
Primitively (Co)recursive Definitions for Isabelle/HOL

Lorenz Panny, Jasmin Christian Blanchette, and Dmitriy Traytel

Fakultät für Informatik, Technische Universität München, Germany

Abstract. Isabelle/HOL has recently been enriched with a definitional package
for datatypes and codatatypes. The package introduces the specified types and
derives auxiliary constants and characteristic theorems, notably (co)recursors and
(co)induction principles. We now introduce support for high-level specifications
of (co)recursive functions, in the form of three commands: primrec, primcorec,
and primcorecursive. The commands internally reduce the specifications to argu-
ments to the (co)recursors and generate a number of theorems about the function
definition, automating a tedious process.

1 Introduction

Recursive functions are the primary mechanism for expressing recurring computations
in functional programming languages. The newly introduced (co)datatype package for
Isabelle/HOL [?, ?] provides methods to define datatypes and codatatypes, but until
recently there was no convenient way of defining functions over these types. This pa-
per introduces commands to allow users to define primitively recursive functions over
datatypes and primitively corecursive functions over codatatypes.

Primitive recursion means that in each recursive descent, exactly one constructor is
peeled off the function argument through which recursion is performed. Since datatypes
are finite, this ensures that the recursion eventually terminates. A simple example is the
length function over lists, which can be defined as follows:

primrec length :: α list⇒ int where
length Nil= 0
| length (Cons _ xs) = 1 + length xs

Primitive corecursion is dual: Instead of peeling off one constructor at each itera-
tion, it produces one layer of constructors. The generated value may be finite or infinite,
depending on whether the corecursive call chain terminates.

The new command primrec is modeled after the command of the same name devel-
oped by Berghofer and Wenzel [?] for the old datatype package, but it additionally sup-
ports recursion through non-datatypes using a map function. Both the old and the new
primrec share the same command name. Internally, the new implementation described
here is used if the recursion is performed on a datatype introduced by datatype_new;
otherwise, the old implementation is used. In contrast, the command primcorec and its
more powerful variant primcorecursive are completely new additions.

The paper is structured in two parts: Sections 2 to 4 cover datatypes, primrec, and its
implementation; Sections 5 to 7 cover codatatypes, primcorec, and its implementation.
The text of this paper is based largely on a draft of the first author’s B.Sc. thesis [?]. It
also incorporates passages from the (co)datatype package’s user manual [?].

2 Background: Datatypes

A fundamental concept in most, if not all, typed functional programming languages is
that of freely generated datatypes. They are the main way to create new types and com-
bine existing types into more complex (and useful) types. Probably the most popular
example is the datatype of (finite) lists over an element type α, which can be defined by

datatype_new α list (map : map) = null : Nil | Cons (hd : α) (tl : α list)

The datatype_new command is provided by the new (co)datatype package. Here, it
introduces the type α list generated freely by two constructors:

• Nil, which represents an empty list and can be tested using null :: α list⇒ bool;
• Cons, which takes two arguments of types α and α list and constructs a new list

from a single item (the new list’s head) and the rest of the list (its tail).

This simple example shows a basic concept of datatypes: They can recursively con-
tain a number of other types, including themselves. A function that takes a (recursive)
datatype as one of its argument types can thus re-apply itself to the nested value.

The datatype_new command supports the definition of mutually recursive data-
types. These are characterized by the simultaneous specification of two or more data-
types that recursively contain each other in some of their constructor arguments. A
typical example is the type of finitely branching trees of finite depth and associated
(finite) forests that do not use a universal list type:

datatype_new α tree0 = Node0 (tval0 : α) (children0 : α forest)
and α forest = FNil | FCons (fhd : α tree0) (ftl : α forest)

The command requires that each set of mutually recursive datatypes have identical type
arguments (here, α). Another, more complex example is a representation for a simple
arithmetic expression language:

datatype_new expr = XSum expr_�sum | XProd expr_�prod | XConst nat
and expr_�sum = Sum expr expr
and expr_�prod = Prod expr expr

In addition to mutual recursion, it is often desirable to incorporate existing datatypes
into newly defined types. This makes it possible to reason more modularly about the
datatype and to reuse existing libraries. For example, the more modular way to specify
a type such as α tree0 reuses the generic list type constructor instead of introducing a
dedicated forest type:

datatype_new α tree = Node (tval : α) (children : α tree list)

Similarly, binary trees can be defined via

datatype_new α option = is_�none : None | Some (the : α)
datatype_new α btree =
BNode (bval : α) (left : α btree option) (right : α btree option)

where α btree is nested inside the option type. In general, nested recursion arises when
a datatype recursively occurs under an existing type constructor.

The datatype_new command allows combinations of mutual and nested recursion
through datatypes, through the right-hand side of the function type α⇒ β, and through
other well-behaved type constructors such as fset (finite set), as long as the defined
type is nonempty. These well-behaved type constructors are called bounded natural
functors (BNFs) [?]. BNFs are equipped with a map function (or functorial action), one
or more set functions (or natural transformations), and a cardinality bound that makes
the (co)datatype constructions possible.

3 Specification of Primitively Recursive Functions

Recursive functions over datatypes can be specified using the primrec command, which
supports primitive recursion, or using the more general fun, function, or partial_
function commands [?,?]. Here, the focus is on primrec. Despite its relative simplicity,
it provides a number of advantages over the alternatives:

• It never emits any proof obligations. In particular, it accepts certain mutually recur-
sive functions that are rejected by fun and for which a manual termination proof is
necessary with function.

• It is fast and lightweight. The internal reduction of user specifications to arguments
of the recursor generated by datatype_new is a straightforward syntactic transfor-
mation that requires no induction nor any other sophisticated reasoning principle.

• It has few dependencies. As a result, it is loaded at an early stage in the Isa-
belle/HOL bootstrapping process, before any of its rivals.

3.1 Simple Recursion

A primitively recursive function over a datatype τ̄ κ peels off one constructor in each
recursive descent. For simply recursive types, the function definitions are of the form

primrec f :: σ̄⇒ τ̄ κ⇒ ῡ⇒ β where
f w̄1 (C1 x̄1) ȳ1 = t1

...
| f w̄m (Cm x̄m) ȳm = tm

where the Ci’s are κ’s constructors and the x̄i’s are their arguments (in curried form).
The right-hand sides ti may involve recursive calls of the form f w̄ xi j ȳ. The constructor
patterns Ci x̄i may appear at an arbitrary argument position, but its position must be
consistent among the equations for f. No further pattern matching in the constructor
pattern is supported, nor is pattern matching allowed for the remaining arguments to f.

The functions app (append) and rev (reverse) are examples of primitively recursive
functions:

primrec app :: α list⇒ α list⇒ α list where
app Nil= id
| app (Cons x xs) = Cons x ◦ app xs

primrec rev :: α list⇒ α list where
rev Nil= Nil
| rev (Cons x xs) = app (rev xs) (Cons x Nil)

The primrec command expects to find an equation for each of the datatype’s con-
structors; otherwise, it prints a warning. The nonexhaustive option can be used to sup-
press the warning:

primrec (nonexhaustive) hd :: α list⇒ α where
hd (Const x _) = x

3.2 Mutual Recursion

Recursion over m mutually recursive datatypes τ̄ κ1, . . ., τ̄ κm generally requires m mu-
tually recursive functions. This is achieved using the syntax

primrec
f1 :: · · · ⇒ τ̄ κ1⇒ ··· ⇒ σ1 and

...
fm :: · · · ⇒ τ̄ κm⇒ ·· · ⇒ σm

where
f1 . . . (C11 x̄11) . . . = . . .

...
| f1 . . . (C1k1 x̄1k1) . . . = . . .

...
| fm . . . (Cm1 x̄m1) . . . = . . .

...
| fm . . . (Cmkm x̄mkm) . . . = . . .

The right-hand sides may contain recursive calls to any of the functions fi. For exam-
ple, arithmetic expressions represented by the datatypes introduced in Section 2 can be
evaluated recursively as follows:

primrec
eval :: expr⇒ nat and
eval_�sum :: expr_�sum⇒ nat and
eval_�prod :: expr_�prod⇒ nat

where
eval (XSum s) = eval_�sum s
| eval (XProd p) = eval_�prod p
| eval (XConst c) = c
| eval_�sum (Sum a b) = eval a + eval b
| eval_�prod (Prod a b) = eval a ∗ eval b

3.3 Nested Recursion

In addition to the mechanisms described in the previous subsections, some datatypes
are defined by nested recursion. This arises whenever a datatype is embedded inside
another type constructor. For example, the tree datatype contains itself in the second
argument to the Node constructor, nested inside the list datatype. In such cases, it is
possible to recurse through the nesting BNF’s map function (which is simply called
map for list):

primrec mirror :: α tree⇒ α tree where
mirror (Node x cs) = Node x (rev (map mirror cs))

As a rule, the indirect recursive call must be a map term that follows the structure of the
nesting at the type level (e.g., map f). The functions being mapped must be either the
identity (id or λx. x) or the recursive function being defined (e.g., f), and the argument
to the map term must be an unmodified constructor argument (e.g., cs). There are some
exceptions: Instead of map g (map . . . (map f x) . . .), where f is one of the functions
being defined, users are allowed to write the more natural map (g ◦ · · · ◦ f) x or even
map (λv. g (. . . (f v) . . .)) x. This last form is especially useful when the mapped function
expect nonrecursive arguments after its recursive argument, as in the next example:

primrec tree_�apply :: (α⇒ α) tree⇒ α⇒ α tree where
tree_�apply (Node v cs) x = Node (v x) (map (λt. tree_�apply t (v x)) cs)

The tree_�apply function builds a tree of values from a tree of self-mappings and an
initial value, storing all intermediate values along the paths from the root to the leaves.
For this definition, the λ-abstraction style is more intuitive than the alternatives:

Node (v x) (map ((λr. r (v x)) ◦ tree_�apply) cs)
Node (v x) (map (λr. r (v x)) (map tree_�apply cs))

3.4 Nested-as-Mutual Recursion

For compatibility with the old datatype package, but also because this can be convenient
in its own right, users can treat nested recursive datatypes as if they were mutually recur-
sive. This is supported if the recursion takes place through other (new-style) datatypes.
For example:

primrec
filter_�subtree :: (α⇒ bool)⇒ α tree⇒ α tree and
filter_�subtrees :: (α⇒ bool)⇒ α tree list⇒ α tree list

where
filter_�subtree p (Node x ts) = Node x (if p x then filter_�subtrees p ts else Nil)
| filter_�subtrees _ Nil= Nil
| filter_�subtrees p (Cons t ts) = Cons (filter_�subtree p t) (filter_�subtrees p ts)

4 Implementation of Primitively Recursive Functions

In the absence of primrec, users could define recursive functions using suitable argu-
ments to recursors associated with the datatypes on which they want to recurse. Using
the theorems associated with the recursors, it is then possible to prove statements about
the defined functions. The primrec command automates this process: Given high-level
specifications of a function’s desired behavior, it synthesizes a recursor-based definition
and derives the user specification as theorems.

4.1 Recursors

Recursors encode the most general form of primitive recursion over a datatype. For ex-
ample, the types α list and α tree introduced in Section 2 are equipped with the recursors

rec_�list :: β⇒ (α⇒ α list⇒ β⇒ β)⇒ α list⇒ β
rec_�tree :: β⇒ (α⇒ (α tree×β) list⇒ β)⇒ α tree⇒ β

characterized by the following equations:

list.rec:
rec_�list n _ Nil= n
rec_�list n c (Cons y ys) = c y ys (rec_�list n c ys)

tree.rec:
rec_�tree e n TEmpty= e
rec_�tree e n (Node x ts) = n x (map (λt. (t, rec_�tree e n t)) ts)

Given a recursor that takes k arguments, we will refer to the first k−1 arguments as its
behavioral functions. For list, the behavioral functions n and c encode the behavior for
the Nil and Cons cases, respectively. Notice that c is given not only the head (y) and tail
(ys) of the list but also the result of the recursive call of rec_�list n c on the tail. For tree,
the results of the recursive calls are paired with their arguments inside a list, as reflected
in the type (α tree×β) list.

Using the recursor for lists, the length function can be defined as follows:

definition length :: α list⇒ nat where
length= rec_�list 0 (λ_ _ r. 1+ r)

From this definition and the list.rec properties, it is easy to derive a high-level charac-
terization of the length function:

lemma length_simps [simp] :
length Nil= 0
length (Cons x xs) = 1+ length xs
unfolding length_def list.rec by safe

A set of recursors associated with mutually recursive datatypes takes one behavioral
function per constructor as arguments. They serve as a description of how the construc-
tor arguments and the results of recursive calls are combined to give the desired return
values. In general:

• Constructor arguments on which recursion cannot be performed are passed as is to
the behavioral functions.

• Constructor arguments x on which direct or mutual recursion can be performed are
passed together with the result y of passing x to a recursive call.

• Constructor arguments on which nested recursion through a map function can be
performed contain pairs (x,y) that combine the original value x before the recursion
(the pre value) and the recursive call’s result y (the post value).

In the mutual case, each datatype partaking in mutual recursion has its own recursor,
but the recursors differ only in the last argument and in the result type. Each recursor
serves thus as its type’s entry point to mutual recursion.

4.2 General Procedure

The general procedure implemented by primrec performs the following steps:

1. From each equation, extract the following information:
• the function that the equation talks about;
• the recursive type (deduced from the function’s argument types and the position

of the constructor pattern);
• the pattern-matched constructor and the names of its arguments;
• the names and types of the other arguments;
• the equation’s right-hand side.

2. Query the datatype database to obtain the relevant information (constructors, recur-
sors, theorems) about the recursive types. If nested-as-mutual recursion takes place
(as can be detected from the recursive types and the shape of the recursive calls on
the right-hand sides), suitable recursors and theorems are derived at this stage [?].

3. Traverse the right-hand side of each equation in order to locate recursive calls and
replace them by a nonrecursive term that will eventually use the additional argu-
ments the recursor provides to describe the recursion.

4. Introduce λ-abstractions in front of each of these modified right-hand sides and use
them as behavioral functions, filling up missing specifications with undefined.

5. For each recursor, permute the resulting term’s arguments using λ-abstractions to
pull the constructor to the front and define the desired function as equal to this term.

6. Using the recursor theorems, prove that the definition fulfills the user specification
(the function’s characteristic theorems).

4.3 Eliminating Recursive Calls

The second step of the procedure described above depends on information about the
structure of recursion in the upcoming definition. This poses a chicken-and-egg prob-
lem, since it is specifically this step that supplies all the information about the involved
types and their properties. To overcome this difficulty, the process of eliminating recur-
sion from the specification is divided into two steps. First, everything that looks like a

recursive call is extracted and passed to the underlying machinery, and the structure of
the calls is checked against the information from the datatype database. In the second
step, the exact datatype information is used to replace the recursive terms by a recursor-
based equivalent.

In more detail, for an equation

fm l̄ (C x̄) r̄ = rhs

the following steps are performed:

1. Starting with t set to rhs, do the following:
1.1. If t is of the form λv. t′, recursively apply this procedure to t′.
1.2. If t is not a function application, stop. Otherwise, write t as G a1 . . . ak, where

G is not an application.
1.3. If none of the a j’s is a constructor argument xi, this is not a recursive call.

Since there might be recursive calls in composite subterms, recursively apply
this procedure to G and each of the a j’s.

1.4. Define g as the partial application of G to the longest prefix a1, . . . ,a j such
that none of its elements are a constructor argument xi. This means that t =
G a1 . . . xi . . . ak = g xi If g does not contain any of the f j’s as a subterm,
stop. Otherwise, g is recursively applied to xi and t is a recursive call.

2. Traverse the right-hand side rhs again to convert any legal recursive calls to terms
that use the additional arguments passed by the recursor. This involves applying the
following transformations to a term g xi:

2.1. If g does not contain any of the f j’s and either no recursion or mutual recursion
can be performed through xi, replace xi by the corresponding xi argument to
the behavioral function.

2.2. If g does not contain any of the f j’s and nested recursion can be performed
through xi, replace xi by map fst zi, where map is xi’s type’s map function and
zi is the argument to the behavioral function that contains pairs (x,y) of pre and
post values.

2.3. If g is one of the f j, replace g xi by the corresponding yi argument to the behav-
ioral function.

2.4. If g is of the form map (h1 ◦ · · · ◦ hk ◦ f j), where map is the map function of xi’s
type, this is a nested recursive call. Replace g xi by map (h1 ◦ · · · ◦ hk ◦ snd) zi,
where zi is the argument to the behavioral function that contains pairs (x,y) of
pre and post values.

To simplify the description, we assumed that the map function is a constant that takes
a single function argument. In general, it may take several arguments and have a more
complicated structure.

4.4 Reordering the Recursive Function’s Arguments

In its original form, a recursor instantiation provides a single argument, of the type the
recursor consumes. For a recursive type τ, this gives us functions f :: τ⇒σ1⇒···⇒σn
by instantiating the recursor’s return type with σ1 ⇒ ··· ⇒ σn. However, primrec

should allow arguments before the recursive argument. This is made possible by per-
muting the argument. A specification f :: σ1⇒ ·· · ⇒ σk−1⇒ τ⇒ σk+1⇒ ·· · ⇒ σn is
internally converted to f0 :: τ⇒ σ1⇒ ··· ⇒ σk−1⇒ σk+1⇒ ··· ⇒ σn. Once a defini-
tion for f0 is obtained, f can easily be defined as f= (λa1 . . . ak−1 x. f0 x a1 . . . ak−1).

5 Background: Codatatypes

The syntax for defining codatatypes is almost identical to that for datatypes. But unlike
datatypes, codatatypes can be built by applying constructors infinitely, resulting in infi-
nite terms. This is reflected in the generated characteristic theorems: A coinduction (or
bisimulation) principle replaces induction. As a result, there need not be a base case that
forces (primitively) recursive functions to terminate. Thus, the type of infinite streams
of data can be defined using the command

codatatype α stream (map : smap) = SCons (shd : α) (stl : α stream)

whereas the corresponding “datatype” would be empty (and hence impossible to define
in HOL). Every instance of α stream has an infinite number of constructors. This implies
that any function that constructs a stream one constructor at a time must call itself an
infinite number of times.

Other examples are the coinductive counterparts to list and nat:

codatatype α llist (map : lmap) = lnull : LNil | LCons (lhd : α) (ltl : α llist)
codatatype enat = EZero | ESuc (epred : enat)

The type α llist represents lazy (or coinductive) lists with a finite or infinite number of
elements, whereas enat holds the extended natural numbers, consisting of finite terms
of the form ESuck EZero and of the special value ESuc (ESuc . . .) representing ∞.

Analogously to datatypes, codatatypes support mutually corecursive and nested co-
recursive definitions. Examples include infinitely branching trees of potentially infinite
depth, which can be defined by simply substituting codatatype for datatype_new
and llist for list in the mutual and nested examples from Section 2:

codatatype α ltree0 = LNode0 (ltval0 : α) (lchildren0 : α lforest)
and α lforest = LFNil | LFCons (lfhd : α ltree0) (lftl : α lforest)

codatatype α ltree = LNode (ltval : α) (lchildren : α ltree llist)

6 Specification of Primitively Corecursive Functions

Corecursive functions can be specified using primcorec and primcorecursive, which
support primitive corecursion, or using the more general partial_function command.
Alternatives based on domain theory and topology are described by Lochbihler and
Hölzl [?]. Here, the focus is on primcorec and primcorecursive.

Whereas recursive functions consume datatype values one constructor at a time,
corecursive functions produce potentially infinite codatatype values one constructor at
a time. Partly reflecting a lack of agreement among proponents of coinductive methods,
Isabelle supports three competing syntaxes for specifying a function f:

• The destructor view specifies f by implications of the form . . . =⇒ is_�C j (f x̄) and
equations of the form un_�C ji (f x̄) = This style is popular in the coalgebraic
literature.

• The constructor view specifies f by equations of the form . . . =⇒ f x̄ = C j This
style is often more concise than the previous one.

• The code view specifies f by a single equation of the form f x̄ = . . . , with restrictions
on the format of the right-hand side. Lazy functional programming languages such
as Haskell support a generalized version of this style.

All three styles are available as input syntax. Whichever syntax is chosen, characteristic
theorems for all three styles are generated.

6.1 The Destructor View

Specifications for the function f :: σ̄⇒ τ̄ κ in the destructor view consist of two kinds
of formula. Discriminator formulas have the form

P1 x̄ =⇒ ··· =⇒ Pn x̄ =⇒ is_�Ci (f x̄)

where the P j’s are some condition on the function arguments x̄ and is_�Ci is a discrimi-
nator for the codatatype κ. Selector equations have the form

un_�Ci j (f x̄) = g x̄

where un_�Ci j is the jth selector for Ci. The discriminator formulas specify the condi-
tions under which the function produces a constructor Ci, whereas the selector equations
specify the arguments to Ci.

For the function to be well defined, the discriminator formulas’ conditions must
be mutually exclusive. The primcorec attempts to discharge the corresponding proof
obligations automatically. If this fails, users can fall back on the longer form primcore-
cursive, which passes the burden of proof to them. Thus, primcorec . . . can be seen as
an abbreviation for primcorecursive . . . by auto?.

As an example, consider the lapp function that concatenates two (potentially infi-
nite) lists of the same type. It can be specificed in the destructor view as follows:

primcorec lapp :: α llist⇒ α llist⇒ α llist where
lnull xs =⇒ lnull ys =⇒ lnull (lapp xs ys)
| lhd (lapp xs ys) = (if lnull xs then lhd ys else lhd xs)
| ltl (lapp xs ys) = (if lnull xs then ys else lapp (ltl xs) ys)

The specification is slightly ambiguous because there is no discriminator formula for the
¬ lnull case (i.e., the LCons case). When only one constructor case is left out, primcorec
fills in the gap in the obvious way:

¬ lnull xs ∨ ¬ lnull ys =⇒ ¬ lnull (lapp xs ys)

Syntactic restrictions on the selector equations ensure that progress is made with
each corecursive call—i.e., the function is productive. Productivity guarantees that even
when the result of lapp is infinite, prefixes of arbitrary finite length can be computed by
expanding a finite number of corecursive calls. This, in turn, ensures that the function
is well defined.

The main syntactic restriction on the selector equations, beyond the fixed format of
the left-hand side, is that any corecursive call on the right-hand side either occupies the
entire right-hand side or appears as a branch in a ‘if–then–else’, ‘case–of’, or ‘let–in’
construct. Because of this restriction, the following specification must be rejected:

primcorec wrong :: nat⇒ nat llist where
¬ lnull (wrong n)
| lhd (wrong n) = n
| ltl (wrong n) = ltl (wrong (n+1))

Some codatatypes reuse the same selector functions for several constructors. Ambi-
guities can then arise when connecting the selectors to the corresponding constructors.
To resolve this issue, primcorec accepts selector equations of the form

get (f . . .) = . . . of C

where get is an ambiguous selector and C is a constructor.
To avoid the need of tedious manual specification of an ‘else’ predicate for the

discriminator formulas, a single underscore _ is accepted as a catch-all wildcard. It is
understood as the implicit negation of all conditions for the relevant function in previous
equations. Thus, in

P x =⇒ . . .
Q x =⇒ . . .
_ =⇒ . . .

the last equation’s condition is taken to be ¬ P x ∧ ¬ Q x.
A related functionality is provided by the sequential option. It causes the discrimi-

nator formula conditions for a function to apply in sequence, rather than independently
of each other. This relieves the user (or auto) from having to show mutual exclusion,
but the generated theorems then feature more complicated conditions.

Finally, the exhaustive option signals that the discriminator formula premises cover
all cases. Specifying this option adds another proof obligation, which again is either
solved automatically by primcorec or left to the user by primcorecursive. In exchange,
stronger theorems are generated about the discriminators, with←→ in place of =⇒ .
Another way to enable this behavior is to specify _ as the last condition, in which case
exhaustiveness is syntactically trivial.

6.2 The Constructor View

The constructor view combines the discriminator formula and the selector equations
associated with a constructor in a single equation. The general form is

P1 x̄ =⇒ ··· =⇒ Pn x̄ =⇒ f x̄ = Ci (g1 x̄) . . . (gk x̄)

The Pi’s are conditions just like in the destructor view, and Ci is a constructor. The lapp
function can be defined as follows:

primcorec lapp :: α llist⇒ α llist⇒ α llist where
lnull xs =⇒ lnull ys =⇒ lapp xs ys = LNil
| _ =⇒ lapp xs ys = LCons (if lnull xs then lhd ys else lhd xs)

(if lnull xs then ys else lapp (ltl xs) ys)

Due to the close correspondence between constructor and destructor view, the con-
straints on constructor arguments are the same as the requirements to a selector equa-
tion right-hand side. Additionally, just like each discriminator must occur in at most
one discriminator formulas, there must be at most one equation by constructor.

6.3 The Code View

Specifications in the code view consist of a single equation of the form

f x̄ = g x̄

with conditionals encoded as ‘if–then–else’ and ‘case–of’ on the right-hand side. This
form is suitable for Isabelle’s code generator, which can work only with unconditional
equations. As an input format, it also provides some more flexibility, sometimes leading
to simpler definitions than are possible with the other two views. This is clearly the case
for lapp:

primcorec lapp :: α llist⇒ α llist⇒ α llist⇒ α llist where
lapp xs ys = (case xs of LNil⇒ ys | LCons x xs′⇒ LCons x (lapp xs′ ys))

In general, the right-hand side may involve arbitrarily nested conditional and ‘let–in’
expressions. The branches must either be protected by a constructor or involve no co-
recursion. Unlike with the other two views, the conditionals may be arbitrarily nested,
and the same constructor may occur in several branches.

6.4 Mutual Corecursion

Functions that return values of mutually corecursive codatatypes must be defined to-
gether. The following example specifies a function treeify m n that constructs a full n-
ary tree of depth m whose values are all () and where both m and n are extended natural
numbers (i.e., may be ∞), together with an auxiliary function treeifys for forests:

primcorec
treeify :: enat⇒ enat⇒ unit ltree0 and
treeifys :: enat⇒ enat⇒ enat⇒ unit lforest

where
ltval0 (treeify m n) = ()
| lchildren0 (treeify m n) = treeifys (epred m) n n
| m = EZero ∨ i = EZero =⇒ treeifys m n i = LFNil
| _ =⇒ treeifys m n i = LFCons (treeify m n) (treeifys m n (epred i))

The example shows that it is possible to mix the views: treeify is expressed in the
destructor view, whereas the auxiliary treeifys is in the constructor view.

6.5 Nested Corecursion

For nested corecursion, we consider a more elaborate example: the definition of a
monadic structure for ltree. Unfortunately, the standard way to define the bind oper-
ator�= :: α ltree⇒ (α⇒ β ltree)⇒ β ltree, as is done for the monad instance Monad

Tree in the Haskell library Data.Tree, is not primitively corecursive:

t�= f = (case f (ltval t) of LNode b us⇒
LNode b (lapp us (lmap (λt. t�= f) (lchildren t))))

The problem is that the corecursive call to�= nested through lmap occurs not directly
as an argument to the produced constructor LNode, but as an argument to lapp. Fortu-
nately, we can make the specification primitively corecursive by moving the corecursive
call past lapp. We use the sum type to distinguish between the subtrees us spawned by
f (Inl) and the subtrees lchildren t to which the corecursive call is to be applied (Inr):

primcorec�= :: α ltree⇒ (α⇒ β ltree)⇒ β ltree where
t�= f = (case f (ltval t) of LNode b us⇒

LNode b (lmap (λut. case ut of Inl u⇒ u | Inr t⇒ t�= f)
(lapp (lmap Inl us) (lmap Inr (lchildren t)))))

From the lemma lmap f (lapp xs ys) = lapp (lmap f xs) (lmap f ys), it is easy to derive
the Haskell-style nonprimitively corecursive specification. Given return x defined as
LNode x LNil, proving the monadic laws

return x�= f = f x
t�= return = t
t�= f �= g = t�= (λx. f x�= g)

is an interesting exercise in coinduction.

6.6 Nested-as-Mutual Corecursion

To demonstrate the convenience of nested-as-mutual coinduction, let us define the�=
function again, but this time mutually with the ternary mixfix operator _ ∇ _� _ that
returns a lazy list, instead of reusing lapp:

primcorec
�= :: α ltree⇒ (α⇒ β ltree)⇒ β ltree and
_ ∇ _� _ :: β ltree llist⇒ α ltree llist⇒ (α⇒ β ltree)⇒ β ltree llist

where
t�= f = (case f (ltval t) of LNode b us⇒ LNode b (us ∇ lchildren t� f))
| us ∇ ts� f = (case us of

LNil⇒ (case ts of
LNil⇒ LNil
| LCons t ts′⇒ LCons (t�= f) (us ∇ ts′� f))

| LCons u us′⇒ LCons u (us′ ∇ ts� f)

The new operator’s intended semantics is

us ∇ ts� f = lapp us (lmap (λt. t�= f) ts)

When defining functions mutually, we are not restricted to corecursive calls through
the map function only. Thus, we can use the required primitive corecursion scheme di-
rectly, without working around the syntactic restriction by using the sum type as above.
The primcorec command creates the corresponding mutual coinduction rule to reason
about�= and _ ∇ _� _, allowing us to prove�= equal to its version from Section 6.5.

The above specification could easily be adapted for the mutual codataypes ltree0
and lforest, by substituting ltree0 for ltree, lforest for ltree llist, ltval0 for ltval, etc.

6.7 Generated Theorems

Regardless of the user’s choice of input syntax, the primcorec command generates
characteristic theorems for all three views. For example, the definition

primcorec iterate_�while :: (α⇒ α option)⇒ α⇒ α llist where
is_�none (f x) =⇒ iterate_�while f x = LNil
| _ =⇒ iterate_�while f x = LCons x (iterate_�while f (the (f x)))

given in the constructor view produces the following theorems (among others):

iterate_while.code:
iterate_�while f x =
(if is_�none (f x) then LNil else LCons x (iterate_�while f (the (f x))))

iterate_while.ctr:
is_�none (f x) =⇒ iterate_�while f x = LNil
¬ is_�none (f x) =⇒ iterate_�while f x = LCons x (iterate_�while f (the (f x)))

iterate_while.disc:
is_�none (f x) =⇒ lnull (iterate_�while f x)
¬ is_�none (f x) =⇒ ¬ lnull (iterate_�while f x)

iterate_while.disc_iff :
lnull (iterate_�while f x) ←→ is_�none (f x)
¬ lnull (iterate_�while f x) ←→ ¬ is_�none (f x)

iterate_while.sel:
¬ is_�none (f x) =⇒ lhd (iterate_�while f x) = x
¬ is_�none (f x) =⇒ ltl (iterate_�while f x) = iterate_�while f (the (f x))

The iterate_while.disc_iff theorems are produced because the ‘_’ wildcard implicitly
enables the exhaustive option.

The disc, disc_iff, and sel theorems are registered as simplification rules. This is not
done for the code and ctr theorems by default because they can loop.

7 Implementation of Primitively Corecursive Functions

The implementation of primcorec (and primcorecursive) follows the same general
principle as that of primrec: From a user specification, primcorec synthesizes a low-
level definition based on corecursors and derives theorems about the specified function
from the characteristic theorems associated with the codatatype and its corecursor.

7.1 Corecursors

Corecursors encode the most general form of primitive corecursion over a codatatype.
The types α llist and α ltree introduced in Section 5 are equipped with the corecursors

corec_�llist :: (α⇒ bool)⇒ (α⇒ β)⇒ (α⇒ bool)⇒ (α⇒ β llist)⇒ (α⇒ α)⇒
α⇒ β llist

corec_�ltree :: (α⇒ β)⇒ (α⇒ (β ltree+α) llist)⇒ α⇒ β ltree

characterized by the following equations:

llist.corec:
n a =⇒ corec_�llist n h s e c a = LNil
¬ n a =⇒ corec_�llist n h s e c a =

LCons (h a) (if s a then e a else corec_�llist n h s e c (c a))

ltree.corec:
corec_�ltree l c a =
LNode (l a) (lmap (λx. case x of Inl t⇒ t | Inr r⇒ corec_�ltree l c r) (c a))

Given a corecursor that takes k arguments, we will refer to the first k−1 arguments as
its behavioral functions.

For llist, the predicate n indicates whether a LNil constructor should be produced.
Next follows h, a function that computes the head of a nonempty list from the input
a. The next three functions, s, e, and c, specify the list’s tail: s (“stop?”) is a predicate
that determines whether the corecursion ends with a noncorecursive term or continues
further; e (“end”) gives the noncorecursive tail if s is satisfied; c (“continue”) computes
the argument to a corecursive call if s is not satisfied, specifying a corecursive tail.

For ltree, the behavioral function constructs a list of sum values that specify how to
produce each subtree individually. An Inl value is interpreted as a literal noncorecursive
result, whereas an Inr value is passed to a corecursive call.

In general, if the codatatype σ has n constructors, the corecursor expects n− 1
predicates p j :: α⇒ bool that are tested in sequence to determine which constructor
should be produced. Additionally, for each constructor argument of type τ, one of the
following cases applies:

• If τ does not contain σ (or any of its mutually corecursive types), no corecursion is
possible and the behavioral function is simply a function g :: α⇒ τ that returns the
constructor argument’s unconditional value.

• If τ’s outermost type constructor is σ (or a mutually recursive type), this construc-
tor argument allows direct (or mutual) corecursion. The corecursor expects three
behavioral functions: s :: α⇒ bool (“stop?”), e :: α⇒ τ (“end”), and c :: α⇒ α
(“continue”).

• If τ nestsσ under one or more BNFs, the corecursor takes one argument that returns
a value of τ’s nesting type wrapped around σ+α. The sum type represents either a
noncorecursive constant result or a corecursive call’s argument.

7.2 Input Syntax Reductions

Despite the variety of input styles the primcorec command supports, the differences
are mostly superficial. The internal constructions are common to the syntaxes, and in
any case, the resulting theorems are generated in each of them.

This makes it possible to reduce the views one to another. The code view is reduced
to the constructor view, which in turn is reduced to the destructor view. Each reduction
works by disassembling the input as far as necessary and creating equivalent specifica-
tions in the next input style. These specifications are then passed down to the parsing
functions for said input style and processed as if the user had entered them. At the end
of this procedure, the input syntaxes share common data structures holding the function
specification’s relevant details. When it comes to generating the function’s character-
istic theorems, the path of reductions is traversed backward: The code-view theorems
are derived from the constructor-view theorems, which are in turn derived from the
destructor-view theorems.

Constructor View to Destructor View. An equation

P1 x̄ =⇒ ··· =⇒ Pn x̄ =⇒ f x̄ = C t1 . . . tm

expressed in constructor view is reduced to the equivalent destructor view

P1 x̄ =⇒ ··· =⇒ Pn x̄ =⇒ is_�C (f x̄)
un_�C1 (f x̄) = t1

...
un_�Cm (f x̄) = tm

where is_�C is the m-ary constructor C’s discriminator and un_�Ci are its selectors.

Code View to Constructor View. Recall that a specification in code view consists of a
single equation, potentially having many case distinctions via ‘if–then–else’, ‘case–of’,
or ‘let–in’ expressions. Since the constructor view requires that there is at most one
equation for each constructor, we first need to group the leaves of these case distinc-
tions by the constructor that is applied to the result. During this stage, noncorecursive
branches that are not guarded by a constructor are expanded using ‘case’. For example,
a term xs of type α llist becomes

(case xs of LNil⇒ LNil | LCons x xs′⇒ LCons x xs′)

Along each of the paths, the set of conditions that need to be fulfilled to reach the
current node is carried along. After the formulas have been collected, they are ready to
be combined into one single equation per constructor.

7.3 Generating Theorems in All Three Views

The syntax reductions described in the previous subsection induce the need to traverse
the reduction’s path backward. For the view chosen by the user to specify the function,
the statements of the theorems are given by the specification; for the others, suitable
statements are generated, as explained below.

Constructor View from Destructor View. Essentially, this just uses the reduction
described in Section 7.2 in reverse. Each constructor and its associated discriminator
formula premises and selector equation right-hand sides are collected and combined to
form a constructor view. However, no equation is generated if some selector equations
are missing for a given constructor (e.g., if the head of a list is specified but not the tail).

Code View from Constructor View. Analogously, this step reverses the reduction in
Section 7.2. It takes the constructor-view right-hand sides along with their preconditions
and builds an ‘if–then–else if’ tree from them. If the exhaustive option is not specified,
the generated theorem will have an ‘else’ branch containing Code.abort, which throws
an exception at run time if none of the cases apply. Either way, the newly assembled
terms are proved as theorems, exploiting the constructor-view theorems.

7.4 General Procedure

The general procedure implemented by primcorec performs the following steps:

1. Use the functions’ types to query the involved constructors, discriminators, and
selectors from the codatatype database.

2. From each supplied formula’s structure, determine the kind of formula. For con-
structor or code equations, call the respective reduction functions to extract the
same internal, destructor-based representation from all three input syntaxes.
During this step, the interpretation of ‘_’ wildcards and the sequential option are
performed and any implicit discriminator formulas are generated.
After this step, for each (specified or generated) formula, we have:

• the function’s name, type, and its arguments’ names and types as it occured in
this particular term;

• the constructor that this formula is relevant to;
• the original user input, and possibly—if this formula was obtained by reducing

from a different view—the reduction’s preimage.
The specific fields for discriminator formulas and selector equations are a list of
premises and the right-hand side.

3. The selector equation right-hand sides are scanned for corecursive calls and their
structure is recorded.

4. Using this new information, get the rest of the codatatypes’ information (core-
cursors, theorems, types of corecursion, etc.) from the codatatype database. The
nested-to-mutual reduction is performed in this step if necessary.

5. Definitions for the specified functions are obtained. This involves translating selec-
tor equation right-hand sides to behavioral functions.

6. Any exclusiveness and exhaustiveness properties are assembled.

7. From the definitions, exclusiveness and exhaustiveness theorems, and codatatype-
and corecursor-related theorems, prove the functions’ characteristic theorems in all
of the syntax styles.

7.5 Eliminating Corecursive Calls

Corecursion is simpler than recursion in at least one respect: Whereas primrec needs
complicated logic to locate (direct and indirect) recursive calls, the syntactic restrictions
that ensure productivity also ensure that primcorec knows where to find the corecur-
sive calls. Since each constructor argument allows either mutual or nested corecursion,
but not both, and a corecursive call must be the outermost function call in a selector
equation right-hand side—except for ‘if–then–else’, ‘case–of’, and ‘let–in’—it suffices
to traverse the terms to determine for each leaf whether it is a corecursive call and, if
so, replace it by a suitable argument of the behavioral function:

• If the constructor argument does not allow any corecursion, its selector equation
right-hand side is converted to a behavioral function by λ-abstracting the function
arguments.

• For mutual corecursion, we need to generate three behavioral functions: The pred-
icate s (“stop?”) is created by substituting either True for a noncorecursive leaf or
False for a corecursive leaf; e (“end”) is formed by replacing corecursive leaves by
undefined; and c (“continue”) is obtained by substituting undefineds for noncore-
cursive leaves and a tuple of the corecursive call’s function arguments for corecur-
sive leaves.

• For nested corecursion, the corecursor combines the “stop?–end–continue” con-
struction into a single argument that returns a nested sum type whose branches
correspond to a noncorecursive result or a corecursive call. The behavioral function
is obtained by replacing a noncorecursive leaf y by map Inl y, where map is the
nesting type’s map function, and a nested corecursive call map (f ◦ h1 ◦ · · · ◦ hk) a
by map (Inr ◦ h1 ◦ · · · ◦ hk) a.

Like for primrec, we assumed that the map function is a constant that takes a single
function argument. In general, it may take several argument and have a more compli-
cated structure.

7.6 Supporting Functions with No or Multiple Arguments

The corecursor takes only one argument a :: α. When defining a n-ary primitively co-
recursive function (where n ≥ 0), an n-tuple of arguments is passed to the corecursor
corec_�κ and, consequently, the behavioral functions. The definition is curried:

λx1 . . . xn. corec_�κ (λ(x1, . . . , xn). . . .) . . . (λ(x1, . . . , xn). . . .) (x1, . . . , xn)

8 Conclusion

Isabelle’s new (co)datatype package makes it possible to specify a large class of types
using a convenient syntax reminescent of typed functional programming languages. The
new primrec, primcorec, and primcorecursive commands complement the package
by allowing users to specify arbitrary (co)recursive functions on the (co)datatypes.

Like the rest of the (co)datatype package, the commands are fully definitional: They
analyze the specifications entered by the user, synthesize definitions in terms of inter-
nal (co)recursors, and generate characteristic theorems, all of this without introducing
axioms or extending the logic.

Nested recursion is handled truly modularly. Nonetheless, the older approach of
reducing nested recursion to mutual recursion is also supported. The two approaches
can be arbitrarily combined for both recursive and corecursive functions. Internally,
suitable (co)recursors and (co)induction principles are derived to make this possible.

For future work, we are interested in stronger forms of corecursion as well as mixed
recursive–corecursive definitions. We have some ideas already, but we need a solid
theoretical foundation so that Isabelle’s inference kernel can accept the definitions.

Acknowledgment. Tobias Nipkow made this work possible by allowing the senior authors to
neglect their duties while they designed and implemented the new (co)datatype package. Andrei
Popescu masterminded the metatheory behind the package, without which there would be no
(co)datatypes, no (co)recursors, and hence no (co)recursive function definitions. Florian Haft-
mann, Christian Urban, and Makarius Wenzel provided general advice on Isabelle and package
writing. Johannes Hölzl and Andreas Lochbihler gave precious feedback at the early stages of
primcorec’s implementation.

Blanchette is supported by the Deutsche Forschungsgemeinschaft (DFG) project Hardening
the Hammer (grant Ni 491/14-1). Traytel is supported by the DFG program Program and Model
Analysis (PUMA, doctorate program 1480). The senior authors are listed alphabetically regard-
less of individual contributions or relative seniority.

References

1. Berghofer, S., Wenzel, M.: Inductive datatypes in HOL—Lessons learned in formal-logic en-
gineering. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs
’99. LNCS, vol. 1690, pp. 19–36. Springer (1999)

2. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.: Truly modular
(co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, Springer
(2014)

3. Blanchette, J.C., Panny, L., Popescu, A., Traytel, D.: Defining (co)datatypes in Isabelle/HOL.
http://isabelle.in.tum.de/dist/Isabelle/doc/datatypes.pdf (2013)

4. Krauss, A.: Recursive definitions of monadic functions. EPTCS 43, 1–13 (2010)
5. Krauss, A.: Defining recursive functions in Isabelle/HOL. http://isabelle.in.tum.de/

doc/functions.pdf (2013)
6. Lochbihler, A., Hölzl, J.: Recursive functions on lazy lists via domains and topologies. In:

Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, Springer (2014)
7. Panny, L.: Primitively (Co)recursive Function Definitions for Isabelle/HOL. B.Sc. thesis draft,

Technische Universität München (2014)
8. Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional (co)datatypes for

higher-order logic: Category theory applied to theorem proving. In: LICS 2012, pp. 596–605.
IEEE (2012)

http://isabelle.in.tum.de/dist/Isabelle/doc/datatypes.pdf
http://isabelle.in.tum.de/doc/functions.pdf
http://isabelle.in.tum.de/doc/functions.pdf

	Primitively (Co)recursive Definitions for Isabelle/HOL
	1 Introduction
	2 Background: Datatypes
	3 Specification of Primitively Recursive Functions
	3.1 Simple Recursion
	3.2 Mutual Recursion
	3.3 Nested Recursion
	3.4 Nested-as-Mutual Recursion

	4 Implementation of Primitively Recursive Functions
	4.1 Recursors
	4.2 General Procedure
	4.3 Eliminating Recursive Calls
	4.4 Reordering the Recursive Function's Arguments

	5 Background: Codatatypes
	6 Specification of Primitively Corecursive Functions
	6.1 The Destructor View
	6.2 The Constructor View
	6.3 The Code View
	6.4 Mutual Corecursion
	6.5 Nested Corecursion
	6.6 Nested-as-Mutual Corecursion
	6.7 Generated Theorems

	7 Implementation of Primitively Corecursive Functions
	7.1 Corecursors
	7.2 Input Syntax Reductions
	7.3 Generating Theorems in All Three Views
	7.4 General Procedure
	7.5 Eliminating Corecursive Calls
	7.6 Supporting Functions with No or Multiple Arguments

	8 Conclusion

