] with sAi(vi) =0 we have sA([[op]](v1; : : : ; vn)) = 0. In particularsA([[c]]) = 0 for each constant c : A.

If � is an environment for � such that s�(x)(�(x)) is

defined for each x 2 dom(�) then sA([[e]]�) is also defined

and moreoversA([[e]]�) � Xx2dom(�) s�(x)(�(x))
We remark that this result will not in itself be used later

on; it merely serves as a motivation for the signature we

are going to introduce next. The proof that all first-order

functions are polynomial time computable requires a more

sophisticated interpretation given in Section 5.

4 Inductive types and iteration

We will now introduce base types and operators (in par-

ticular those for recursion). This will happen in such a way

that the premises to Proposition 3.1 are satisfied.

We start by introducing a type of integers N with [[N]] =N and sN(x) = jxj. We further introduce a constant 0 : N
with [[0]] = 0. Clearly, sN(0) = 0.

In order to construct numerals we would like to introduce

constants for the binary successor functions S0; S1 : N(N
with meaning [[S0]](x) = 2x and [[S1]](x) = 2x + 1.

However, these functions increase the size of their argument

by one and so we would have sN(N([[S0]]) = 1 rather than0.

In order to fix this problem we introduce a new base type3with interpretation [[3]] = f�g and size function s3(�) =1. Now we can use the following typing for the successor

functions S0 : 3(N(NS1 : 3(N(N
with interpretation [[S0]](�; x) = 2x[[S1]](�; x) = 2x+ 1
Now, indeed, s([[S0]]) = s([[S1]]) = 0 as required.

Next, for each type A we introduce an operator itNA of

arity (A;3(A(A;3(A(A)N(A
for recursion on notation. The semantics of this operator is

given by [[itN(g; h0; h1)]] = f wheref(0) = [[g]]f(2(x + 1)) = [[h0]](�; f(x+ 1))f(2x + 1) = [[h1]](�; f(x))
Induction on x shows that itNA(g; h0; h1) is non-size-

increasing if g; h0; h1 are so that Prop. 3.1 continues to hold

in the presence of itNA.

Notice that the typing of itNA as an operator rather than

a higher-order constant, hence the fact that the functions

3

[[g]]; [[h0]]; [[h1]] do not increase the size, is crucial here. If h0
or h1 increase the size by a constant (as would be the case if

they were allowed to be variables) then itN(g; h0; h1) would

multiply the size by that constant thusviolating the intended

invariant.

From itN we can define an operator for primitive recur-

sion: If g : X, h0; h1 : 3((X � N)(X are closed terms

as indicated then we can obtainrecN(g; h0; h1) : N(X
with semantics [[recN(g; h0; h1)]] = f wheref(0) = [[g]]f(2x) = [[h0]](?)(f(x); x) when x > 0f(2x + 1) = [[h1]](?)(f(x); x)
by invoking itN with result type A = X�N and parameters

constructed from g; h0; h1 in the obvious way. This gives

a function N(X � N from which we obtain the desired

function by projection.

Notice that due to the cartesian product � as opposed to
 in a primitive recursion using recN we can access either

the recursion variable or make a recursive function call but

are not allowed to do both. It is not possible to define recN
with
 instead of �.

From recN we can in turn define a constant for case dis-

tinction: caseN : (X � (3(N(X)�(3(N(X))(N(X
with semantics[[caseN]](g; h0; h1)(0) = g[[caseN]](g; h0; h1)(2(x+ 1)) = h0(x+ 1)[[caseN]](g; h0; h1)(2x+ 1) = h1(x)
where this time the arguments g; h0; h1 may contain para-

meters. To do this, we invoke recN with the higher-order

result type (X � ((N(X) � (N(X)))(X
and the obvious arguments.

The cartesian product (as opposed to
) in the type ofcaseN is a “feature”; it means that a variable can be used in

each branch and still count as linear. Notice that we only

need to introduce itNA as syntactic primitive; recN and caseN
are then definable using just affine linear lambda calculus.

Example Using these building blocks it is easy to define

an addition function

add : N(N(N(N

such that [[add]](x; y; c) = x + y + (c (mod 2)). All we

need to do is to translate the obvious recursive equations

into a formal definition involving recN and caseN.

The obvious definition of multiplication in terms of ad-

dition is not possible since it is nonlinear; nevertheless mul-

tiplication is definable by the expressivity result below in

Section 4.3.

However, it is easy to define the function pad(x; y) =x[y] + y.

Notice that we can not define the function f : N - N
from the introduction given byf(0) = 1f(x) = 4f(� x2�)
since it exhibits quadratic growth. Defining it by diagon-

alising pad violates linearity. The obvious formalisation

of the recursive definition would use itNA with result typeA = N and argumentsg = 0h0 = h1 = �c:3:�z:N:S0(c)(S0(c)(z))
However the last definition is not type correct because the

variable c:3 is used twice.

This illustrates the restricting effect of the 3-resource.

We can only apply as many constructor symbols (S0; S1) as

we have variables of type3 in our local context.

4.1 Lists and trees

Similarly, we can introduce a type of lists L(A) for each

type A (formally by extending the grammar for the types

with the clause : : : j L(A) j). The set-theoretic semantics of

the new type former is given by [[L]](X) = X? and the size

function issL(A)([a1; : : : ; an]) = n+ nXi=1 sA(ai)
The usual constructor functions for lists give rise to con-

stants nilA : L(A)consA : 3(A(L(A)(L(A)
Taking the length of a list to be merely the sum of the sizes

of its entries would be unreasonable as the entries might all

have zero size, e.g. we could have A = N(N and ai =�x:N:x.

For each type X we introduce an operator itL(A)X of arity(X;3(A(X(X)L(A)(X
with semantics [[itL(A)(g; h)]] = f wheneverf([]) = [[g]]f(a :: l) = [[h]](�)(a)(f(l))

4

As in the case of integers we can define an operator recL(A)
which from g : X and h : 3(A((X � L(A))(X
constructs recL(A)(g; h) : L(A)(X with the obvious se-

mantics and also a case construct.

Likewise we can define binary labelled trees T(A) with

constructorsleaf : A(T(A)node : 3((T(A)
 T(A))(T(A)
The set [[T(A)]] then consists of binary trees with both

leaves and nodes labelled with elements of [[A]]. The size

of such a tree is given by the number of its nodes plus the

sizes (w.r.t. sA) of all its labels.

We can then justify an iteration construct itT(A)X of arity(A(X;3(A(X(X(X)T(A)(X
with semantics given by f = [[itT(A)X]](g; h) ifff(leaf(a)) = g(a)f(node(a; l; r)) = h(a; f(l); f(r))
By following this pattern other inductively defined data-

types can be introduced as well.

We remark that in the definition of f(node(a; l; r)) two

recursive calls to f are made which indicates that it is not

easily possible to encode trees in terms of natural numbers

or lists. We also remark that the type of entries in a tree type

need not be basic; it can be functional, a list type or a tree

type itself. The same goes for the type of entries in a list.

We also introduce a base type of Boolean values B with[[B]] = ftt; ffg and size function sB(x) = 0. We can justify

constants tt : B; ff : B and a construct for case distinction

if : B(A �A(A
The cartesian product as opposed to a tensor product sig-

nifies that a variable may occur in both branches of a case

distinction without violating linearity.

4.2 Examples

Concatenation of lists @ : L(A)(L(A)(L(A) is defin-

able as@ =def itL(A)L(A)(L(A)(�l: L(A):l;�c:3:�a:A:�p:L(A)(L(A):�l0:L(A):cons(c; a; p(l)))
This readily allows us to produce the list of leaf labellings

of a tree (disregarding the labels in the nodes) as a function

leaves : T(A)(3(L(A) by

leaves =def itT(A)3(L(A)(�a:A:�c:3:cons(c; a; nil);�c1:3:�a:A:�l; r:3(L(A):�c2:3:(l c1)@(r c2))

The extra3-argument is needed because there is always one

more leaf than there are nodes. Similarly, we can define a

function nodes : T(A)(L(A) giving the list of node la-

bellings. If we want to get the list of all labels we need an-

other tree type in which leaves also require a 3-argument.

For our trees this function increases the size hence cannot

be representable.

For a more ambitious example we will now turn to the in-

sertion sort algorithm mentioned in the introduction. We as-

sume a closed comparison function leq : (A
A)(B
A
A which besides comparing two elements also gives them

back for further processing. The full paper contains a more

general account of this seemingly ad-hoc modification.

Now, we use recL(A) with result type X = 3(A(L(A).
We define g : X byg = �x:3:�a:A:consA(x; a; nilA)
and h : 3(A((X � L(A))(X byh = �x:3:�a:A:�p:X � L(A):�y:3:�b:A:let leq(a
b)=t
 a
b in if tconsA(x; a; p:1(y; b))consA(x; b; consA(y; a; p:2)))
We put insertA =def recL(A)X (g; h).

If l : L(A) is sorted in the increasing order w.r.t. leq then

so is insertA(x; a; l) and its elements agree with a :: l.
Notice here how the use of a functional result type X in

the definition of insertA allows us to subsume its definition

under the recL(A) construct.

Now we obtain insertion sort as sort =itL(A)(nilA; insertA).
Similarly, the usual functional implementations of heap

sort (involving a binary search tree as an intermediate data

structure) or the function of type L(T(A))(L(T(A)) de-

scribing one step in Huffman’s algorithm are directly rep-

resentable in the system. In order to represent divide-and-

conquer algorithms such as quicksort one needs another

recursion pattern which can also be justified semantically.

The full paper will give details.

4.3 Expressivity

At present we are not in a position to characterise the

functions definable in affine linear lambda calculus with the

above iteration principles. The best we can offer is that

all functions computable in polynomial time and simultan-

eously in linear space are representable.

Proposition 4.1 Let f : L(A)(L(A) be a closed term. We

can define a closed term f# : L(A)(L(A) such that[[f#]](l) = f length(l)(l)
5

Proof. Define g : L(A)(L(A)(L(A) byg([])(l0) = l0g(a :: l)(l0) = f(g(l)(l0@[a]))
where l@l0 denotes the concatenation of l and l0 andlength(l) is the number of entries of l.

It is clear that this can be translated into a legal defini-

tion of g using itL(A)L(A)(L(A). Induction readily shows that[[g]](l; l0) = [[f]]length(l)(l0@l).
Hence, we can put f#(l) = g(l)(nil). 2

Iterating the #-operation and composition allows us to iter-

ate f any polynomial (in length(l)) many times provided f
does not shorten its argument. Therefore, we can represent

linear space, polynomial time computable functions in the

following sense:

Theorem 4.2 Let f : N!N be computable in polynomial

time and linear space such that moreover jf(x)j � jxj.
Then f is the denotation of a closed term of type N(N.

Proof. We may assume that f is computed by a polyno-

mially time-bounded Turing machine M which has one I/O

tape and k worktapes, which is initialised by writing the in-

put on the I/O tape and on all the worktapes and which never

writes beyond the space occupied by this initialisation. The

one step function of this machine can be represented as a

closed term of type W(W where W = L(B
 : : :
 B)
with k + 1 factors correpsonding to the k + 1 tapes. It-

erating this function the required (polynomial) number of

times and composing with initialisation and output extract-

ing functions gives the result. 2
5 Polynomial-time

Our aim for the rest of this paper will be to prove that

whenever e : N(N is a closed term then [[e]] will be poly-

nomial time computable. We are at present not able to show

that [[e]] can also be computed in linear space, but are con-

fident that this is in fact the case. Work in this direction is

underway.

Our strategy is to assign certain untyped PTIME-

algorithms to terms in such a way that realisers for first-

order terms are algorithms for their set-theoretic denota-

tions. It simplifies the presentation if we first define this

realisation abstractly for an arbitrary BCK-algebra (the

affine-linear analogue of combinatory or SK-algebra) and

then show how untyped PTIME-algorithms can be organ-

ised as such an algebra and how the iteration constructs can

be interpreted.

Definition 5.1 A BCK-algebra is given by a set H and a

function app : H � H - H, written as juxtaposition

associating to the left, and constants B;C;K 2 H such

that Bxyz = x(yz), Cxyz = xzy, Kxy = x.

An identity combinator I with Ix = x can be defined asI = CKK.

If H is a BCK-algebra and t a term in the language of

BCK-algebras and containing constants from H then if the

free variable x appears at most once in t we can find a term�x:t not containing x such that for every other term s the

equation (�x:t)s = [s=x]t is valid in H, i.e., all ground

instances of the equation hold in H.

For example, if x; y are variables then �f:fxy =C(CIx)y. Further abstraction yields the pairing combin-

ator T = �x�y�f:fxy. In fact, we have T = BC(CI).
Another important combinator is O = CK. We will sub-

sequently use untyped affine linear lambda terms to denote

elements of particular BCK-algebras.

5.1 Realisation of affine linear lambda calculus

Fix a BCK-algebra H and an assignment of a relationA� H � [[A]] for every basic type A.

Such relation can then be defined for all types by the

following assignments.e A(B f ()8a:8t:t A a) et B f(a)e A
B (a; b) ()9u:9v:e = Tuv ^ u A a ^ v B be A�B (a; b) ()eK A a ^ eO B b
If � is an environment for context� and t 2 H then we writet � � to mean that t = T t1(T t2(T : : :T tnK) : : :) wherex1; : : : ; xn is an enumeration of dom(�) and ti �(xi)�(xi).
Definition 5.2 Let H be a BCK-algebra. A subalgebra ofH is given by a set H0 � H which contains B;C;K and is

closed under application.

Proposition 5.3 Let H0 be a subalgebra of some BCK-

algebra H.

Suppose that for each operator op of arity(A1; : : : ; An)A we are given a function top : Hn0 - H0
such that vi Ai xi for i = 1 : : :n impliestop(v1; : : : ; vn) A [[op]](x1; : : : ; xn).

Then for each term � ` e : A there exists an elementte 2 H0 such that whenever t � � then te t A [[e]]�.

Example We can take H = N, ex = e + x, B = C =K = 0, H0 = f0g. It then turns out that e A a if and

only if sA(a) � e and Proposition 3.1 becomes a corollary

of Proposition 5.3.

6

5.2 Pairing function and length

Usually, complexity of number-theoretic functions is

measured in terms of the binary length j � j. This length

measure has the disadvantage that there does not exist an

injective function h�;�i : N � N - N such thatjhx; yij = jxj + jyj + O(1) (Thanks to John Longley for

a short proof of this fact.) The best we can achieve is a

logarithmic overhead:

Lemma 5.4 There exist injections num : N - N,h�;�i : N � N - N with disjoint images such thatnum(x), hx; yi as well as their inverses are computable in

linear time and such that moreover we havejhx; yij = jxj+ jyj+ 2jjyjj+ 3jnum(x)j = jxj+ 1
Recall that jjxjj= jajwhen a = jxj.

Now we define a length measure in such a way that the

above pairing function produces constant overhead:

Definition 5.5 The length function `(x) is defined recurs-

ively by `(num(x)) = jxj+ 1`(hx; yi) = `(x) + `(y) + 3`(x) = jxj, otherwise

The following estimates are proved by course-of-values in-

duction.

Lemma 5.6 For every x 2 N:jxj � `(x) � jxj=(1+ jjxjj)
It follows that if a function f : N - N is computable

in time O(`(x)n) then it is all the more computable in timeO(jxjn). Conversely, if f : N - N is computable in timeO(jxjn) then the function �x:f(num(x)) is computable in

time O(`(x)n).
More generally, in this case f itself is computable in timeO(`(x)n+1) as jxj=(1 + jjxjj) � jxj1�1=n for large x.

This means that by moving from j � j to ` we do not

essentially change complexity.

5.3 The BCKalgebra

The idea is that an element of the algebra to be con-

structed is an algorithm together with a polynomial and a

size value which together will determine the (maximum)

runtime of applications involving it. Unfortunately, using

arbitrary length measures rather than ` or j � j is delic-

ate as administrative intermediate computations are linear

in j � j, but may be exponential or worse in some arbitrarily

assigned size measure. So the run time bounds will depend

both on the pair (size value, polynomial) and on the actual

length `(x).
An algorithm will be formalised as a natural number us-

ing Gödelisation of some universal machine model, e.g.,

Turing machines or LISP expressions.

If e is such an algorithm then by feg(x) we denote the

computation of e on input x and also the result of this com-

putation if it terminates. By Time(feg(x)) we denote the

runtime of this computation.

By polynomial we will henceforth understand a unary

polynomial with nonnegative integer coefficients. Let us

write p[d] for the coefficient of xd in p. We define sum and

cut-off subtraction of polynomials coefficient-wise by(p1 + p2)[d] = p1[d] + p2[d](p1 �: p2)[d] = p1[d]�: p2[d]
We write p1 � p2 if p1[d] � p2[d] for all d. Note that ifp1 � p2 then p2�: p1+p1 = p2. We assume an encoding of

polynomials as integers in such a way that these operations

can be performed in time O(jp1j+ jp2j).
Let } be a monotone function such that jxj � }(`(x)),

e.g., }(u) = cu1+" for arbitrarily small " and appropriately

chosen constant c.
By monotonicity, we have }(u+v) � max(}(u); }(v)),

hence 2}(u+v) � }(u)+}(v) and accordingly jx1j+� � �+jxnj = O(}(`(x1) + � � �+ `(xn)))
Definition 5.7 The set C contains natural numbers of the

form x = hpx; hlx; axii where px is (an encoding of) a

polynomial, lx is a natural number thought of as “abstract

size”, and ax is (an encoding of) an algorithm.

In addition to thisC contains 0 and we define p0 = a0 =l0 = 0.

An application function onC is defined as follows: givene; x 2 C then whenever y = faeg(x) is defined thenex =def y provided that y 2 C and py � pe + px and ly �le + lx and `(y) � � + `(e) + `(x) and Time(faeg(x)) �d(�+ }(`(e) + `(x))) where � = (pe + px �: py)(le + lx)
and d = � + `(e) + `(x) � `(y).

In all other cases ex =def 0.

We call � the polynomial allowance of the applicatione x and d its defect.

Ideally, we would like to allow just time � for application

but as said above we also have to allow time for administrat-

ive computations which are linear in jej + jxj hence linear

in }(`(e) + `(x)). By padding the `-length we can always

blow up the defect so as to account for an arbitrary linear

factor, see Lemma 5.9 below.

The reason for the use of subtraction in the definition of

polynomial allowance and defect has to do with the defin-

ability of composition and is explained in more detail in [4].

The verification of composition makes essential use of this.

7

Proposition 5.8 There exists a constant such that the ap-

plication ex is computable in timeT = d � (� + }(`(e) + `(x) +))
where � = (pe + px �: pex)(le + lx) and d = � + `(e) +`(x)�: `(ex).
Proof. Simulate faeg(x) for at most d0(�0 + }(`(e) +`(x))) steps where �0 = (pe + px)(le + lx) and d0 =�0 + `(e) + `(x). If the computation has terminated by

then check whether the used-up time as well as the result

itself fulfill the requirements. If yes then output the result.

Otherwise or if the computation has failed to terminate just

output 0. The administrative overhead involved with simu-

lation and checking the conditions can be made up for by an

appropriate choice of the constant . 2
Lemma 5.9 Suppose that e is an algorithm such that

whenever x 2 C then feg(x) terminates with a result y 2 C
and, moreover, there exists a polynomial p and an integer l
such that whenever feg(x) = y thenly � l + lxpy � p+ px`(y) = � + `(x) +O(1)

Time(feg(x)) = O(� + jxj)
where � = (p + px �: py)(l + lx) then we can find e0 2 C
with pe0 = p and le0 = l such that e0x = feg(x) for allx 2 C.

Proof. We let e1 be an algorithm with the same beha-

viour as e, but with `-length padded out so as to make

up for the O-terms in the assumptions. We can then pute0 = hp; hl; e1ii. 2
Definition 5.10 The operation
 : N�N - N is defined

by px
y = px + pylx
y = lx + lyax
y = hax; ayi
Proposition 5.11 (Parametrisation) For every e 2 N
there exists e0 2 N with le0 = le; pe0 = pe such that for

each x; y 2 Nwe havee(x
 y) = e0xy

Proof. We define pe0 = pe and le0 = le as required. We

define z = ae0 in such a way thatpfzg(x) = pe + pxlfzg(x) = le + lxfafzg(x)g(y) = e(x
 y)
If this is done reasonably then the time needed to com-

pute fzg(x) is linear in jxj and the time needed to computefafzg(x)g(y) equalsT (e(x
 y)) + O(jxj+ jyj)
Moreover, we have `(fagz) � `(e) + `(x) + O(1). Here

we use the property of the `-length to allow pairing with

constant overhead.

Thus, by choosing `(ae0) sufficiently large we can

achieve that e0x = fae0g(x)
and also fafzg(x)g(y) = afzg(x)(y)
and hence the result. 2
Theorem 5.12 There exist constants B;C;K 2 C such

that the above application function defines a BCK-algebra

structure in such a way that lB = lC = lK = 0 andpB = pC = pK = 0.

Proof. Let comp be the obvious algorithm which com-

putes e(fx) from (e
f)
x. The runtime of fcompg((e
f)
 x) is ttot = t1 + t2 + ta wheret1 � d1(�1 + }(`(f) + `(x)) +)t2 � d2(�2 + }(`(e) + `(y)) +)ta = O(}(`(e) + `(f) + `(x) + `(y) + `(z)))
wherey = fxz = ey�1 = (pf + px �: py)(lf + lx)�2 = (pe + py �: pz)(le + ly)d1 = �1 + `(f) + `(x)� `(y)d2 = �2 + `(e) + `(y) � `(z)

Let � = (pe + pf + px �: pz)(le + lf + lx)d = � + `(e) + `(f) + `(x) � `(z)
8

Now, �1 + �2 � �
by monotonicity and cancellation of py. As a consequence

we obtain d1 + d2 � d
Therefore,t1 + t2 � d(� + }(`(f) + `(x)) + }(`(e) + `(y)))
and we can find a constant c such thatttot � (d+ c)(� + }(`(e) + `(f) + `(x)))
This allows us to define B0 2 C with by B0((e
f)
x) =e(fx). Namely, we put lB0 = pB0 = 0 and obtain aB0
by padding comp so as to make up for the constant c. The

combinator B is then obtained by parametrisation.

The other combinators are similar. 2
It follows immediately that C0 := fx 2 C j lx = 0g forms

a subalgebra of C.

We will now describe a realisation of the base types and

operators of our linear lambda calculus enabling us to prove

the main result.

Booleans are realised by K and O, respectively.

The sole element � of 3 is realised by the element �
defined by l� = 1 ^ p� = 0 ^ a� = 0
The relation N is defined inductively byTKK N 0t N x+ 1)TO(TK(T � t)) N 2(x+ 1)t N x)TO(TO(T � t)) N 2x+ 1
The relation L(A) is defined inductively byTKK L(A) []a A a0 ^ l L(A) l0 =)TO(T � (Tal)) L(A) a0 :: l0
The relation T(A) is defined inductively bya A a0 =) TKa T(A) leaf(a0)a A a0 ^ l T(A) l0 ^ r T(A) r0 =)TO(T � (Ta(T lr)))) T(A) node(a; l; r)
Theorem 5.13 All the operators described in Section 3 ad-

mit a realisation in C0.

Proof. The realisation of the constants is direct, for ex-

ample consA : 3(A(L(A)(L(A) may be realised by�c:�a:�l:TO(Tc(Tal))
Next, we consider the operator itT(A) the other ones being

similar.

Suppose we are given u 2 C0 and v 2 C0 such thatu A(X g and v 3(A(X(X(X h for appropriately

typed set-theoretic functions g; h. Our task is to exhibitw 2C0 such that t T(A) t0 implies wt X f(t0) where f :[[T(A)]]![[X]] is the function defined recursively byf(leaf(a)) = g(a)f(node(a; l; r)) = h(�; a; f(l); f(r))
If p is a polynomial and n 2 N we write n:p for the

polynomial p + � � �+ p with n summands.

Let t 2 C be given. We construct a term Bt 2 C such

that

– t T(A) t0) tBt X f(t0)
– lBt = 0
– pBt � (lt + 1):pu + lt:pv
– `(Bt) � c((lt+1) � `(u)+ lt � `(v)) for some constantc.

If t 6T(A) t0 for all trees t0 then Bt = 0. If t T(A) leaf(a0)
for some a0 2 [[A]] then Bt = �x:��a:u�a (recall that in this

case t = TKa, so indeed tBt = ua X f(t0). Also lBt =0 since u 2 C0 and pBt � pu since pB = pC = pK = 0.

If t T(A) node(a0; l0; r0), hence t = TO(T �(Ta(T lr))) and Bl; Br have already been defined, then we

put Bt = �x�m1:m1(�c�m2:m2(��a�m3:m3(��l��r:vc�a(�lBl)(�rBr))))
In evaluating tBt the variables c; �a; �l; �r will be “bound” toa; l; r and the claim tBt X f(t0) follows inductively. The

same goes for the other claims.

Finally, we observe that no actual computation takes

place in the definition of Bt. It merely consists of ar-

ranging an appropriate number of copies of u and v in a

pattern prescribed by the structure of t. Therefore, under

any reasonable implementation of the combinators B;C;K
the term Bt is computable in time O(jtj). This, together

with Proposition 5.8 shows that the function sending t totBt satisfies the premises of Lemma 5.9 with l = 0 andp(x) = c � (x+ 1) � (pu(x) + `(u)) + x � (pv(x) + `(v)).2
9

Corollary 5.14 If e : N(N is a closed term. Then [[e]] 2
PTIME.

Proof. Immediate from Prop. 5.8 using the fact that ifd N x then pd = 0. 2
6 Conclusion and further work

We have shown that the functions definable in affine lin-

ear lambda calculus with a certain iteration principle for in-

ductive datatypes are polynomial time computable. Apart

from linearity and the counting of constructor symbols us-

ing the3 base type the type system makes no further restric-

tions and in particular offers full-blown recursion principles

for inductive datatypes with arbitrary even higher-order res-

ult type.

Of course, rather than introducing3 as a type one could

introduce a more complex syntax with a family of judge-

ments� `n e : A and function spaces A(nB which would

provide access to n constructor symbols. Even better would

be some kind of type inference system which would start

from an ordinary functional program and try to annotate it

with 3-resources so that it would become typable in the

present system. That, however, falls beyond the scope of

this paper.

The semantic framework used in the proof is certainly

not limited to natural numbers, lists, and trees with the in-

dicated operators. New datatypes and operations can be

introduced as long as they admit a realisation in C0. An

example is an appropriately typed operator for divide-and-

conquer recursion. Another example is a general construct

which allows one to turn a function of type A(B into a

function of type A(B
 A which gives its argument back

for further processing as was needed in the insertion sort ex-

ample. It turns out that this is soundly possible iff the typeA has the property that d A x implies pd = 0.

Several people have suggested that the type system could

also be used to detect space bounded computation and, in a

similar vein, to avoid dynamic memory allocation. Prelim-

inary experiments in this direction which interpret 3 as a

pointer type in the C programming language are promising.

References

[1] S. Bellantoni, K.-H. Niggl, and H. Schwichtenberg.

Ramification, Modality, and Linearity in Higher Type

Recursion. in preparation, 1998.

[2] Stephen Bellantoni and Stephen Cook. New recursion-

theoretic characterization of the polytime functions.

Computational Complexity, 2:97–110, 1992.

[3] Vuokko-Helena Caseiro. Equations for De-

fining Poly-time Functions. PhD thesis, Uni-

versity of Oslo, 1997. Available by ftp from

ftp.ifi.uio.no/pub/vuokko/0adm.ps.

[4] Martin Hofmann. Typed lambda calculi for

polynomial-time computation, 1998. Habilitation

thesis, TU Darmstadt, Germany. To appear as Edin-

burgh University Technical Report.

[5] Daniel Leivant. Stratified Functional Programs and

Computational Complexity. In Proc. 20th IEEE Symp.

on Principles of Programming Languages, 1993.

10

