
114 NAW 5/24 nr. 2 juni 2023 Finding mathematical proofs using computers Alexander Bentkamp, Jasmin Blanchette

called first-order logic). Superposition is a further development of
resolution with special support for the equality symbol (=), which
is ubiquitous in mathematics. One method that we will not cover
but that is also very successful is satisfiability modulo theories [3].

Automatic theorem provers based on resolution and superpo-
sition can be used on their own, but often they are invoked as
backends from the comfort of an interactive theorem prover. This
relies on bridges between automatic and interactive provers.

This article is based on an eponymous presentation by Blan-
chette at the KWG Wintersymposium 2023 on 14 January 2023 in
Utrecht. That presentation in turn drew from a paper written by the
present authors together with colleagues and recently published in
the Communications of the ACM.

Our logical formalism: Predicate logic
There are hundreds, perhaps thousands of logics, but when people
simply say ‘logic’, they often mean predicate logic. Predicate logic
is parameterized by a signature, which consists of function sym-
bols (e.g., 1, ..., gcd) and predicate symbols (e.g., =, |, prime). Thus,
strictly speaking, predicate logic is a family of logics indexed by a
signature. The signature also associates an arity with each symbol:
the number of arguments the symbol may take.

Based on a fixed signature, the terms are defined by these two
rules:

 – A variable x is a term.
 – If f is a function symbol of arity n and , ,t tn1 f are terms, then
(, ,)f t tn1 f is a term. As a special case, if n 0= , we write f instead
of ()f and we call f a constant.

Finally, the formulas are defined by these rules:

 – If p is a predicate symbol of arity n and , ,t tn1 f are terms, then
(, ,)p t tn1 f is a formula. As a special case, if n 0= , we write p

instead of p().
 – If F and G are formulas and x is a variable, then = (falsity), <

(truth), FJ (negation), F G/ (conjunction), F G0 (disjunction),
F G& (implication), .x F6 (universal quantification), and .x F7
(existential quantification) are formulas.

In combination, automatic and interactive theorem provers help
users develop rigorous, computer-checked proofs. The easiest
parts are carried out automatically, and the more difficult parts
require user intervention. For example, the following lemma, which
originates from a mathematics paper, can be proved by automatic
theorem provers:

(,)

|

| (,)

| (,)

| |

'

'

' ' ' '

gcd

gcd

gcd

a b

d ab

a d a

b d b

a b d d a b

1

&

/

/

/

/

=

The symbols / and & mean ‘and’ and ‘implies’, gcd is the greatest
common divisor, and | is the ‘divides’ relation. Such a lemma is
easy for mathematicians, so it is a relief that it can be proved auto-
matically; the alternative, a fully rigorous, interactive proof, could
easily take 15 to 30 minutes.

In this article, we will review two leading proof methods im-
plemented in automatic theorem provers: resolution [5] and su-
perposition [2]. Although they are not based on machine learn-
ing, as descendants of the pioneering Logic Theorist system these
methods constitute a form of artificial intelligence. Resolution can
be used to prove problems formulated in predicate logic (also

Research

Finding mathematical
proofs using computers
In the 1960s, some researchers believed that computers would
one day replace mathematicians: Computers would autonomously
suggest conjectures and prove them automatically. Despite recent
progress in artificial intelligence, this vision has not yet material-
ized. Even if they are assisted by computers (via, e.g., computer
algebra systems), mathematicians remain needed for doing mathe-
matics. Even so, there has been substantial progress in the area of
automated reasoning in the past 60 years. In this article, Alexander
Bentkamp and Jasmin Blanchette describe the development of au-
tomatic proof methods and automatic theorem provers based on
those methods. Broadly understood, the area also encompasses in-
teractive theorem provers, which provide a graphical user interface
for developing formal proofs.

Alexander Bentkamp
Mathematisches Institut
Heinrich-Heine-Universität Düsseldorf
alexander.bentkamp@hhu.de

Jasmin Blanchette
Institut für Informatik
Ludwig-Maximilians-Universität München
jasmin.blanchette@ifi.lmu.de

Alexander Bentkamp, Jasmin Blanchette Finding mathematical proofs using computers NAW 5/24 nr. 2 juni 2023 115

Il
lu

st
ra

ti
on

:
Ry

u
Ta

jir
i

116 NAW 5/24 nr. 2 juni 2023 Finding mathematical proofs using computers Alexander Bentkamp, Jasmin Blanchette

The original problem is clearly provable. Correspondingly, its trans-
lation to clauses is inconsistent, meaning that it admits a proof by
refutation, as we will see below.

It may seem surprising that even formulas containing 7 can
be converted to the clausal format. This is possible thanks to a
technique called Skolemization [1], whereby the 7 variables are
replaced by new symbols representing unknown witnesses. For
example, . . (,)px y x y6 7 is translated to (, ())p witx x , where ()wit x
represents the witness associated with x (“for every x, there exists
a witness ()wit x such that (, ())p witx x ”).

A first proof method: Resolution
Resolution is an instance of the saturation framework that consists
of one main inference rule (and of a side rule, which we will not
cover). Ignoring for a moment that clauses may contain variables,
we can state the rule as follows:

If the clauses C A0 and A D0J are contained in F , then add
the clause C D0 to F .

Here, C and D stand for clauses, and A stands for an atom. Be-
cause clauses are defined up to associativity and commutativity of
0, the literal A may actually occur anywhere in C A0 , and similarly
for AJ in A D0J . Thus, C A0 denotes the clause that contains the
literal A and all the literals from C, whereas A D0J denotes the
clause that contains the literal AJ and all the literals from D.

Suppose F consists of the following clauses:

() ()

()

()

human anne mortal anne

human anne

mortal anne

0J

J

This is the same set as above, except that we instantiated x with
anne to avoid variables. A first inference is possible involving the
first and second clauses, taking C to be = (the empty clause), A to
be ()human anne , and D to be ()mortal anne . The conclusion, C D0 ,
consists of the literals of = and those of ()mortal anne . Thus, the
conclusion is

()mortal anne

and we add it to F .
Next, we can perform a second inference involving the newly

added clause with the clause ()mortal anneJ . This time, C and D
are both =, and the conclusion to add to F is =. Once the empty
clause is added to F , the saturation loop stops and the contradic-
tion is reported. The proof by refutation is successful.

The resolution inference would appear to be working correctly
on this example, but is it correct in general? And is it complete,
meaning: Will saturation always find a contradiction from an incon-
sistent clause set? The answer to both questions is yes.

We start with correctness. We will assume the two premises
C A0 and A D0J are true and show that C D0 is true. We proceed
by case distinction on A:

 – If A is true, then AJ is false, and A D0J can be true only if D
is true. If D is true, then the conclusion C D0 is true as well,
as desired.

 – If A is false, then C A0 can be true only if C is true. If C is true,
then the conclusion C D0 is true as well, as desired.

Resolution (as presented in the literature) is also complete in the
following sense: If the clause set F is initially inconsistent and

Terms represent mathematical objects, whereas formulas represent
mathematical statements. An example of a complex formula fol-
lows:

(. () (,))

(. (. (,) (,)) ())

(,)

()

(. () . (,))

(,)

food likes johanna

eats wasKilledBy food

eats bill peanuts

alive bill

alive wasKilledBy

likes johanna peanuts

x x x

x y y x y x x

y y x y x

&

&

&

&

/ /

/

/

/

6

6 7 J

6 6 J

It can be a useful exercise to try to identify the function symbols
and the predicate symbols above.

A general framework: Proof by saturation
Resolution and superposition are instances of a general framework
called ‘proof by saturation’, which is a form of proof by refuta-
tion. It works as follows. Given a problem F F Gn1 &/ /g , perform
these steps:

1. Put , ,F Fn1 f and the negation of G in clausal form, yielding a
set F of clauses (i.e., of formulas in clausal form).

2. Repeat forever:
2.1. Apply an inference rule to F and add the conclusion to F .

Stop if no new inference is possible.
2.2. Possibly remove redundant clauses. For example, p q0 is

redundant in the presence of the clause p.
2.3. Stop if = (falsity) is in F .

Both resolution and superposition work with clauses. These are
made of literals, which are themselves made of atoms:

 – If p is a predicate symbol and , ,t tn1 f are terms, then (, ,)p t tn1 f
is an atom.

 – If A is an atom, then A and AJ are literals.

The clauses are then defined by this rule:

 – If , ,L Ln1 f are literals, then L Ln1 0 0g is a clause. Clauses are
considered equal up to associativity and commutativity of 0. If
n 0= , we write = (which is appropriate since = is the neutral
element for 0).

For example, by commutativity, ()p q x0 is the same clause as
()q px 0 . It may help to think of clauses as multisets of literals. In

keeping with this view, we call = the empty clause.
Note that the logical symbols <, /, &, 6, and 7 cannot occur in

a clause. Any variable occurring in a clause is understood as a 6
variable; for example, the clause () ()p qx x0 is understood to mean
the same as the formula . () ()p qx x x06 .

Any problem can be transformed into a set of clauses. For ex-
ample, the problem

(. () ())

()

()

human mortal

human anne

mortal anne

x x x&

&

/

6

can be translated to the following three clauses:

() ()

()

()

human mortal

human anne

mortal anne

x x0J

J

Alexander Bentkamp, Jasmin Blanchette Finding mathematical proofs using computers NAW 5/24 nr. 2 juni 2023 117

This rule is less explosive than the standard resolution rule. It is also
complete; for example, the ‘more efficient strategy’ above would
be allowed, whereas the ‘particularly inefficient strategy’ would be
disallowed. Intuitively, ordered resolution focuses on the largest
literals first and tries to eliminate them by performing inferences. If
they cannot be eliminated, the other literals are never considered.

The situation is analogous to a scenario often encountered by
mathematicians. Suppose we want to use a lemma of the form “If
F1, F2, and F3, then G” in a proof, we can without loss of generality
focus on F1 and try to prove it first, then proceed with F2, then with
F3, and finally retrieve the conclusion G. If we fail at proving the
condition F1 (i.e., at ‘eliminating’ F1), we can immediately give up;
there is no point in trying to prove F2 and F3.

How to deal with equality
Equality is ubiquitous in mathematical problems. With resolution,
to reason about equality we need to specify its properties as axi-
oms to be included in the problem:

 reflexivity: .x x x6 =
 symmetry: , .x y x y x z&6 = =
 transitivity: , , . ()x y z x y y z x z&/6 = = =
 congruence: , . () ()f fx y x y x y&6 = =

Congruence is shown for a single unary function symbol f, but it
needs to be repeated for all function and predicate symbols.

An alternative, which is the approach taken by superposition, is
to treat equality specially in the proof method. Reflexivity, symmetry,
transitivity, and congruence are then not axiomatized. Moreover,
once equality is available, we can eliminate all other predicates.
Specifically, for any predicate symbol p other than equality, we can
use a function symbol f instead that returns a truth value. A literal
()p x can be coded as ()f truex = , and a literal ()p xJ can be coded as
(())f truexJ = . Literals then have the form 't t= and ()'t tJ = , and we

write 't t! to abbreviate ()'t tJ = . Finally, we consider literals equal
up to commutativity of =; thus, b a= and a b= are the same literal.

A more advanced proof method: Superposition
Superposition resembles resolution, but it works on clauses whose
atoms are equalities 't t= , and it performs inferences that embody
the four characteristic properties of equality (reflexivity, symmetry,
transitivity, and congruence). It consists of three rules, of which we
will review two.

Ignoring variables and multiple-literal clauses, we can state the
main inference rule as follows:

If the clauses 't t= and []L t are contained in F , then add the
clause []'L t to F .

Here, []L t denotes a literal that contains t as a subterm, and []'L t
denotes the same literal in which the singled-out occurrence of t
is replaced by t’. The rule essentially allows the replacement of
equals with equals.

Clause sets rarely consist exclusively of single-literal clauses, so
we need to generalize the above inference rule to allow multiple
literals:

If the clauses 'C t t0 = and []D L t0 are contained in F , then
add the clause []'C D L t0 0 to F .

The C and D components play a similar role as in resolution.

inferences are performed fairly, then F will eventually contain =.
The fairness requirement is vital; without it, a necessary inference
might be delayed forever, preventing the derivation of =.

So far, we have ignored the difficulties arising from the pres-
ence of variables in clauses, but resolution can actually cope with
variables. Suppose we have the two clauses () (,)p aC y y0 and
(,) ()p bx D x0J , where C(y) denotes a clause that depends on the

variable y and D(x) a clause that depends on x. The atoms (,)p a y
and (,)p bx are not syntactically identical, but they can be made iden-
tical by taking x to be a and y to be b, following the German saying
“was nicht passt, wird passend gemacht”. This process of instan-
tiating variables to make atoms identical is called unification [5].
Once we unify the two atoms, we get the two clauses

() (,) (,) ()b p a b p a b aC D0 0J

From these, a resolution inference derives () ()b aC D0 .
We can now consider the ‘Anne is mortal’ example in its full

generality:

() ()

()

()

human mortal

human anne

mortal anne

x x0J

J

From ()human anne and () ()human mortalx x0J , we instantiate x
with anne and compute the conclusion ()mortal anne . From this
conclusion and ()mortal anneJ , we derive =.

Although resolution is complete, it is not always efficient. Con-
sider the inconsistent set F consisting of the six clauses

a b c d e a b c d e0 0 0 0 J J J J J

A particularly inefficient strategy would first derive all four-literal
clauses that can be derived from this set. There are five of them:

b c d e a c d e a b d e

a b c e a b c d

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

Then it would derive the three-literal clauses:

c d e b d e b c e b c d a d e

a c e a c d a b e a b d a b c

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Then the one-literal clauses:

e d c b a

Finally, from any one-literal clause (e.g., a) and its negation (e.g., aJ),
it would derive =.

A more efficient strategy would derive, from the initial set F , a
single four-literal clause (e.g., a b c d0 0 0), then a single three-lit-
eral clause (e.g., a b c0 0), then a single two-literal clause (e.g.,
a b0), then a single one-literal clause (e.g., a), and finally =. Such
a strategy can be programmed in the automatic provers, but we
can do better: We can enforce it in the proof method itself by
introducing an order.

Specifically, ordered resolution is a variant of resolution that
is parameterized by an order on literals. For our example, we will
simply take the alphabetical order, requiring e d c b a> > > > . Ig-
noring that clauses may contain variables, we can state the main
inference rule of ordered resolution as follows:

If the clauses C A0 and A D0J are contained in F , A is maxi-
mal in C A0 , and AJ is maximal in A D0J , then add the clause
C D0 to F .

118 NAW 5/24 nr. 2 juni 2023 Finding mathematical proofs using computers Alexander Bentkamp, Jasmin Blanchette

complete despite such drastic restrictions is far from obvious [2,
Section 4].

Although superposition is not strictly speaking a generalization
of resolution, in practice superposition provers have replaced res-
olution provers. Resolution is nowadays seen mostly as a stepping
stone, as within this article.

Bridges between automatic and interactive provers
Automatic theorem provers, including those based on superposi-
tion, are integrated in proof assistants via bridges. These bridges
are called ‘hammers’ [4] in honor of Sledgehammer, possibly the
most successful such bridge.

Automatic provers work best when their input does not con-
tain too many axioms. If all of the proof assistant’s definitions,
lemmas, theorems, and actual axioms were exported as axioms to
the automatic provers, these would have to find their way among
perhaps 10 000 formulas and would not perform very well. Hence,
the first step of a hammer is to filter the available facts (defini-
tions, lemmas, et cetera) to a reasonable number — typically less
than a thousand.

The second step is to translate the problem. Interactive prov-
ers typically work in a richer logic (such as higher-order logic and
dependent type theory) than automatic provers. There is work on
reducing the gap between the two types of systems, including by
the present authors, but for most combinations of interactive and
automatic theorem provers a translation is necessary.

At this point, the automatic provers run on the translated prob-
lem. Sledgehammer works with a default time limit of 30 seconds.
If a proof is found within that time, the last step is to import this
proof into the interactive proof assistant, where it is independently
rechecked.

By building on the strengths of automatic theorem provers,
hammers make users more productive. One user claims he is three
to five times more productive thanks to Sledgehammer. Another
compared working with it to running as opposed to walking. As
developers of automatic provers further improve their systems,
hammers become even stronger, benefiting users of interactive
provers. s

Acknowledgment
We thank Mark Summerfield and Mark Timmer for suggesting several tex-
tual improvements.

Next to the main rule, the following side rule invariably appears
in successful refutations:

If the clause C t t0 ! is contained in F , then add the clause
C to F .

Both rules are stated above without worrying about variables, but
superposition, like resolution, unifies terms as necessary to make
them syntactically equal, as we will see with an example. Informal-
ly, the problem is as follows:

Assuming that 0!r and that /x x11 =- for all x 0! , we have
| | | / |11r r=- .

Expressed as a formula, the problem becomes

(. () (,))

(()) ((,))

zero inv div one

pi zero

abs inv pi abs div one pi

x x x x&

&

/

6 !

!

=

=

Conversion into clausal form yields three clauses:

(,) ()

((,)) (())

zero div one inv

pi zero

abs div one pi abs inv pi

x x x0

!

!

= =

Looking at the first and third clauses, we notice that we can unify
the term (,)div one x in the first clause with the subterm (,)div one pi
in the third clause, by taking x to be pi. The main inference rule is
applicable and adds the clause

(()) (())pi zero abs inv pi abs inv pi0 !=

to F . At this point, the side rule applies to eliminate the second
literal, resulting in

pi zero=

Now, we can apply the main rule on this clause and on the clause
pi zero! , resulting in

zero zero!

Finally, an application of the side rule eliminates the literal, yield-
ing =.

Superposition is correct and complete. Moreover, like resolu-
tion, superposition can take an order into account to restrict its
search space. The main inference rule then focuses on the larger
side of the largest literal of each of the two premises, trying to
rewrite larger clauses into smaller clauses. That superposition is

References
1 M. Baaz, U. Egly and A. Leitsch, Normal

form transformations, in J. A. Robinson and
A. Voronkov, eds., Handbook of Automated
Reasoning (in 2 volumes), Elsevier and MIT
Press, 2001, pp. 273–333.

2 L. Bachmair and H. Ganzinger, Rewrite-based
equational theorem proving with selection
and simplification, J. Log. Comput. 4(3)
(1994), 217–247.

3 C. W. Barrett, R. Sebastiani, S. A. Seshia and
C. Tinelli, Satisfiability modulo theories, in
A. Biere, M. Heule, H. van Maaren and T.
Walsh, eds., Handbook of Satisfiability, Sec-
ond Edition, Vol. 336 of Frontiers in Artifi-
cial Intelligence and Applications, IOS Press,
2021, pp. 1267–1329.

4 J. C. Blanchette, C. Kaliszyk, L. C. Paulson
and J. Urban, Hammering towards QED, J.
Formaliz. Reason. 9(1) (2016), 101–148.

5 J. A. Robinson, A machine-oriented logic
based on the resolution principle, J. ACM
12(1) (1965), 23–41.

