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Abstract

Sledgehammer is a tool that harnesses external first-order automatic theorem provers (ATPs) to
discharge interactive proof obligations arising in Isabelle/HOL. We extended it with LEO-II and
Satallax, the two most prominent higher-order ATPs, improving its performance on higher-order
problems. To explore their usefulness, these ATPs are measured against first-order ATPs and
built-in Isabelle tactics on a variety of benchmarks from Isabelle and the TPTP library. Sledge-
hammer provides an ideal test bench for individual features of LEO-II and Satallax, revealing
areas for improvements.

1. Introduction

Most automatic theorem provers (ATPs) are restricted to first-order formalisms, whereas
proof assistants typically support more expressive formalisms such as higher-order logic, type
theory, and set theory. Until five years ago, there were only two higher-order ATPs, LEO [6]
and TPS [1], both based on classical higher-order logic [18]. Since then, a new generation of
higher-order ATPs has emerged: LEO-II by Benzmüller et al. [7, 37] and Satallax by Brown et
al. [3, 17]. This development coincided with the extension of the TPTP (Thousands of Prob-
lems for Theorem Provers) infrastructure with a language for encoding problems in higher-order
logic (THF0) [8], a collection of benchmark problems [5, 36], and a competition category for
higher-order provers at CASC [31].

Also in recent years, the world of interactive theorem proving witnessed the development
and adoption of Sledgehammer [10, 29], a bridge between the proof assistant Isabelle/HOL [28]
and several first-order ATPs (including E [33], SPASS [38], Vampire [32], and Z3 [19]). When
invoked on a proof goal, Sledgehammer heuristically selects a few hundred background facts,
translates them to first-order logic, invokes the external provers in parallel, and reconstructs the
proofs in Isabelle. Sledgehammer performs remarkably well in empirical evaluations [10, 14]
and boosts user productivity [22]. But Paulson has remarked [29, § 4],

Sledgehammer’s performance on higher-order problems is unimpressive, and given
the inherent difficulty of performing higher-order reasoning using first-order theo-
rem provers, the way forward is to integrate Sledgehammer with an actual higher-
order theorem prover.
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This paper presents a double materialisation of this vision: an extension of Sledgehammer with
LEO-II and Satallax as additional backends (Section 3). The extension reuses many components
of Sledgehammer, including the parallel architecture and the relevance filter, but communicates
with the ATPs in the higher-order language THF0. Although LEO-II, Satallax, and Isabelle all
support “higher-order logic”, the translation from Isabelle to THF0 is nontrivial because THF0
does not cater for polymorphic types and axiomatic type classes, which are ubiquitous in Isabelle
formalisations.

The integration is useful for proving goals where higher-order features predominate, as
demonstrated by a few examples (Section 4). To ascertain more precisely the potential of LEO-II
and Satallax, we let them compete on standard Isabelle benchmarks against first-order ATPs
and built-in Isabelle tactics (Section 5.1). Although they are nowhere as powerful as the first-
order ATPs, they can occasionally solve problems that no other provers or tactics can solve. To
make the evaluation more informative, the Isabelle problems are complemented by a subset of
the TPTP library, which emphasises the higher-order aspects of the logic. By tuning Sledge-
hammer’s translation, we carried out a fine-grained evaluation (Section 5.2) of the higher-order
ATPs’ handling of types and λ-abstractions (two problem features we would expect them to han-
dle well) and large background theories. Sledgehammer then acts as a test bench for LEO-II and
Satallax, suggesting avenues for improvements.

2. Background

This paper combines several technologies—TPTP, LEO-II, Satallax, Isabelle/HOL, and
Sledgehammer—that are amply described elsewhere. This section briefly outlines them.

2.1. TPTP Formats

The TPTP infrastructure defines a hierarchy of languages [8, 35]. Of interest to us are the
first-order form (FOF) for first-order logic with equality over untyped terms, the core typed first-
order form (TFF0) that extends FOF with simple types (sorts), and the core typed higher-order
form (THF0) for higher-order logic. Ignoring minor syntactic differences, the strict inclusions
FOF⊂ TFF0⊂ THF0 hold.

THF0 types are either type constants κ or the function typeσ→ τ, whereσ and τ are arbitrary
types. The types of propositions o and of individuals ι are predefined. The intended semantics
of THF0 is Henkin semantics with extensionality and Hilbert choice. We take some liberties
with the syntax, preferring traditional notations and omitting the apply operator @; thus, we
write f X Y rather than f @ X @ Y for the application of X and Y to the curried function f. We
do honour the TPTP convention that variable names start with an uppercase letter and constants
with lowercase. The use of sans serif for constants further emphasises this distinction.

2.2. LEO-II and Satallax

The higher-order automatic provers LEO-II [7] and Satallax [3, 16] have THF0 as their input
language. Both attempt to find a refutation from the negated conjecture and the axioms, amount-
ing to a proof of the original conjecture. To improve their effectiveness, both provers implement
strategy scheduling, which involves trying a sequence of option settings, each for a fraction of
the allotted time.

LEO-II implements a higher-order resolution calculus and periodically dispatches first-order
subproblems to a first-order prover, usually E, with which it cooperates. LEO-II features several
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optimisations, notably shared indexed terms [37] and a simple relevance filter that is activated for
problems that contain 100 axioms or more. Its proofs, expressed in the TSTP format, combine
native inferences with embedded E proofs [34].

Satallax is a tableau-based instantiation prover. It builds propositional approximations of a
THF0 problem and relies on the SAT solver MiniSat [20] to check them. In case of success,
Satallax can return an unsatisfiable core (a list of formulas that suffice to obtain a contradiction),
a Coq proof script, or a Coq proof term.

2.3. Isabelle/HOL

Isabelle [28] is a logical framework that provides a metalogic to encode the semantics of
object logics and a collection of basic definitions to manage inference in those logics. Isabelle
follows the LCF architecture: the logical kernel defines an abstract datatype of theorems, and
theorems are proved using only the methods made available by the kernel.

HOL is Isabelle’s most developed object logic. It is based on classical higher-order logic
(simple type theory) [18], augmented with Hilbert choice, polymorphism, and Haskell-style ax-
iomatic type classes [21, 40]. Users of Isabelle/HOL invariably work within a substantial body of
formalised mathematics that has been constructed on the foundation of pure higher-order logic,
including the concepts of orders, lattices, sets, functions, relations, numbers, and lists. We ad-
here to the Isabelle/HOL conventions for writing terms and rely on the reader’s discernment to
identify x in Isabelle with X in THF0, 0 with zero, () with unity, Cons with cons, and so on.

Isabelle/HOL includes several automatic proof tools, including a term-rewriting engine (the
simplifier), a tableau prover, and decision procedures for specific theories. It also works with
external provers through Sledgehammer.

2.4. Sledgehammer

The purpose of Sledgehammer is to prove theorems with no user effort using automatic the-
orem provers—historically, first-order resolution provers and SMT solvers [10, 25]. When acti-
vated (by a single mouse click), it packages up the formula to be proved along with a collection
of relevant facts (definitions, lemmas, or axioms) extracted from Isabelle’s libraries using a sim-
ple relevance filter [26]. The problems are translated to the provers’ respective input languages.
The provers run in parallel, either locally or over the Internet.

If a proof is found, Sledgehammer minimises it to remove redundant facts, then inserts a
metis or smt method call into the Isabelle formalisation to reconstruct the proof, with the short
list of referenced facts. The metis method is based on the built-in resolution prover of the same
name [30], whereas smt relies on the SMT solver Z3 [15]; both methods yield LCF-style proofs.

Translating Isabelle problems into the FOF and TFF0 languages supported by first-order
provers is one of the main technical problems in Sledgehammer, metis, and smt. Although Isa-
belle/HOL is based on higher-order logic, many formulas are largely first-order, with only a few
higher-order features. The translation is a two-step process:

1. The higher-order constructs are eliminated [25]. λ-abstractions are rewritten to combi-
nators (I, K, S, B, C) or to supercombinators (λ-lifting). Functions are passed varying
numbers of arguments via an explicit apply operator, hAPP. Boolean terms are converted
to formulas using a unary predicate, hBOOL. Connectives and quantifiers are mapped to
their first-order counterparts whenever possible; the remaining occurrences are embedded
as uninterpreted function symbols, called proxies. All these artefacts are confined to the
truly higher-order parts of the problem.
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2. The type information is encoded in the target logic [9, § 6.5]. For TFF0, the problem
is monomorphised, then its types are mapped to TFF0 types. For FOF, HOL types are
encoded using a combination of type arguments and either guards or tags. A type guard
takes the form of a predicate g(σ, X) that indicates whether variable X has type σ, where
σ is encoded as a term; for example, g(list(A), Xs) checks that Xs has type α list, where
the term variable A encodes α. A type tag is a function t(σ, t) that wraps the term t with
its type σ.

Example. Consider the following Isabelle/HOL conjecture, where f :: α→ β and h :: β→ γ:

map (λx. h ( f x)) xs = map h (map f xs)

The traditional guard- and combinator-based encoding, one of the many translations imple-
mented in Sledgehammer and metis, produces the following untyped first-order (FOF) formulas:

map(a, c, combB(h, f), xs) = map(b, c, h, map(a, b, f, xs))

g(fun(A, B), F) ∧ g(fun(B,C),G) ∧ g(A, X)−→
hAPP(combB(G, F), X) = hAPP(G, hAPP(F, X))

The λ-abstraction is rewritten using the B combinator, which is characterised by the second
equation—in HOL notation, B g f x = g ( f x). Partial functions are passed arguments via the ex-
plicit apply operator (hAPP). Type and term variables in the conjecture are translated to Skolem
constants: a, b, c, f, h, and xs. The polymorphic map function takes two type arguments encoded
as terms; for example, the (α→ β)→ α list→ β list instance of map is translated to map(a, b, . . .).
The encoding is complemented by typing axioms for the function symbols occurring in the prob-
lem, such as the following:

g(fun(a, b), f) g(fun(b, c), h)

g(fun(A, B), F) ∧ g(fun(B,C),G)−→ g(fun(A,C), comp(F,G))

The typing axioms are necessary to discharge the type guards occurring in the rest of the problem.

3. Bridging Isabelle and THF0

Sledgehammer’s translation module generates problems in the TPTP untyped first-order form
(FOF) and, since recently, monomorphic typed first-order form (TFF0). We have extended the
tool to produce THF0 as well. Although both Isabelle/HOL and THF0 are higher-order log-
ics, the translation is nontrivial because Isabelle features a metalogic and the HOL object logic
supports polymorphism and axiomatic type classes.

3.1. The Metalogic

Isabelle’s metalogic is an intuitionistic fragment of higher-order logic. The semantics inter-
prets the type prop of propositions and the function type α→ β. The metalogical operators are

=⇒ :: prop→ prop→ prop implication∧
:: (α→ prop)→ prop universal quantification

≡ :: α→ α→ prop equality
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HOL provides a type bool of Booleans, the constants False, True, and =, the connectives ¬, ∧,
∨, and −→, and the quantifiers ∀ and ∃. HOL is embedded in the metalogic via the constant
Trueprop :: bool→ prop, which is normally not shown to users. Isabelle provides methods to
translate terms and theorems involving prop, =⇒,

∧
, and ≡ into terms and theorems with bool,

−→, ∀, and = instead. This allows Sledgehammer to work in HOL, avoiding the metalogic
altogether.

3.2. Monomorphisation
THF0, the input logic of LEO-II and Satallax, only supports monomorphic types and terms.

We must therefore encode Isabelle/HOL’s polymorphism in THF0 or eliminate it somehow.
Sound and complete encodings of polymorphic types in a monomorphic or untyped logic are
well understood in a first-order context [9, 12]; unfortunately, their generalisations to higher-
order logic are flawed, as we demonstrate in Section 3.6.

We address this issue by monomorphising the problems before encoding them in THF0. This
involves instantiating polymorphic types with heuristically selected ground types. Once this
is done, THF0 types can be used to represent HOL types. The HOL Boolean type and function
space are mapped to their THF0 counterparts, whereas the remaining types are mapped to distinct
THF0 types. For example, nat→ (nat×nat→ bool)→ nat list becomes nat→ (prodnat,nat→ o)
→ listnat (where prodnat,nat and listnat are fresh atomic THF0 types).

Monomorphisation algorithms are necessarily incomplete [12, § 2], but our experience with
first-order provers is that monomorphisation-based schemes outperform the best complete type
encodings that rely on guards or tags [9, § 6.7.2]. Monomorphisation also relieves LEO-II and
Satallax from having to reason about type classes, since these are attached to type variables,
which are all instantiated by the monomorphiser.

Sledgehammer’s monomorphiser iteratively instantiates polymorphic formulas with relevant
monomorphic instances of their polymorphic symbols [13, § 2.2.1]. To ensure termination, the
iterations are limited to a number K. An upper bound ∆ on the number of new formulas curbs
the exponential growth.

Experiments with first-order provers found K = 3 and ∆ = 200 suitable, so that a problem
with 320 axioms will comprise at most 520 axioms after monomorphisation. For higher-order
provers, we decreased these limits to K = 2 and ∆ = 100 based on experiments similar to those
described in Section 5. Given formulas involving types nat and α list, two iterations suffice to
produce nat list and nat list list instances; adding more layers of list rarely helps in practice.
Increasing ∆ does help solve additional problems, but it can rapidly overwhelm the provers.

3.3. Translation Pipeline
An unusual aspect of our work is that since Sledgehammer normally targets first-order provers,

much of what we had to do was to tell it not to perform certain actions. Starting from Sledge-
hammer’s existing translation to monomorphic typed first-order logic (TFF0), we targeted the
THF0 format by following these steps:

1. Explicitly mark application using @, to comply with THF0.
2. Identify the HOL type bool with the THF0 type o, eliminating the need for hBOOL.
3. Identify the HOL function type with the THF0 function type and replace the explicit apply

operator hAPP with @.
4. Map higher-order (unpolarised) occurrences of HOL connectives, quantifiers, and equality

to the corresponding THF0 constructs, eliminating the need for proxies.
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5. Let λ-abstractions pass through the translation.
6. For Satallax, identify the Hilbert choice constant from HOL with the corresponding THF0

operator. (LEO-II currently does not support Hilbert choice.)

The translation of HOL terms to THF0 is central to the extension of Sledgehammer with
LEO-II and Satallax, but other parts of the machinery also needed some adjustments. The TPTP
format allows us to label axioms as being definitions. This does not affect the semantics of the
problem, but both LEO-II and Satallax tend to aggressively unfold definitions of the form c = t,
where c is a constant and t is a closed term. For all Isabelle definitions c x1 . . . xn = t selected
by the relevance filter, we experimented with having Sledgehammer generate a THF0 definition
c = (λx1 . . . xn. t). This also requires reordering the formulas so that constants are defined before
their first use, as expected by Satallax. Definitions had a clear positive impact on Satallax and an
equally clear negative impact on LEO-II, so we made this the default for only Satallax.

Isabelle includes large background theories, which users can further extend. Sledgehammer’s
relevance filter heuristically selects up to N background facts, where N is carefully chosen for
each prover. Although they make more goals provable, high values of N tend to overwhelm
provers. Based on our evaluation (Section 5.2), we set the defaults to N = 40 for LEO-II and
N = 60 for Satallax.

3.4. Proof Reconstruction
Unless we are prepared to trust Sledgehammer’s translation and the external provers, any

proofs found by LEO-II or Satallax should be validated by Isabelle.
For LEO-II, we extract the referenced facts from the TSTP proof returned and attempt to

re-find the proof with a metis or smt call, in the hope that no deep higher-order reasoning is nec-
essary. Since extensionality is built into THF0 but is an axiom in HOL, we detect applications
of LEO-II’s extensionality rule and supply the HOL axiom to the reconstructor. For Satallax,
we take the unsatisfiable core as the list of facts to pass to metis or smt, together with the ex-
tensionality axiom and the definitions occurring in the problems (since they are omitted in the
unsatisfiable core).

The metis and smt methods sometimes fail due to their incomplete, inefficient handling of
higher-order constructs (Section 2.4). Work has started on a step-by-step proof reconstruction
tactic for LEO-II as a more reliable option, similar in principle to the Z3-based smt method.

3.5. Problem Importer
Until recently, TPTP problems were imported into Isabelle using Sutcliffe’s TPTP2X tool

[36, § 4.3], which translated them into Isabelle theory files. This was inconvenient to Isabelle
users, so we extended Isabelle to parse and interpret TPTP problems (whether they are expressed
in CNF, FOF, TFF0, or THF0) directly as collections of HOL formulas. Once a problem has
been imported, it can be processed by a variety of provers and counterexample generators. The
version of Isabelle entered in CASC relies on this parser, as does the TPTP part of our evaluation
in Section 5.1.

3.6. The Trouble with Polymorphic Type Encodings
There appears to be no sound, complete, and efficient way to encode the polymorphic type

information of Isabelle/HOL in THF0 while identifying the HOL and THF0 function spaces
and equality. The traditional approaches [9, 25], based on type guards or type tags, admit no
generalisation to higher-order logic. Let us briefly see why.
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Type Guards. Type guards are predicates that restrict the range of variables. In first-order logic,
they take the form of a distinguished predicate g(σ, X) that checks whether variable X has type σ,
where σ is encoded as a term. A guard-based translation of the HOL theorems

0 6= (1::bit) f () = g () =⇒ f = (g ::unit→ α)

that mimics the traditional first-order approach would yield the THF0 axioms

zero 6= one (1)
g (fun unit A) F −→ g (fun unit A) G −→ F unity = G unity−→ F = G (2)

where zero, one, unity have type ι and F, G have type ι→ ι but are protected by g to guard against
ill-typed instantiations.

Already at this point, we face the issue that the second argument to the guard predicate g
should in general be of type ι, not ι→ ι. This problem arises from our wish to identify the HOL
function space with the THF one. (In contrast, the traditional first-order encoding treats higher-
order arguments in the same way as first-order arguments, giving them the type ι.) Let us pretend
this issue can be solved, perhaps via injections into ι.

Let ite (“if then else”) be a constant such that

ite true X Y = X ite false X Y = Y

and consider the instantiation

A := bit F := (λU. zero) G := (λU. ite (U = unity) zero one)

in (2). Both (λU. zero) and (λU. ite (U = unity) zero one) correspond to well-typed HOL terms, of
type unit→ bit. Assuming reasonable typing axioms for functions, the g guards in our instance
of (2) should be dischargeable; otherwise, the encoding would be incomplete. The remaining
assumption, F unity = G unity, reduces to zero = zero, i.e. true. Hence, from (2) we derive the
THF0 theorem

(λU. zero) = (λU. ite (U = unity) zero one) (3)

Although the sides of the equation encode HOL terms of type unit→ bit, they have type ι→ ι in
THF0. This gives us more than enough rope to derive a contradiction. Let

c = (ite (unity = zero) one zero)

By (1), we have c 6= unity. Hence,

(λU. zero) c = zero = one = (λU. ite (U = unity) zero one) c

by congruence and (3), contradicting (1). The encoding is unsound.
The above argument is admittedly rather technical. It may help to think of it in model-

theoretic terms. Axiom (1) ensures that the domain associated with ι has at least two distinct
elements, whereas (2) relies on the function space’s built-in semantics to force a cardinality of 1
onto ι. Taken together, the two axioms are unsatisfiable. In contrast, the original HOL axioms
are satisfiable because they operate on different types (bit versus unit).

It may be possible to repair the encoding by insisting that all functions that satisfy the guard
g (fun σ τ) return some fixed element, undefined τ, for arguments that do not satisfy g σ. (Ex-
plicit type arguments, such as τ in undefined τ, distinguish instances of polymorphic constants.)
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This scheme would effectively rule out the problematic instantiation of G in the counterexample
above. It also blends well with congruence of equality but forces us to translate an innocuous-
looking formula such as hd (Cons x xs) = x to something like

hd A (cons A X Xs) =
(
ite A (g A X ∧ g (list A) Xs) X (undefined A)

)
Any encoding based on this idea would be so cluttered as to be impractical.

Type Tags. Unlike type guards, type tags do not suffer from any obvious unsoundness, but they
are hopelessly incomplete because of poor interactions with the built-in β and η rules of higher-
order logic. To be effective, tags must generally appear around all terms and subterms, including
function applications. For the η rule, (λx. f x) = f , we could in principle supply the fully tagged
version

t (fun A B) (λX. t B ((t (fun A B) F) (t A X))) = t (fun A B) F

as an axiom along with the THF0 problem and hope that the built-in η rule will cause no harm.
However, there is no adequate substitute for the β rule, (λx. t[x])a = t[a], because the variable x
may occur at arbitrary positions in t[x], a situation that cannot be captured by inflexible, stratified
tags. Furthermore, the untypability of the guard predicate g mentioned above also plagues the
tag function t.

4. Examples

The following examples illustrate the use of LEO-II and Satallax in Sledgehammer. They
were chosen to demonstrate both the strengths and the weaknesses of the provers.

Finite Sums. The ∑ operator is formalised in Isabelle as a higher-order function of type (α→
β)→ α set→ β, with the constraint that β belongs to the type class of commutative monoids
under addition. The proof goal below, where ωn denotes a primitive nth root of unity, arises in a
formalisation of the fast Fourier transform (FFT):

n

∑
j=0

ω i
2n ω

i(2 j)
2n f (2 j+1) =

n

∑
j=0

ω i
2n
(
ω i j

n f (2 j+1)
)

The first time we looked at this goal, none of the standard tactics or first-order ATPs could solve
it within 30 seconds. In contrast, it took Satallax 22 seconds to find a proof relying on the
associativity of multiplication and the following cancellation property:

ω i(2 j)
2n = ω i j

n

Given these two lemmas, metis can re-find the proof almost instantly, but it requires that λ-lifting
is used and that the extensionality axiom is supplied:

by (metis (lifting) mult_ac(1) root_cancel1 ext)

Users often edit and shorten metis proofs to use auto or simp instead, making the proof more
idiomatic. The previous proof can be rewritten to use the simplifier as follows:

by (simp only: mult_ac(1) root_cancel1)
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This example is one of many goals from the FFT theory that only Satallax can solve in
reasonable time. It is difficult for first-order provers because equational reasoning takes place
under λ-abstractions. One might think that λ-lifting, by eliminating all λs, would address this,
but extensionality is then needed to compare lifted functions. First-order provers can deal with
extensionality, encoded as the axiom

(∀X. hAPP(F, X) = hAPP(G, X))−→ F= G

(omitting types), but the literal F= G dramatically increases the search space.1

Big O Notation. The “big O” notation can be defined as a polymorphic constant of type (α→ α)
→ (α→ α) set in HOL, where α must support various algebraic type classes. The constant is
defined by

O( f ) = {h : ∃c. ∀x. |h x| ≤ c · | f x|} = Collect (λh. ∃c. ∀x. |h x| ≤ c · | f x|)

The constant Collect builds a simply typed set from a characteristic function. Big O membership
is preserved by function composition in the following sense:

f ∈ O(g) =⇒ (λx. f (k x)) ∈ O(λx. g (k x))

To find the proof, we can unfold the definition of O and simplify using the equivalence x∈
Collect P = P x, yielding the trivial implication(

∃c. ∀x. | f x| ≤ c · |g x|
)
=⇒

(
∃c. ∀x. | f (k x)| ≤ c · |g (k x)|

)
If we call LEO-II and Satallax with the two necessary facts for 30 seconds, only LEO-II finds
a proof. However, adding more facts quickly overwhelms it. Once we have proved the fact, we
can try proving its instance

(λx. f x+g x) ∈ O(h) =⇒ (λx. f (k x)+g (k x)) ∈ O(λx. h (k x))

Here, the situation is reversed. Satallax notices that the conjecture is a higher-order instance of
the already proved lemma, despite the presence of dozens of extraneous facts. LEO-II cannot find
a proof even if we leave out all unnecessary facts, which Benzmüller attributes to an explosion
in the prover’s “extensional pre-unification algorithm” [4].

Associativity of Append. The append operation on lists is associative. We were hoping that the
higher-order ATPs would find a proof given only the induction rule for lists and the equational
specification of append. The results were disappointing: even with a 300-second timeout, neither
prover was able to guess the right instantiation for the higher-order variable in the induction
schema, namely

λxs. ∀ys zs. append xs (append ys zs) = append (append xs ys) zs

and carry out the proof from there. Both provers can find the proof if Sledgehammer preinstan-
tiates the higher-order variable based on the goal, but then the problem is essentially first-order
and well within the reach of the first-order ATPs.

1Resolution provers contain the proliferation of clauses by postponing paramodulations into variables (the only in-
ference that can instantiate F and G), but this delays necessary applications of extensionality [39]. For SMT solvers, the
main issue is the absence of obvious triggers (syntactic patterns that guide variable instantiations) [27].
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5. Evaluation

In this section, we attempt to quantify LEO-II’s and Satallax’s performance along two main
axes. First, we measure the provers’ usefulness as backends to Sledgehammer (Section 5.1). This
involves comparing them with the main first-order ATPs as well as Isabelle’s automatic tactics.
Second, we perform a more detailed analysis to determine how well LEO-II and Satallax cope
with large background theories, types, and λ-abstractions (Section 5.2). The benchmark data is
partitioned in three categories:2

– Judgement Day (1268 goals) consists of seven theories from the Isabelle distribution and
the Archive of Formal Proofs [23]. These theories were selected by Böhme and Nipkow
[14] and serve as the main benchmark suite for Sledgehammer.

– Arithmetic Extension of Judgement Day (616 goals) consists of three Isabelle/HOL theo-
ries that were used in evaluations of SMT solvers and type encodings [9, 10]. They involve
both linear and nonlinear arithmetic.

– TPTP THF0 (1000 goals) is a randomly chosen subset of the 2286 THF0 problems marked
as theorems in the TPTP 5.3.0 library that do not originate from Isabelle [36]. These
benchmarks have largely guided LEO-II’s and Satallax’s development.

The problems from all three categories were processed by Sledgehammer to generate input for
the ATPs. For the two Isabelle categories, the Sledgehammer output includes heuristically se-
lected background facts. For the TPTP THF0 category, all facts in the original problems were
included, so that the THF0 problems generated for LEO-II and Satallax are nearly identical to
the original problems.3

We used the following prover versions: LEO-II 1.3.4, Satallax 2.4, E 1.5, SPASS 3.8ds,
Vampire 1.8 (revision 1435), and Z3 4.0. We relied on the default Sledgehammer setup for the
first-order ATPs, as determined by previous evaluations, with time slicing to simulate strategy
scheduling [10, 11]. The Isabelle tactics include the simplifier, the tableau prover, the resolution
prover metis, and arithmetic decision procedures.

5.1. Usefulness as Backends
Table 1 presents the success rates of Isabelle’s automatic tactics, first-order ATPs, and higher-

order ATPs on the three benchmark categories. For each category and each prover (or class of
provers), both the percentage of solved goals (“Solved”) and the percentage of goals that were
uniquely solved by that prover (“Uniq.”) are shown.

The experiments were carried out on the same hardware as the original Judgement Day eval-
uation by Böhme and Nipkow [14, § 3]. Each ATP was run in a single thread with a wall-clock
time limit of 30 seconds per problem, and each Isabelle tactic was given 5 seconds. The external
provers were trusted.

LEO-II and Satallax solved among them 42.1% of Judgement Day, which is slightly more
than the Isabelle tactics but much less than the first-order ATPs. Nonetheless, Satallax’s unique
contribution of 0.6%, or 8 goals, puts it in respectable company with E (0.8%), SPASS (0.6%),

2The dataset is available at http://www.cl.cam.ac.uk/~ns441/files/testbench-data.tgz .
3There are some minor differences: the Sledgehammer setup renames the constants, may reorder the axioms, and is

more aggressive in labelling axioms as definitions.
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Judgement Day Arith. Ext. TPTP THF0
Solved Uniq. Solved Uniq. Solved Uniq.

Isabelle tactics 40.4 6.9 40.1 9.9 62.7 0.9

First-order ATPs 64.7 15.7 49.8 13.1 70.2 4.5
E 54.3 0.8 36.0 0.6 49.6 0.0
SPASS 54.3 0.6 36.9 0.8 49.6 0.0
Vampire 54.3 0.8 33.1 0.3 58.0 1.9
Z3 53.4 2.4 41.4 4.1 56.7 0.9

Higher-order ATPs 42.1 0.6 25.2 0.2 82.6 9.0
LEO-II 30.0 0.0 15.6 0.0 62.8 1.1
Satallax 38.4 0.6 23.1 0.2 77.9 4.3

All provers 72.4 – 60.1 – 88.2 –

Table 1: Success rates (%) of proof search

and Vampire (0.8%) and raises the overall success rate from 71.8% to 72.4%. The goals uniquely
solved by Satallax all involve reasoning about λs.

The results for Arithmetic Extension are less impressive for the higher-order ATPs. This is
not surprising since neither LEO-II nor Satallax is equipped with specialised reasoning engines
for arithmetic. As one would expect, the best performers in this category are Z3 and Isabelle’s
tactics, both of which feature arithmetic decision procedures.

Satallax dominates the TPTP THF0 category. The strong performance of LEO-II and Satallax
in this category was to be expected, since both provers have been tuned and tested against these
problems. Conversely, the first-order ATPs’ weaker results reflect the higher-order nature of
these benchmarks.

Table 2 shows the success rate of proof reconstruction after minimisation for the two Isabelle
categories as a percentage of all proofs found. Considering that the reconstructor methods metis
and smt are essentially first-order provers and employ the same techniques as Sledgehammer to
eliminate higher-order constructs, the reconstruction rates for LEO-II and Satallax are remark-
ably high. Unfortunately, reconstruction tends to fail precisely for the goals that are solved by
only Satallax, leaving the user with a short list of facts but no actual proof.

Judg. Day Arith. Ext.

LEO-II 98.4 97.9
Satallax 97.5 97.9
E 97.2 98.2

Judg. Day Arith. Ext.

SPASS 99.1 99.6
Vampire 98.7 97.5
Z3 99.9 95.3

Table 2: Success rate (%) of proof reconstruction

5.2. Feature-by-Feature Analysis
To evaluate specific features of the higher-order provers, we found it useful to include Vam-

pire and Z3 in our comparisons. These two provers can be seen as first-order cousins of the
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resolution prover LEO-II and the SAT-based Satallax, respectively.4 The problems generated for
Vampire and Z3 are in the TFF0 syntax, exploiting their native types (but not their support for
arithmetic). The benchmarks used for this section are the union of Judgement Day and Arith-
metic Extension, as generated by Sledgehammer.

Sledgehammer normally schedules multiple runs of an ATP, allotting a time slice to each
run and varying the number of relevant facts, type encoding, and prover options. For these
experiments, we disabled slicing and instead focused on three parameters, varying one at a time:
the number of facts selected by the relevance filter, the encoding of types, and the translation
scheme for λ-abstractions. Each prover invocation was assigned 6 GB RAM and a single core
clocked at 2.1 GHz for 30 wall-clock seconds.

Number of Facts. Figure 3 plots the success rate of the ATPs as a function of the maximum
number of facts selected by Sledgehammer’s relevance filter. The first-order ATPs were given
problems with TFF0 types and supercombinators (λ-lifting), whereas the higher-order ATPs re-
ceived THF0 types and λs. Because of monomorphisation, the generated problems may include
up to 100 more axioms than there are facts selected.
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Figure 3: Scalability with the number of facts

Satallax’s peak is at 60 facts, and performance degrades gracefully from that point. LEO-II’s
peak, at 40 facts, is lower and the degradation is slightly more rapid. Given that LEO-II is based
on a highly optimised first-order prover and includes its own relevance filter, we could have
expected it to scale better. We suspect that LEO-II’s inefficient encoding of higher-order types in
the untyped format supported by E is at cause. The next experiment will shed some light on this.

Types. Next, we want to measure the effectiveness of higher-order provers at handling higher-
order formalisations and compare it to how they handle first-order translations of those same
higher-order formalisations. In particular, higher-order problems are full of typing information.
For a higher-order ATP to be successful, it must handle types efficiently. Although it is difficult
to measure type handling directly, we can get a reasonably clear picture by exploiting Sledge-
hammer’s type encoding machinery.

We consider three groups of type encodings, according to their target logic: untyped first-
order logic (FOF), typed first-order logic (TFF0), and typed higher-order logic (THF0). For an

4Being LEO-II’s backend, E arguably is a closer cousin than Vampire. However, it lacks support for types, which we
use in our experiments.
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untyped target, Sledgehammer provides a wide range of encodings [9, § 6.5]. Here we selected
the four lightest sound encodings: polymorphic guards, polymorphic tags, monomorphic guards,
and monomorphic tags.

The main difference between first-order (TFF0) types and higher-order (THF0) types con-
cerns the function space: built-in rules such as β, η, and extensionality do not apply in the first-
order case, nor can λ-abstractions be used to instantiate function variables.

LEO-II Satallax Vampire Z3
20 f 200 f 20 f 200 f 20 f 200 f 20 f 200 f

FO poly.
{ guards 22.1 7.0 22.2 20.2 30.7 41.6 27.7 39.9

tags 20.2 7.5 19.3 15.4 28.4 41.6 27.7 40.5

FO mono.
{ guards 29.3 17.4 23.9 20.6 30.9 44.2 29.5 39.0

tags 27.8 16.7 22.2 17.9 31.0 45.2 29.5 38.9

native FO mono. types 29.7 19.4 26.4 26.4 31.1 48.0 29.5 39.7

native HO mono. types 28.6 21.9 27.0 26.4 – – – –

Table 4: Success rates (%) for the main type encodings

Table 4 shows the results of varying the type encoding. Each prover was given 20 and 200
facts (indicated as “20 f” and “200 f” in the heading), and the translation uniformly employed
λ-lifting. We observe the following:

– Native first-order types perform better than any encoding into untyped first-order logic
regardless of the prover, as one would expect.

– The gap between the first-order and higher-order ATPs on first-order problems indicates a
need to focus on scalability to larger problems. Although LEO-II is based on E, it performs
some reasoning of its own and relies on a heavy (tag-based) translation of types to first-
order logic.

– LEO-II performs better on problems where Sledgehammer eliminated the higher-order
features than on higher-order problems when only 20 facts are passed, but the situation is
reversed for 200 facts. The crossover is at around 100 facts. This suggests that LEO-II
focuses too much on the higher-order features of Isabelle problems.

– Monomorphisation-based encodings generally outperform polymorphic ones. Extrapolat-
ing from the data, we would expect a hypothetical higher-order polymorphic type encoding
(as considered in Section 3.6) to score a few percentage points above the best first-order
polymorphic encoding, falling short of overtaking the monomorphic encodings.

Considering the success of monomorphisation, the lack of support for polymorphism in LEO-II
and Satallax is not dramatic.

λ-Abstractions. Having tested the encoding of type information, we now turn to the translation
of λ-abstractions. We fix the type encoding to native first-order or higher-order monomorphic
types (whichever are available) and consider both 20-fact and 200-fact problems.
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We evaluate five λ translation schemes. The combinator and λ-lifting schemes were described
in Section 2.4. The disabled scheme replaces λs by unspecified fresh constants, effectively dis-
abling all reasoning under λs. The hybrid scheme unites combinators and λ-lifting: it charac-
terises each λ-lifted constant both using a lifted equation c x1 . . . xn = t and via combinators. The
native scheme keeps the λs in the generated problem.

In the context of THF0, the last four schemes are equally powerful: the ATPs can in principle
unfold all occurrences of (super)combinators, yielding native λs. To avoid aggressive unfolding,
the auxiliary equations that characterise (super)combinators are not labelled as THF0 definitions.

Table 5 presents the results. Satallax behaves as expected: the prover is more successful if
λs are represented by λs in the problem or, failing that, if they appear as (super)combinators. It
came as a surprise that, at 200 facts, LEO-II performs best when λ reasoning is disabled. This
seems to indicate that LEO-II is mishandling higher-order constructs, as we observed already in
connection with Table 4.

LEO-II Satallax Vampire Z3
20 f 200 f 20 f 200 f 20 f 200 f 20 f 200 f

Disabled 26.7 22.5 25.6 26.5 29.5 45.9 28.5 37.8
λ-lifting 28.6 21.9 27.0 26.4 31.1 48.0 29.5 39.7
Combinators 26.3 19.0 26.0 24.8 31.2 45.6 30.2 39.9
Hybrid 27.0 19.5 26.7 24.5 31.6 45.5 30.4 40.3
Native 27.0 21.6 28.5 28.8 – – – –

Table 5: Success rates (%) for the λ translation schemes

For years we have wondered how much Sledgehammer and the first-order ATPs are penalised
by their rudimentary handling of higher-order constructs. LEO-II and Satallax are not yet pow-
erful enough to provide a direct answer, but Tables 4 and 5 give an indication: in each table,
exploiting Satallax’s higher-order features increases its success rates by a few percentage points;
by extrapolating the Vampire and Z3 numbers, we get an idea of what a “highly optimised Satal-
lax” or “higher-order Vampire” would be capable of.

6. Related Work

There have been at least a dozen attempts at integrating first-order ATPs in proof assistants
over the past two decades. These are discussed in more detail elsewhere [10, 29]. Here we
restrict our focus to higher-order ATPs and their use in an interactive context. The venerable
system TPS forms the core of the student-friendly proof assistant ETPS (Educational Theorem
Proving System) [2]. LEO was designed primarily as a backend for ΩMEGA; proofs found by
LEO were reconstructed by TRAMP [24]. The development of LEO-II, LEO’s successor, was in
part motivated by a desire to extend Isabelle’s proving arsenal. Satallax can output Coq proofs
[17]: Coq users can invoke the ATP to produce proof scripts for problems in a monomorphic
simply typed fragment of type theory augmented with the classical axioms. In another mode of
operation, Satallax produces proof terms that can be checked by Coq.

On the evaluation side, the TPTP library is the de facto standard benchmark suite for first-
order and higher-order ATPs alike. Version 5.3.0 of the TPTP includes nearly 3000 THF0 prob-
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lems for testing higher-order reasoners (both provers and counterexample generators) from var-
ious sources [5, 36]. Specialised evaluations are carried out annually as competitions. Start-
ing with its 2009 edition, CASC [36] includes a higher-order proving division where Isabelle,
LEO-II, Satallax, and TPS take part. Competitions give developers an opportunity to show what
their tools are capable of. Evaluations such as that of Section 5 are different in that they give an
indication of how much mileage users can expect to get with the same tools but without extensive
tuning by the tools’ developers.

7. Conclusion

This paper described an integration of higher-order automatic theorem provers (ATPs) in
Isabelle/HOL via Sledgehammer. Despite their lack of maturity, LEO-II and especially Satallax
can occasionally discharge interactive goals that are beyond the effective reach of first-order
ATPs and built-in automatic tactics.

Since LEO-II is based on the first-order prover E, we hoped it would cope well with the
largely first-order problems produced by Sledgehammer, but our experiments revealed some
weaknesses. Such observations are harder to make for Satallax, because it is directly based on
a SAT solver and hence does not benefit from the optimisations implemented in state-of-the-art
first-order provers.

Both sides of the integration could obviously benefit from further work. On the Isabelle
side, a dedicated reconstruction method could work more reliably for truly higher-order proofs
than metis and smt; moreover, both LEO-II and Satallax provide dozens of options that could
be investigated. On the ATP side, much could be done to bring the performance of LEO-II and
Satallax closer to that of first-order provers; although monomorphisation works reasonably well
in practice, native support for polymorphism would be both more elegant and more complete.
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