
Relational Analysis of (Co)inductive Predicates,
(Co)algebraic Datatypes, and (Co)recursive Functions?

Jasmin Christian Blanchette

Institut für Informatik, Technische Universität München, Germany
blandontspammechette@in.tum.de

Abstract. This paper presents techniques for applying a finite relational model
finder to logical specifications that involve (co)inductive predicates, (co)algebraic
datatypes, and (co)recursive functions. In contrast to previous work, which fo-
cused on algebraic datatypes and restricted occurrences of unbounded quantifiers
in formulas, we can handle arbitrary formulas by means of a three-valued Kleene
logic. The techniques form the basis of the counterexample generator Nitpick for
Isabelle/HOL. As a case study, we consider a coalgebraic lazy list type.

1 Introduction

SAT and SMT solvers, model checkers, model finders, and other lightweight formal
methods are today available to test or verify specifications written in various languages.
These tools are often integrated in more powerful systems, such as interactive theorem
provers, to discharge proof obligations or generate (counter)models.

For testing logical specifications, a particularly attractive approach is to express
these in first-order relational logic (FORL) and use a model finder such as Kodkod
[30] to find counterexamples. FORL extends traditional first-order logic (FOL) with
relational calculus operators and the transitive closure, and offers a good compromise
between automation and expressiveness. Kodkod relies on a SAT solver and forms the
basis of Alloy [15]. In a case study, the Alloy Analyzer checked a mechanized version
of the paper proof of the Mondex protocol and revealed several bugs in the proof [27].

However, FORL lacks the high-level definitional principles usually provided in in-
teractive theorem provers, namely (co)inductive predicates, (co)algebraic datatypes, and
(co)recursive functions (Sect. 3). Solutions have been proposed by Kuncak and Jack-
son [21], who modeled lists and trees in Alloy, and Dunets et al. [10], who showed how
to translate algebraic datatypes and recursive functions in the context of the first-order
theorem prover KIV. In both cases, the translation is restricted to formulas whose prenex
normal forms contain no unbounded universal quantifiers ranging over datatypes.

This paper generalizes previous work in several directions: First, we lift the un-
bounded quantifier restriction by using a three-valued logic coded in terms of the binary
logic FORL (Sect. 4.2). Second, we show how to translate (co)inductive predicates,
coalgebraic datatypes, and corecursive functions (Sect. 5). Third, in our treatment of
algebraic datatypes, we show how to handle mutually recursive datatypes (Sect. 5.2).

The use of a three-valued Kleene logic makes it possible to analyze formulas such
as True ∨ ∀nnat. P(n), which are rejected by Kuncak and Jackson’s syntactic criterion.
? This work is supported by the DFG grant Ni 491/11-1.

Unbounded universal quantification is still problematic in general, but suitable defini-
tional principles and their proper handling mitigate this problem.

The ideas presented here form the basis of the higher-order counterexample gen-
erator Nitpick [5], which is included with recent versions of Isabelle/HOL [25]. As a
case study, we employ Nitpick on a small theory of coalgebraic (lazy) lists (Sect. 6). To
simplify the presentation, we use FOL as our specification language in the paper; issues
specific to higher-order logic (HOL) are mostly orthogonal and covered elsewhere [5].

2 Logics

2.1 First-Order Logic (FOL)
The first-order logic that will serve as our specification language is essentially the first-
order fragment of HOL [7, 12]. The types and terms are given below.

Types: Terms:
σ ::= κ (atomic type) t ::= xσ (variable)

| α (type variable) | cτ(t, . . . , t) (function term)
τ ::= (σ, . . . ,σ)→σ (function type) | ∀xσ. t (universal quantification)

The standard semantics interprets the Boolean type o and the constants Falseo, Trueo,
−→(o,o)�o (implication), '(σ,σ)�o (equality on basic type σ), and if then else(o,σ,σ)�σ.
Formulas are terms of type o. We assume throughout this paper that terms are well-typed
using the standard typing rules and usually omit the type superscripts. In conformity
with first-order practice, application of x and y on f is written f (x,y), the function type
()→ σ is identified with σ, and the parentheses in the function term c() are optional.
We also assume that the connectives ¬, ∧, ∨ and existential quantification are available.

In contrast to HOL, our logic requires variables to range over basic types, and it
forbids partial function application and λ-abstractions. On the other hand, it supports
the limited form of polymorphism provided by proof assistants for HOL [14, 25, 29],
with the restriction that type variables may only be instantiated by atomic types (or left
uninstantiated in a polymorphic formula).

Types and terms are interpreted in the standard set-theoretic way, relative to a scope
that fixes the interpretation of basic types. A scope S is a function from basic types to
nonempty sets (domains), which need not be finite.1 We require S(o) = {ff, tt}.

The standard interpretation JτKS of a type τ is given by

JσKS = S(σ) J(σ1, . . . ,σn)→ σKS = Jσ1KS ×·· ·× JσnKS → JσKS ,

where A→ B denotes the set of (total) functions from A to B. In contexts where S is
clear, the cardinality of JτKS is written |τ|.

2.2 First-Order Relational Logic (FORL)
Our analysis logic, first-order relational logic, combines elements from FOL and rela-
tional calculus extended with the transitive closure [15,30]. Formulas involve variables
and terms ranging over relations (sets of tuples drawn from a universe of atoms) of
arbitrary arities. The logic is unsorted, but each term denotes a relation of a fixed arity.

1 The use of the word “scope” for a domain specification is consistent with Jackson [15].

Formulas: Terms:
ϕ ::= false (falsity) r ::= none (empty set)
| true (truth) | iden (identity relation)
| m r (multiplicity constraint) | ai (atom)
| r ' r (equality) | x (variable)
| r ⊆ r (inclusion) | r+ (transitive closure)
| ¬ϕ (negation) | r.r (dot-join)
| ϕ ∧ ϕ (conjunction) | r× r (Cartesian product)
| ∀x∈r: ϕ (universal quantification) | r ∪ r (union)

| r− r (difference)
m ::= no | lone | one | some | if ϕ then r else r (conditional)

The universe of discourse is A = {a1, . . . ,ak}, where each ai is an uninterpreted atom.
Atoms and n-tuples are identified with singleton sets and singleton n-ary relations, re-
spectively. Bound variables in quantifications range over the tuples in a relation; thus,
∀x∈ (a1∪a2)×a3: ϕ(x) is equivalent to ϕ(a1×a3) ∧ ϕ(a2×a3).

Although they are not listed above, we will sometimes make use of ∨,−→, ∗, and ∩
as well. The constraint no r expresses that r is the empty relation, one r expresses that r
is a singleton, lone r⇐⇒ no r ∨ one r, and some r⇐⇒¬no r. The dot-join operator is
unconventional; its semantics is given by the equation

Jr.sK = {(r1, . . . ,rm−1, s2, . . . , sn) | ∃t. (r1, . . . ,rm−1, t)∈ JrK ∧ (t, s2, . . . , sn)∈ JsK}.

The operator admits three important special cases. Let s be unary and r, r′ be binary
relations. The expression s.r gives the direct image of the set s under r; if s is a singleton
and r a function, it coincides with the function application r(s). Analogously, r.s gives
the inverse image of s under r. Finally, r.r′ expresses relational composition.

The following FORL specification attempts to fit 30 pigeons in 29 holes:

vars pigeons = {a1, . . . ,a30}, holes = {a31, . . . ,a59}
var /0⊆ nest⊆ {a1, . . . ,a30}×{a31, . . . ,a59}
solve (∀p∈pigeons: one p.nest) ∧ (∀h∈holes: lone nest.h)

The variables pigeons and holes are given fixed values, whereas nest is specified with a
lower and an upper bound. The constraint one p.nest states that pigeon p is in relation
with exactly one hole, and lone nest.h that hole h is in relation with at most one pigeon.
Taken as a whole, the formula states that nest is a one-to-one function. It is, of course,
not satisfiable, a fact that Kodkod can establish in less than a second.

3 Definitional Principles

3.1 Simple Definitions

We extend our specification logic FOL with several definitional principles to introduce
new constants and types. The first principle defines a constant as equal to another term:

definition cτ where c(x̄)' t

Logically, the above definition is equivalent to the axiom ∀x̄. c(x̄)' t.

Provisos: The constant c is fresh, the variables x̄ are distinct, and the right-hand side
t does not refer to any other free variables than x̄, to any undefined constants or c, or to
any type variables not occurring in τ. These restrictions ensure consistency [32].

3.2 (Co)inductive Predicates
The inductive and coinductive commands define inductive and coinductive predicates
specified by their introduction rules:

[co]inductive pτ where
p(t̄11) ∧ ·· · ∧ p(t̄1`1) ∧ Q1 −→ p(ū1)...
p(t̄n1) ∧ ·· · ∧ p(t̄n`n) ∧ Qn −→ p(ūn)

Provisos: The constant p is fresh, and the arguments to p and the side conditions Qi do
not refer to p, undeclared constants, or any type variables not occurring in τ.

The introduction rules may involve any number of free variables ȳ. The syntactic
restrictions on the rules ensure monotonicity; by the Knaster–Tarski theorem, the fixed
point equation

p(x̄) ' ∃ȳ.
∨n

j=1
x̄' ūj ∧ p(t̄j1) ∧ ·· · ∧ p(t̄j`j) ∧ Qj

admits a least and a greatest solution [13, 26]. Inductive definitions provide the least
fixed point, and coinductive definitions provide the greatest fixed point.

As an example, assuming a type nat of natural numbers generated freely by 0nat and
Sucnat�nat, the following definition introduces the predicate even of even numbers:

inductive evennat�o where
even(0)
even(n)−→ even(Suc(Suc(n)))

The associated fixed point equation is

even(x) ' ∃n. x' 0 ∨ x' Suc(Suc(n)) ∧ even(n).

The syntax can be generalized to support mutual definitions, as in the next example:

inductive evennat�o and odd nat�o where
even(0)
even(n)−→ odd(Suc(n))
odd(n)−→ even(Suc(n))

Mutual definitions for p1, . . . , pm can be reduced to a single predicate q whose domain
is the disjoint sum of the domains of each pi [26]. Assuming Inl and Inr are the disjoint
sum constructors, the definition of even and odd is replaced by

inductive even_or_odd (nat,nat)sum�o where
even_or_odd(Inl(0))
even_or_odd(Inl(n))−→ even_or_odd(Inr(Suc(n)))
even_or_odd(Inr(n))−→ even_or_odd(Inl(Suc(n)))

definition evennat�o where even(n)' even_or_odd(Inl(n))
definition odd nat�o where odd(n)' even_or_odd(Inr(n))

3.3 (Co)algebraic Datatypes

The datatype and codatatype commands define mutually recursive (co)algebraic data-
types specified by their constructors:

[co]datatype (ᾱ)κ1 = C11
[
of σ̄11

]
| · · · | C1`1

[
of σ̄1`1

]
and . . .

and (ᾱ)κn = Cn1
[
of σ̄n1

]
| · · · | Cn`n

[
of σ̄n`n

]
The defined types (ᾱ)κi are parameterized by a list of distinct type variables ᾱ, provid-
ing type polymorphism. Each constructor Cij has type σ̄ij→ (ᾱ)κi.

Provisos: The type names κi and the constructor constants Cij are fresh and distinct,
the type parameters ᾱ are distinct, and the argument types σ̄ij do not refer to any other
type variables than ᾱ (but may refer to the types (ᾱ)κi being defined).

The commands can be used to define natural numbers, pairs, finite lists, and possibly
infinite lazy lists as follows:

datatype nat = 0 | Suc of nat datatype α list = Nil | Cons of (α, α list)
datatype (α, β)pair = Pair of (α, β) codatatype α llist = LNil | LCons of (α, α llist)

Defining a (co)datatype introduces the appropriate axioms for the constructors [26]. It
also introduces the syntax case t of Ci1(x̄1)⇒ u1 | . . . |Ci`i(x̄`i)⇒ u`i , characterized by
∀x̄j. (case Cij(x̄j) of Ci1(x̄1)⇒ u1 | . . . |Ci`i(x̄`i)⇒ u`i)' uj for j ∈ {1, . . . , `i}.

3.4 (Co)recursive Functions

The primrec command defines primitive recursive functions on algebraic datatypes:

primrec f τ1
1 and . . . and f τn

n where
f1(C11(x̄11), z̄11)' t11 . . . f1(C1`1(x̄1`1), z̄1`1)' t1`1...
fn(Cn1(x̄n1), z̄n1)' tn1 . . . fn(Cn`n(x̄n`n), z̄n`n)' tn`n

Provisos: The constants fi are fresh and distinct, the variables x̄ij and z̄ij are distinct
for any given i and j, the right-hand sides tij involve no other variables than x̄ij and z̄ij
and no type variables that do not occur in τi, and the first argument of any recursive
call must be one of the x̄ij’s. The recursion is well-founded because each recursive call
peels off one constructor from the first argument.

Corecursive function definitions follow a rather different syntactic schema, with a
single equation per function fi that must return type (ᾱ)κi:

coprimrec f τ1
1 and . . . and f τn

n where
f1(ȳ1) ' if Q11 then t11 else if Q12 then . . . else t1`1...
fn(ȳn) ' if Qn1 then tn1 else if Qn2 then . . . else tn`n

Provisos: The constants fi are fresh and distinct, the variables ȳi are distinct, the right-
hand sides involve no other variables than ȳi, no corecursive calls occur in the conditions

Qij, and either tij does not involve any corecursive calls or it has the form Cij(ūij).2 The
syntax can be relaxed to allow a case expression instead of a sequence of conditionals.

The following examples define concatenation for α list and α llist:

primrec cat (α list,α list)�α list where
cat(Nil, zs)' zs cat(Cons(y, ys), zs)' Cons(y, cat(ys, zs))

coprimrec lcat (α llist,α llist)�α llist where
lcat(ys, zs) ' case ys of LNil⇒ zs | LCons(y, ys′)⇒ LCons(y, lcat(ys′, zs))

4 Basic Translations

4.1 A Sound and Complete Translation

This section presents the translation of FOL to FORL, excluding the definitional prin-
ciples from Sect. 3. We consider only finite domains; for these the translation is sound
and complete. We start by mapping FOL types τ to sets of FORL atom tuples 〈〈τ〉〉:

〈〈σ〉〉= {a1, . . . ,a|σ|} 〈〈(σ1, . . . ,σn)→ σ〉〉= 〈〈σ1〉〉× · · ·×〈〈σn〉〉×〈〈σ〉〉.

For simplicity, we reuse the same atoms for distinct basic types. A real implementation
can benefit from using distinct atoms because it facilitates symmetry breaking [30].

For each free variable or nonstandard constant uτ, we generate the bounds decla-
ration var /0 ⊆ u ⊆ 〈〈τ〉〉 as well as a constraint Φ(u) to ensure that single values are
singletons and functions are functions:

Φ(uσ) = one u Φ(u(ς1,...,ςn)�ς) = ∀x1∈〈〈ς1〉〉, . . . , xn∈〈〈ςn〉〉: one xn.(. . . .(x1.u) . . .).

Since FORL distinguishes between formulas and terms, the translation to FORL is per-
formed by two mutually recursive functions, F〈〈t〉〉 and T〈〈t〉〉:3

F〈〈False〉〉= false T〈〈x〉〉= x

F〈〈True〉〉= true T〈〈False〉〉= a1

F〈〈t ' u〉〉= T〈〈t〉〉 ' T〈〈u〉〉 T〈〈True〉〉= a2

F〈〈t −→ u〉〉= F〈〈t〉〉 −→ F〈〈u〉〉 T〈〈if t then u1 else u2〉〉= if F〈〈t〉〉 then T〈〈u1〉〉 else T〈〈u2〉〉
F〈〈∀xσ. t〉〉= ∀x∈〈〈σ〉〉: F〈〈t〉〉 T〈〈c(t1, . . . , tn)〉〉= T〈〈tn〉〉.(. . . .(T〈〈t1〉〉.c) . . .)

F〈〈t〉〉= T〈〈t〉〉 ' T〈〈True〉〉 T〈〈to〉〉= T〈〈if t then True else False〉〉.

The metavariable c ranges over nonstandard constants, so that the T〈〈to〉〉 equation is
used for ' and −→ (as well as for ∀). The Boolean values false and true are arbitrarily
coded as a1 and a2 when they appear as FORL terms.

Theorem 4.1. The FOL formula P with free variables and nonstandard constants uτ1
1 ,

. . . , uτn
n is satisfiable for a given finite scope iff the FORL formula F〈〈P〉〉 ∧

∧n
j=1 Φ(uj)

with bounds /0⊆ uj ⊆ 〈〈τj〉〉 is satisfiable for the same scope.

2 Other authors formulate corecursion in terms of selectors instead of constructors [16].
3 Metatheoretic functions here and elsewhere are defined using sequential pattern matching.

Proof. Let JtKM denote the set-theoretic semantics of the FOL term t w.r.t. a model M
and the given scope S , let JϕKV denote the truth value of the FORL formula ϕ w.r.t.
a variable valuation V and the scope S , and let JrKV denote the set-theoretic seman-
tics of the FORL term r w.r.t. V and S . Furthermore, for v ∈ JσKS , let bvc denote the
corresponding value in 〈〈σ〉〉, with bff c = a1 and bttc = a2. Using recursion induction,
it is straightforward to prove that JF〈〈to〉〉KV ⇐⇒ JtKM = tt and JT〈〈t〉〉KV = bJtKMc if
V(uj) = bM(uj)c for all uj’s. Moreover, from a satisfying valuation V of the uj’s, we
can construct a FOL model M such that bM(uj)c = V(uj); the Φ constraints and the
bounds ensure that such a model exists. Hence, JF〈〈P〉〉KV ⇐⇒ JPKM = tt. ut

The translation is parameterized by a scope, which specifies the exact cardinalities
of the basic types occurring in the formula. To exhaust all models up to a cardinality
bound k for n basic types, a model finder must a priori iterate through kn combinations
of cardinalities and must consider all models for each of these combinations. This can be
made more efficient by taking the cardinalities as upper bounds rather than exact bounds
(Alloy’s default mode of operation [15, p. 129]) or by inferring scope monotonicity
[4, 21].

4.2 Approximation of Infinite Types and Partiality

Besides its lack of support for the definitional principles, the above translation suffers
from a serious limitation: It disregards infinite types such as natural numbers, lists, and
trees, which are ubiquitous in real-world specifications. Fortunately, it is not hard to
adapt the translation to take these into account in a sound (but incomplete) way.

Given an infinite atomic type κ, we consider a finite subset of JκKS and map every
element not in this subset to a special undefined value ⊥. For the type nat of natural
numbers, an obvious choice is to consider prefixes {0, . . . ,K} of N and map numbers
> K to ⊥. Observe that the successor function Suc becomes partial, with Suc K = ⊥.
The technique can also be used to speed up the analysis of finite types with a high
cardinality: We can approximate a 256-value byte type by a subset of, say, 5 values.

Leaving out some elements of atomic types means that we must cope with partiality.
Not only may functions be partial, but any term or formula can evaluate to⊥. The logic
becomes a three-valued Kleene logic [17]. Universal quantifiers whose bound variable
ranges over an approximated type, such as ∀nnat. P(n), will evaluate to either False (if
P(n) gives False for some n≤ K) or⊥, but never to True, since we do not know whether
P(K +1), P(K +2), . . . , are true.

Partiality can be encoded in FORL as follows. Inside terms, we let none (the empty
set) stand for⊥. This choice is convenient because none is an absorbing element for the
dot-join operator, which models function application; thus, f (⊥) =⊥. Inside a formula,
we keep track of the polarity of the subformulas: In positive contexts (i.e., under an even
number of negations), true codes True and false codes False or ⊥; in negative contexts,
false codes False and true codes True or ⊥.

The translation of FOL terms is performed by two functions, Fs〈〈t〉〉 and T〈〈t〉〉, where
s indicates the polarity (+ or −):

Fs〈〈False〉〉= false T〈〈x〉〉= x

Fs〈〈True〉〉= true T〈〈False〉〉= a1

F+〈〈t ' u〉〉= some (T〈〈t〉〉 ∩ T〈〈u〉〉) T〈〈True〉〉= a2

F–〈〈t ' u〉〉= lone (T〈〈t〉〉 ∪ T〈〈u〉〉) T〈〈if t then u1 else u2〉〉= if F+〈〈t〉〉 then T〈〈u1〉〉
Fs〈〈t−→u〉〉= F–s〈〈t〉〉 −→ Fs〈〈u〉〉 else if ¬F–〈〈t〉〉 then T〈〈u2〉〉
F+〈〈∀xσ. t〉〉= false if |〈〈σ〉〉|< |σ| else none

Fs〈〈∀xσ. t〉〉= ∀x∈〈〈σ〉〉: Fs〈〈t〉〉 T〈〈c(t1, . . . , tn)〉〉= T〈〈tn〉〉.(. . . .(T〈〈t1〉〉.c) . . .)
F+〈〈t〉〉= T〈〈t〉〉 ' T〈〈True〉〉 T〈〈to〉〉= T〈〈if t then True
F–〈〈t〉〉= T〈〈t〉〉 6' T〈〈False〉〉 else False〉〉.

In the equation for implication, −s denotes − if s is + and + if s is −. Taken to-
gether, (F+〈〈t〉〉, F–〈〈t〉〉) encode a three-valued logic, with (true, true) corresponding to
True, (false, true) corresponding to ⊥, and (false, false) corresponding to False. The
case (true, false) is impossible by construction.

When mapping FOL types to sets of FORL atom tuples, basic types σ are now
allowed to take any finite cardinality |〈〈σ〉〉| ≤ |σ|. We also need to relax the definition
of Φ(u) to allow empty sets, by substituting lone for one.

Theorem 4.2. Given a FOL formula P with free variables and nonstandard constants
uτ1

1 , . . . , uτn
n and a scope S, the FORL formula F+〈〈P〉〉 ∧

∧n
j=1 Φ(uj) with bounds /0 ⊆

uj ⊆ 〈〈τj〉〉 is satisfiable for S only if P is satisfiable for S.

Proof. The proof is similar to that of Theorem 4.1, but partiality requires us to compare
the actual value of a FORL expression with its expected value using ⊆ rather than =.
Using recursion induction, we can prove that JF+〈〈to〉〉KV =⇒ JtKM = tt, ¬JF–〈〈to〉〉KV =⇒
JtKM = ff , and JT〈〈t〉〉KV ⊆bJtKMc if V(u)⊆bM(u)c for all free variables and nonstandard
constants u occurring in t. Some of the cases deserve more justification:

– The F+〈〈t ' u〉〉 equation is sound because if the intersection of T〈〈t〉〉 and T〈〈u〉〉 is
nonempty, then t and u must be equal (since they are singletons).

– The F–〈〈t ' u〉〉 equation is dual: If the union of T〈〈t〉〉 and T〈〈u〉〉 has more than one
element, then t and u must be unequal.

– Universal quantification occurring positively can never yield true if the bound vari-
able ranges over an approximated type. (In negative contexts, approximation com-
promises the encoding’s completeness but not its soundness.)

– The if then else equation carefully distinguishes between the cases where the con-
dition is True, False, and ⊥. In the True case, it returns the then value; in the False
case, it returns the else value; and in the ⊥ case, it returns ⊥ (none).

– The T〈〈c(t1, . . . , tn)〉〉 equation is as before. If any of the arguments tj evaluates to
none, the entire dot-join expression yields none.

Moreover, from a satisfying valuation V of the uj’s, we can construct a FOL model
M such that V(uj) ⊆ bM(uj)c for all uj’s, by defining M(uj) arbitrarily if V(uj) = /0
or at points where the partial function V(uj) is undefined. Hence, JF+〈〈P〉〉KV implies
JPKM = tt. ut

Although our translation is sound, a lot of precision is lost for' and ∀. Fortunately,
by handling high-level definitional principles specially (as opposed to directly translat-
ing their FOL axiomatization), we can bypass the imprecise translation and increase the
precision. This is covered in the next section.

5 Translation of Definitional Principles

5.1 Axiomatization of Simple Definitions

Once we extend the specification logic with simple definitions, we must also encode
these in the FORL formula. More precisely, if cτ is defined and an instance cτ

′
occurs

in a formula, we must conjoin c’s definition with the formula, instantiating τ with τ′.
This process must be repeated for any defined constants occurring in c’s definition.

Given the command
definition cτ where c(x̄)' t

the naive approach would be to conjoin F+〈〈∀x̄. c(x̄)' t〉〉 with the FORL formula to
satisfy and recursively do the same for any defined constants in t. However, there are
two problems with this approach:

– If any of the variables x̄ is of an approximated type, the equation F+〈〈∀x̄. t〉〉= false
applies, and the axiom becomes unsatisfiable. This is sound but extremely impre-
cise, as it prevents the discovery of any model.

– Otherwise, the body of ∀x̄. c(x̄) ' t is translated to some (T〈〈c(x̄)〉〉 ∩ T〈〈t〉〉), which
evaluates to false whenever T〈〈t〉〉 is none for some values of x̄.

Fortunately, we can take a shortcut and translate the definition directly to the following
FORL axiom, bypassing F+ altogether (cf. Weber [31, p. 66]):

∀x1∈〈〈σ1〉〉, . . . , xn∈〈〈σn〉〉: T〈〈c(x1, . . . , xn)〉〉 ' T〈〈t〉〉.

Theorem 5.1. The encoding of Sect. 4.2 extended with simple definitions is sound.

Proof. Any FORL valuation V that satisfies the FORL axiom for a constant c can be
extended into a FOL model M that satisfies the corresponding FOL axiom, by setting
M(c)(v̄) = JtKM(v̄) for any values v̄ at which V(c) is not defined (either because v̄ is not
representable in FORL or because the partial function V(c) is not defined at that point).
The apparent circularity in M(c)(v̄) = JtKM(v̄) is harmless, because simple definitions
are required to be acyclic and so we can construct M one constant at a time. ut

5.2 Axiomatization of Algebraic Datatypes and Recursive Functions

The FORL axiomatization of algebraic datatypes follows the lines of Kuncak and Jack-
son [21]. Let κ=C1 of (σ11, . . . ,σ1n1) | · · · |C` of (σ`1, . . . ,σ`n`) be a datatype instance.
With each constructor Ci, we associate a discriminator Dκ�o

i and n selectors S κ�σik
ik

obeying Dj(Ci(x̄))' (i' j) and Sik(Ci(x1, ..., xn))' xk. For example, the type α list is
assigned the discriminators nilp and consp and the selectors head and tail:4

4 These names were chosen for readability; any fresh names would do.

nilp(Nil)' True nilp(Cons(x, xs))' False head(Cons(x, xs))' x

consp(Nil)' False consp(Cons(x, xs))' True tail(Cons(x, xs))' xs.

The discriminator and selector view almost always results in a more efficient SAT en-
coding than the constructor view because it breaks high-arity constructors into several
low-arity discriminators and selectors, declared as follows (for all possible i, k):

var /0⊆ Di ⊆ 〈〈κ〉〉 var /0⊆ Sik ⊆ 〈〈κ→ σik〉〉

The predicate Di is directly coded as a set of atoms, rather than as a function to {a1,a2}.
Let Ci〈r1, . . . ,rn〉 stand for Si1.r1 ∩ ·· · ∩ Sin.rn if n≥ 1, and Ci〈〉= Di for parameter-

less constructors. Intuitively, Ci〈r1, . . . ,rn〉 represents the constructor Ci with arguments
r1, . . . ,rn at the FORL level [10]. A faithful axiomatization of datatypes in terms of Di
and Sik involves the following axioms (for all possible i, j, k):

DISJOINTij: no Di ∩ Dj for i < j

EXHAUSTIVE: D1 ∪ ·· · ∪ D` ' 〈〈κ〉〉
SELECTORik: ∀y∈〈〈κ〉〉: if y⊆ Di then one y.Sik else no y.Sik

UNIQUEi: ∀x1∈〈〈σ1〉〉, . . . , xni ∈〈〈σni〉〉: lone Ci〈x1, . . . , xni〉
GENERATORi: ∀x1∈〈〈σ1〉〉, . . . , xni ∈〈〈σni〉〉: some Ci〈x1, . . . , xni〉

ACYCLIC: no supκ ∩ iden.

In the last axiom, supκ denotes the proper superterm relation for κ. We will see shortly
how to derive it from the selectors.

DISJOINT and EXHAUSTIVE ensure that the discriminators partition 〈〈κ〉〉. The four
remaining axioms, sometimes called the SUGA axioms (after the first letter of each
axiom name), ensure that selectors are functions whose domain is given by the cor-
responding discriminator (SELECTOR), that constructors are total functions (UNIQUE
and GENERATOR), and that datatype values cannot be proper superterms of themselves
(ACYCLIC). The injectivity of constructors follows from the functionality of selectors.

With this axiomatization, occurrences of Ci(u1, . . . ,un) in FOL are simply mapped
to Ci〈T〈〈u1〉〉, . . . ,T〈〈un〉〉〉, whereas case t of C1(x̄1)⇒ u1 | . . . |C`(x̄`)⇒ u` is coded as

if T〈〈t〉〉⊆D1 then T〈〈u?1 〉〉 else if . . . else if T〈〈t〉〉⊆D` then T〈〈u?` 〉〉 else none,

where u?i denotes the term ui in which all occurrences of the variables x̄i = xi1, . . . , xini

are replaced with the corresponding selector expressions Si1(t), . . . ,Sini(t).
Unfortunately, the SUGA axioms admit no finite models if the type κ is recursive

(and hence infinite), because they force the existence of infinitely many values. The
solution is to leave GENERATOR out, yielding SUA. The SUA axioms characterize pre-
cisely the subterm-closed finite substructures of an algebraic datatype. In a two-valued
logic, this is generally unsound, but Kuncak and Jackson [21] showed that omitting
GENERATOR is sound for existential–bounded-universal (EBU) sentences—namely,
the formulas whose prenex normal forms contain no unbounded universal quantifiers
ranging over datatypes.

In contrast, in our three-valued setting, omitting GENERATOR is always sound. The
construct Ci〈r1, . . . ,rni〉 sometimes returns none for non-none arguments, but this is not
a problem since our translation of Sect. 4.2 is designed to cope with partiality. Non-EBU
formulas such as True ∨ ∀nnat. P(n) become analyzable when moving to a three-valued
logic. This is especially important for complex specifications, because they are likely to
contain non-EBU parts that are not needed for finding a model.

Example 5.1. The nat list instance of α list would be axiomatized as follows:

DISJOINT: no nilp ∩ consp

EXHAUSTIVE: nilp ∪ consp' 〈〈nat list〉〉
SELECTORhead: ∀ys∈〈〈nat list〉〉: if ys⊆ consp then one ys.head else no ys.head

SELECTORtail: ∀ys∈〈〈nat list〉〉: if ys⊆ consp then one ys.tail else no ys.tail

UNIQUENil: lone Nil〈〉
UNIQUECons: ∀x∈〈〈nat〉〉, xs∈〈〈nat list〉〉: lone Cons〈x, xs〉

ACYCLIC: no supnat list ∩ iden with supnat list = tail+.

Examples of subterm-closed list substructures using traditional notation are {[], [0], [1]}
and {[], [1], [2,1], [0,2,1]}. In contrast, L = {[], [1,1]} is not subterm-closed, because
tail([1,1]) = [1] /∈ L. Given a cardinality, Kodkod systematically enumerates all corre-
sponding subterm-closed list substructures. �

To generate the proper superterm relation needed for ACYCLIC, we must consider the
general case of mutually recursive datatypes. We start by computing the datatype de-
pendency graph, in which vertices are labeled with datatypes and arcs with selectors.
For each selector S κ�κ

′
, we add an arc from κ to κ ′ labeled S. Next, we compute for

each datatype a regular expression capturing the nontrivial paths in the graph from the
datatype to itself. This can be done using Kleene’s construction [18; 19, pp. 51–53].
The proper superterm relation is obtained from the regular expression by replacing con-
catenation with relational composition, alternative with set union, and repetition with
transitive closure.

Example 5.2. Let sym be an atomic type. The definitions on the left-hand side give rise
to the dependency graph on the right-hand side:

datatype α list = Nil | Cons of (α, α list)

datatype tree = Leaf of sym | Node of tree list

The selector associated with Node is called children. The superterm relations are

suptree = (children.tail∗.head)+ suptree list = (tail ∪ head.children)+.

Notice that in the presence of polymorphism, instances of sequentially declared data-
types can be mutually recursive. �

With a suitable axiomatization of datatypes as subterm-closed substructures, it is easy to
encode primrec definitions. A recursive equation f (Ci(xσ1

1 , . . . , xσm
m), zσ

′
11 , . . . , zσ

′
nn) ' t

is translated to

∀y∈Di, z1∈〈〈σ′1〉〉, . . . ,zn∈〈〈σ′n〉〉: T〈〈 f (y, z1, . . . ,zn)〉〉 ' T〈〈t?〉〉,

where t? is obtained from t by replacing the variables xi with the selector expressions
Si(y). By quantifying over the constructed values y rather than on the arguments to
the constructors, we reduce the number of copies of the quantified body by a factor
of |〈〈σ1〉〉| · . . . · |〈〈σn〉〉|/ |〈〈κ〉〉| in the SAT problem. Although we focus here on primitive
recursion, general well-founded recursion with non-overlapping pattern matching (as
defined using, say, Isabelle’s function package [20]) can be handled in essentially the
same way.

Example 5.3. The recursive function cat from Sect. 3.4 is translated to

∀ys∈nilp, zs∈〈〈α list〉〉: zs.(ys.cat)' zs

∀ys∈ consp, zs∈〈〈α list〉〉: zs.(ys.cat)' Cons〈ys.head, zs.((ys.tail).cat)〉. �

Theorem 5.2. The encoding of Sect. 5.1 extended with algebraic datatypes and primi-
tive recursion is sound.

Proof. Kuncak and Jackson [21] proved that SUA axioms precisely describe subterm-
closed finite substructures of an algebraic datatype, and showed how to generalize
this result to mutually recursive datatypes. This means that we can extend the valu-
ation of the descriptors and selectors to obtain a model. For recursion, we can prove
JT〈〈 f (C(x1, . . . , xm),z1, . . . ,zn)〉〉KV ⊆ bJ f (C(x1, . . . , xm),z1, . . . ,zn)KMc by structural in-
duction on the value of the first argument to f and extend f ’s model as in the proof
of Theorem 5.1, exploiting the injectivity of constructors. ut

5.3 Axiomatization of (Co)inductive Predicates

With datatypes and recursion in place, we are ready to consider (co)inductive predicates.
Recall from Sect. 3.2 that an inductive predicate is the least fixed point p of the equation
p(x̄)' t[p] (where t[p] is some formula involving p) and a coinductive predicate is the
greatest fixed point. A first intuition would be to take p(x̄) ' t[p] as p’s definition. In
general, this is unsound since it underspecifies p, but there are two important cases for
which this method is sound.

First, if the recursion in p(x̄)' t[p] is well-founded, the equation admits exactly one
solution [13]; we can safely use it as p’s specification, and encode it the same way as a
recursive function (Sect. 5.2). To ascertain wellfoundedness, we can perform a simple
syntactic check to ensure that each recursive call peels off at least one constructor.
Alternatively, we can invoke an off-the-shelf termination prover such as AProVE [11] or
Isabelle’s lexicographic_order tactic [6]. Given introduction rules of the form p(t̄i1) ∧
·· · ∧ p(t̄i`i) ∧ Qi −→ p(ūi) for i ∈ {1, . . . ,n}, the prover attempts to exhibit a well-
founded relation R such that

∧n
i=1
∧`i

j=1 Qi −→
〈
tij, ui

〉
∈ R holds. This is the approach

implemented in Nitpick.
Second, if p is inductive and occurs negatively in the formula, we can replace these

occurrences by a fresh constant q satisfying q(x̄)' t[q]. The resulting formula is equi-
satisfiable to the original formula: Since p is a least fixed point, q overapproximates p

and thus ¬q(x̄) =⇒ ¬ p(x̄). Dually, this method can also handle positive occurrences
of coinductive predicates.

To deal with positive occurrences of inductive predicates, we adapt a technique from
bounded model checking [3]: We replace these occurrences of p by a fresh predicate rk
defined by the FOL equations

r0(x̄) ' False rSuc n(x̄) ' t[rn],

which corresponds to p unrolled k times. In essence, we have made the predicate well-
founded by introducing a counter that decreases by one with each recursive call. The
above equations are primitive recursive over the datatype nat and can be translated using
the approach shown in Sect. 5.2. The unrolling comes at a price: The search space for
rk is k times that of p directly encoded as p(x̄)' t[p].

The situation is mirrored for coinductive predicates: Negative occurrences are re-
placed by the overapproximation rk defined by

r0(x̄) ' True rSuc n(x̄) ' t[rn].

Theorem 5.3. The encoding of Sect.5.2 extended with (co)inductive predicates is sound.

Proof. We consider only inductive predicates; coinduction is dual. If p is well-founded,
the fixed point equation fully characterizes p [13], and the proof is identical to that
of primitive recursion in Theorem 5.2 but with recursion induction instead of struc-
tural induction. If p is not well-founded, q ' t[q] is satisfied by several q’s, and by
Knaster–Tarski pv q. Substituting q for p’s negative occurrences in the FORL formula
strengthens it, which is sound. For the positive occurrences, we have r0 v ·· · v rk v p
by monotonicity of the inductive definition; substituting rk for p’s positive occurrences
strengthens the formula. ut

Incidentally, we can mobilize FORL’s transitive closure to avoid the explicit un-
rolling for an important class of inductive predicates, linear inductive predicates, whose
introduction rules are of the form Q−→ p(ū) (the base rules) or p(t̄)∧ Q−→ p(ū) (the
step rules). Informally, the idea is to replace positive occurrences of p(x̄) with

∃x̄0. pbase(x̄0) ∧ p∗step(x̄0, x̄),

where pbase(x̄0) iff p(x̄0) can be deduced from a base rule, pstep(x̄0, x̄) iff p(x̄) can be
deduced by applying one step rule assuming p(x̄0), and p∗step is the reflexive transitive
closure of pstep. For example, an inductive reachability predicate reach(s) defined in-
ductively would be coded as a set of initial states reachbase and the small-step transition
relation reachstep. The approach is not so different from explicit unrolling, since Kodkod
internally unrolls the transitive closure to saturation. Nonetheless, on some problems the
transitive closure approach is several times faster, presumably because Kodkod unfolds
the relation inline instead of introducing an explicit counter.

5.4 Axiomatization of Coalgebraic Datatypes and Corecursive Functions

Coalgebraic datatypes are similar to algebraic datatypes, but they allow infinite values.
For example, the infinite lists [0,0, . . .] and [0,1,2,3, . . .] are possible values of the type
nat llist of coalgebraic (lazy) lists over natural numbers.

In principle, we could use the same SUA axiomatization for codatatypes as for
datatypes (Sect. 5.2). This would exclude all infinite values but nonetheless be sound
(although incomplete). However, in practice, infinite values often behave in surprising
ways; excluding them would also exclude many interesting models.

It turns out we can modify the SUA axiomatization to support an important class of
infinite values, namely those that are ω-regular. For lazy lists, this means lasso-shaped
objects such as [0,0, . . .] and [8,1,2,1,2, . . .] (where the cycle 1,2 is repeated infinitely).

The first step is to leave out the ACYCLIC axiom. However, doing only this is un-
sound, because we might obtain several atoms encoding the same value; for example,
a1 = LCons(0, a1), a2 = LCons(0, a3), and a3 = LCons(0, a2) all encode the infinite
list [0,0, . . .]. This violates the bisimilarity principle, according to which two values are
equal unless they lead to different observations (the observations being 0,0, . . .).

For lazy lists, we add the definition

coinductive ∼(α llist,α llist)�o where
LNil∼ LNil
x' x′ ∧ xs∼ xs′ −→ LCons(x, xs)∼ LCons(x′, xs′)

and we require that ' coincides with ∼ on α llist values. More generally, we gener-
ate mutual coinductive definitions of ∼ for all the codatatypes. For each constructor
C (σ1,...,σn)�σ, we add an introduction rule

x1 ≈1 x′1 ∧ ·· · ∧ xn ≈n x′n −→C(x1, . . . , xn)∼C(x′1, . . . , x
′
n),

where ≈i is ∼(σi,σi)�o if σi is a codatatype and ' otherwise. Finally, for each codata-
type κ, we add the axiom

BISIMILAR: ∀y,y′∈〈〈κ〉〉: y∼ y′ −→ y' y′.

With the SUB (SU plus BISIMILAR) axiomatization in place, it is easy to encode co-
primrec definitions. A corecursive equation f (yσ1

1 , . . . ,yσ1
n) ' t is translated to

∀y1 ∈ 〈〈σ1〉〉, . . . ,yn ∈ 〈〈σn〉〉: T〈〈 f (y1, . . . ,yn)〉〉 ' T〈〈t〉〉.

Theorem 5.4. The encoding of Sect. 5.3 extended with coalgebraic datatypes and prim-
itive corecursion is sound.

Proof. Codatatypes correspond to final coalgebras. They are characterized by selec-
tors, which are axiomatized by the SU axioms, and by finality, which is equivalent to
the bisimilarity principle [16,26]. Our finite axiomatization gives a subterm-closed sub-
structure of the coalgebraic datatype, which can be extended to yield a FOL model of
the complete codatatype, as we did for algebraic datatypes in the proof of Theorem 5.2.

The soundness of the encoding of primitive corecursion is proved by coinduction.
Given the equation f (ȳ) ' t, assuming that for each corecursive call f (x̄) we have
JT〈〈 f (x̄)〉〉KV ⊆ bJ f (x̄)KMc, we must show that JT〈〈 f (ȳ)〉〉KV ⊆ bJ f (ȳ)KMc. This follows
from the soundness of the encoding of the constructs occurring in the right-hand side t
and from the hypotheses. ut

6 Case Study: Lazy Lists

The codatatype α llist of lazy lists [26] is generated by the constructors LNilα llist and
LConsα�α llist�α llist. It is of particular interest to (counter)model finding because many
basic properties of finite lists do not carry over to infinite lists, often in baffling ways.
To illustrate this, we conjecture that appending ys to xs yields xs iff ys is LNil:

(lcat(xs, ys)' xs) ' (ys' LNil).

The function lcat is defined corecursively in Sect. 3.4. For the conjecture, our tool
Nitpick immediately finds the countermodel xs = ys = [0,0, . . .], in which a cardinality
of 1 is sufficient for α and α llist, and the bisimilarity predicate∼ is unrolled only once.
Indeed, appending [0,0, . . .] 6= [] to [0,0, . . .] leaves [0,0, . . .] unchanged.

The next example requires the following lexicographic order predicate:

coinductive �(nat llist,nat llist)�o where
LNil� xs
x≤ y−→ LCons(x, xs)� LCons(y, ys)
xs� ys−→ LCons(x, xs)� LCons(x, ys)

The intention of this definition is to define a linear order on lazy lists of natural numbers,
and hence the following properties should hold:

REFL: xs� xs ANTISYM: xs� ys ∧ ys� xs−→ xs' ys

LINEAR: xs� ys ∨ ys� xs TRANS: xs� ys ∧ ys� zs−→ xs� zs.

However, Nitpick finds a counterexample for ANTISYM: xs = [1,1] and ys = [1]. On
closer inspection, the assumption x ≤ y of the second introduction rule for � should
have been x < y; otherwise, any two lists xs, ys with the same head satisfy xs� ys. Once
we repair the specification, no more counterexamples are found for the four properties
up to cardinality 6 for nat and nat llist, within Nitpick’s default time limit of 30 seconds.
This is a strong indication that the properties hold. Andreas Lochbihler used Isabelle to
prove all four properties [23].

7 Related Work

The encoding of algebraic datatypes in FORL has been studied by Kuncak and Jackson
[21] and Dunets et al. [10]. Kuncak and Jackson focused on lists and trees. Dunets et al.
showed how to handle primitive recursion; their approach to recursion is similar to ours,
but the use of a two-valued logic compelled them to generate additional definedness
guards. The unrolling of inductive predicates was inspired by bounded model checking
[3] and by the Alloy idiom for state transition systems [15, pp. 172–175].

Another inspiration has been Weber’s higher-order model finder Refute [31]. It uses
a three-valued logic, but sacrifices soundness for precision. Datatypes are approximated
by subterm-closed substructures [31, pp. 58–64] that contain all datatype values built
using up to k nested constructors. This scheme proved disadvantageous in practice,

because it generally requires higher cardinalities to obtain the same models as with
Kuncak and Jackson’s approach. Weber handled (co)inductive predicates by expanding
their HOL definition, which in practice does not scale beyond a cardinality of 3 for the
predicate’s domain because of the higher-order quantifier.

The Nitpick tool, which implements the techniques presented here, is described in a
separate paper [5] that covers the handling of higher-order quantification and functions.
The paper also presents an evaluation of the tool on various Isabelle/HOL theories,
where it competes against Quickcheck [2] and Refute [31], as well as two case studies.

8 Conclusion

Despite recent advances in lightweight formal methods, there remains a wide gap be-
tween specification languages that lend themselves to automatic analysis and those that
are used in actual formalizations. As an example, infinite types are ubiquitous, yet most
model finders either spin forever [9, 24], give up immediately [8], or are unsound [1;
28, p. 164; 31] on finitely unsatisfiable formulas.

We identified several commonly used definitional principles and showed how to en-
code them in first-order relational logic (FORL), the logic supported by the Kodkod
model finder and the Alloy Analyzer. Our main contribution has been to develop three
ways to translate (co)inductive predicates to FORL, based on wellfoundedness, polarity,
and linearity. Other contributions have been to formulate an axiomatization of coalge-
braic datatypes that caters for infinite (ω-regular) values and to devise a procedure that
computes the acyclicity axiom for mutually recursive datatypes.

Our experience with the counterexample generator Nitpick has shown that the tech-
niques scale to handle real-world specifications, including a security type system and a
hotel key card system [5]. Although the tool is fairly new, one user has already reported
saving several hours of failed proof attempts thanks to its support for codatatypes and
coinductive predicates while developing a formal theory of infinite process traces [22].

Acknowledgment. I want to thank Sascha Böhme, Lukas Bulwahn, Andreas Loch-
bihler, Tobias Nipkow, Mark Summerfield, and the anonymous reviewers for suggesting
many improvements to this paper, and Alexander Krauss for helping to structure it.

References

1. W. Ahrendt. Deductive search for errors in free data type specifications using model gener-
ation. In A. Voronkov, ed., CADE-18, vol. 2392 of LNAI, pp. 211–225. Springer, 2002.

2. S. Berghofer and T. Nipkow. Random testing in Isabelle/HOL. In J. Cuellar and Z. Liu, eds.,
SEFM 2004, pp. 230–239. IEEE C.S., 2004.

3. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without BDDs.
In R. Cleaveland, ed., TACAS ’99, vol. 1579 of LNCS, pp. 193–207. Springer, 1999.

4. J. C. Blanchette and A. Krauss. Monotonicity inference for higher-order formulas. In J. Giesl
and R. Hähnle, eds., IJCAR 2010, LNCS. Springer, 2010. To appear.

5. J. C. Blanchette and T. Nipkow. Nitpick: A counterexample generator for higher-order logic
based on a relational model finder. In M. Kaufmann and L. Paulson, eds., ITP-10, LNCS.
Springer, 2010. To appear.

6. L. Bulwahn, A. Krauss, and T. Nipkow. Finding lexicographic orders for termination proofs
in Isabelle/HOL. In K. Schneider and J. Brandt, eds., TPHOLs 2007, vol. 4732 of LNCS, pp.
38–53. Springer, 2007.

7. A. Church. A formulation of the simple theory of types. J. Symb. Log., 5:56–68, 1940.
8. K. Claessen and A. Lillieström. Automated inference of finite unsatisfiability. In R. A.

Schmidt, ed., CADE-22, vol. 5663 of LNAI, pp. 388–403. Springer, 2009.
9. K. Claessen and N. Sörensson. New techniques that improve MACE-style model finding. In

MODEL, 2003.
10. A. Dunets, G. Schellhorn, and W. Reif. Bounded relational analysis of free datatypes. In

B. Beckert and R. Hähnle, eds., TAP 2008, vol. 4966 of LNCS, pp. 99–115. Springer, 2008.
11. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termination proofs

in the dependency pair framework. In IJCAR 2006, vol. 4130 of LNAI, pp. 281–286, 2006.
12. M. J. C. Gordon and T. F. Melham, eds. Introduction to HOL: A Theorem Proving Environ-

ment for Higher Order Logic. Cambridge University Press, 1993.
13. J. Harrison. Inductive definitions: Automation and application. In E. T. Schubert, P. J. Wind-

ley, and J. Alves-Foss, eds., TPHOLs 1995, vol. 971 of LNCS, pp. 200–213. Springer, 1995.
14. J. Harrison. HOL Light: A tutorial introduction. In FMCAD ’96, vol. 1166 of LNCS, pp.

265–269. Springer, 1996.
15. D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press, 2006.
16. B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. Bull. EATCS, 62:222–

259, 1997.
17. S. C. Kleene. On notation for ordinal numbers. J. Symb. Log., 3(4):150–155, 1938.
18. S. C. Kleene. Representation of events in nerve nets and finite automata. In J. McCarthy and

C. Shannon, eds., Automata Studies, pp. 3–42. Princeton University Press, 1956.
19. D. C. Kozen. Automata and Computability. Undergrad. Texts in C.S. Springer, 1997.
20. A. Krauss. Partial and nested recursive function definitions in higher-order logic. J. Auto.

Reas., 44(4):303–336, 2009.
21. V. Kuncak and D. Jackson. Relational analysis of algebraic datatypes. In H. C. Gall, ed.,

ESEC/FSE 2005, 2005.
22. A. Lochbihler. Private communication, 2009.
23. A. Lochbihler. Coinduction. In G. Klein, T. Nipkow, and L. C. Paulson, eds., The Archive of

Formal Proofs. http://afp.sourceforge.net/entries/Coinductive.shtml, Feb. 2010.
24. W. McCune. A Davis–Putnam program and its application to finite first-order model search:

Quasigroup existence problems. Technical report, ANL, 1994.
25. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order

Logic, vol. 2283 of LNCS. Springer, 2002.
26. L. C. Paulson. A fixedpoint approach to implementing (co)inductive definitions. In A. Bundy,

ed., CADE-12, vol. 814 of LNAI, pp. 148–161. Springer, 1994.
27. T. Ramananandro. Mondex, an electronic purse: Specification and refinement checks with

the Alloy model-finding method. Formal Asp. Comput., 20(1):21–39, 2008.
28. J. M. Schumann. Automated Theorem Proving in Software Engineering. Springer, 2001.
29. K. Slind and M. Norrish. A brief overview of HOL4. In O. A. Mohamed, C. M. noz, and

S. Tahar, eds., TPHOLs 2008, vol. 5170 of LNCS, pp. 28–32, 2008.
30. E. Torlak and D. Jackson. Kodkod: A relational model finder. In O. Grumberg and M. Huth,

eds., TACAS 2007, vol. 4424 of LNCS, pp. 632–647. Springer, 2007.
31. T. Weber. SAT-Based Finite Model Generation for Higher-Order Logic. Ph.D. thesis, Dept.

of Informatics, T.U. München, 2008.
32. M. Wenzel. Type classes and overloading in higher-order logic. In E. L. Gunter and A. Felty,

eds., TPHOLs 1997, vol. 1275 of LNCS, pp. 307–322. Springer, 1997.

