
Generating Counterexamples for Structural Inductions
by Exploiting Nonstandard Models

Jasmin Christian Blanchette1? and Koen Claessen2

1 Institut für Informatik, Technische Universität München, Germany
2 Dept. of CSE, Chalmers University of Technology, Gothenburg, Sweden

Abstract. Induction proofs often fail because the stated theorem is noninductive,
in which case the user must strengthen the theorem or prove auxiliary properties
before performing the induction step. (Counter)model finders are useful for de-
tecting non-theorems, but they will not find any counterexamples for noninduc-
tive theorems. We explain how to apply a well-known concept from first-order
logic, nonstandard models, to the detection of noninductive invariants. Our work
was done in the context of the proof assistant Isabelle/HOL and the counter-
example generator Nitpick.

1 Introduction

Much of theorem proving in higher-order logics, whether interactive or automatic, is
concerned with induction proofs: rule induction over inductive predicates, structural
induction over inductive datatypes (which includes mathematical induction over nat-
ural numbers as a special case), and recursion induction over well-founded recursive
functions. Inductive properties are difficult to prove because the failure to perform an
induction step can mean any of the following:

1. The property is not a theorem.
2. The property is a theorem but is too weak to support the induction step.
3. The property is a theorem and is inductive, although no proof has been found yet.

Depending on which of the above scenarios applies, the prover (human or machine)
would take the appropriate course of action:

1. Repair the property’s statement or its underlying specification so that it becomes a
theorem.

2. Generalize the property and/or prove auxiliary properties.
3. Work harder on a proof.

How can we distinguish these three cases? Counterexample generators can often detect
scenario 1, and automatic proof methods sometimes handle scenario 3, but what can we
do when we have neither a proof nor a counterexample?

This paper introduces a method for detecting noninductive properties of datatypes
(properties that cannot be proved without structural induction) using a model finder, in-
spired by previous work involving the second author to detect noninductive invariants of
? Research supported by the DFG grant Ni 491/11-1.

state transition systems [8]. The basic idea is to weaken the higher-order axiomatization
of datatypes to allow nonstandard models (Section 4). The existence of a nonstandard
countermodel for a theorem means that it cannot be proved without structural induction.
If the theorem is an induction step, we have identified scenario 2.

A concrete nonstandard model can also help the prover to figure out how the induc-
tion needs to be strengthened for the proof to go through, in the same way that a standard
counterexample helps locate mistakes in a conjecture. Our examples (Sections 3 and 5)
illustrate how this might be done.

We have implemented the approach in the counterexample generator Nitpick for the
proof assistant Isabelle/HOL, which we employed for the examples and the evaluation
(Section 6). When Nitpick finds no standard countermodel to an induction step, it asks
permission to run again, this time looking for nonstandard countermodels.

2 Background

2.1 Isabelle/HOL

Isabelle [13] is a generic theorem prover whose built-in metalogic is an intuitionistic
fragment of higher-order logic [7, 9]. The metalogical operators include implication,
written ϕ=⇒ψ, and universal quantification, written

∧
x. ϕ. Isabelle’s HOL object logic

provides a more elaborate version of higher-order logic, complete with the familiar
connectives and quantifiers (¬,∧,∨,−→,←→, ∀, ∃). Isabelle proofs are usually written
in the human-readable Isar format inspired by Mizar [18]. This paper will show some
proofs written in Isar. We do not expect readers to understand every detail of the proofs,
and will explain any necessary Isar syntax in context.

The term language consists of simply-typed λ-terms augmented with constants and
weak polymorphism. We adopt the convention that italicized Latin letters with optional
subscripts denote variables, whereas longer names denote constants. Function appli-
cation expects no parentheses around the argument list and no commas between the
arguments, as in f x y. Syntactic sugar provides an infix syntax for common operators,
such as x = y and x+ y. Variables may range over functions and predicates. Types are
usually implicit but can be specified using a constraint ::τ.

HOL’s standard semantics interprets the Boolean type bool and the function space
σ→ τ. The function arrow associates to the right, reflecting the left-associativity of
application. HOL identifies sets with unary predicates and provides syntactic sugar for
set-theoretic notations. Additional types can be declared as uninterpreted types or as
isomorphic to a subset of another type. Alternatively, inductive datatypes can be de-
clared by specifying the constructors and the types of their arguments. For example,
Isabelle’s type α list of finite lists over the type variable α is declared as follows:

datatype α list = Nil | Cons α (α list) (infixr “·”)

The type is generated freely from Nil ::α list and Cons ::α→ α list→ α list. The infixr
tag declares the infix syntax x ·xs as an abbreviation for Cons x xs. Since lists are so
common, Isabelle also supports the traditional notation [x1, . . . , xn].

Constants can be introduced axiomatically or definitionally. Isabelle also provides
high-level definitional mechanisms for defining inductive sets and predicates as well as
recursive functions. For example, the hd ::α list→ α and tl ::α list→ α list functions
that return the head and tail of a list are specified by hd (x·xs) = x and tl (x·xs) = xs.

2.2 Nitpick

Nitpick [5] is a counterexample generator for Isabelle/HOL based on Kodkod [17], a
finite model finder for first-order relational logic that in turn relies on SAT solving.
Given a conjecture, Nitpick determines which axioms and definitions are needed and
searches for a standard set-theoretic model that satisfies the axioms and falsifies the
conjecture.

The basic translation from HOL to Kodkod’s relational logic is straightforward, but
common HOL idioms such as inductive predicates, inductive datatypes, and recursive
functions necessitate a translation scheme tailored for SAT solving. In particular, infinite
datatypes are (soundly) approximated by finite subterm-closed subsets [4].

The following example shows Nitpick in action on a conjecture about list reversal:

theorem REV_CONS_REV: rev (x · rev xs) = x · xs
nitpick [show_datatypes]

Nitpick found a counterexample for |α| = 5:

Free variables: x = a1 xs = [a2]
Datatype: α list = {[], [a1], [a1,a2], [a2], [a2,a1], . . .}

(The output is shown in a slanted font to distinguish it from the user’s proof text and
interactive commands.) We see that it sufficed to consider the subset α list = {[], [a1],
[a1,a2], [a2], [a2,a1], . . .} of all lists over {a1, . . . ,a5} to falsify the conjecture.

3 Introductory Examples

Our approach is best explained by demonstrating it on a few examples before looking
at the technicalities. The first example focuses on rule induction: We define a set in-
ductively and attempt to prove properties about it by following the introduction rules.
Although rule induction is not our main topic, the example is instructive in its own right
and serves as a stepping stone for the application of our method to structural induction
proofs. The second example illustrates a failed structural induction on binary trees.

3.1 Rule Induction

Properties about inductively defined sets and predicates can be proved by rule induction.
The following specification of the scoring of tennis games will serve as illustration:

datatype player = Serv | Recv
datatype score = Points nat nat (infix “�”) | Adv player | Game player

inductive_set legal :: score list→ bool where
LOVE_ALL: [0�0] ∈ legal

SERV_15: 0�n · xs ∈ legal =⇒ 15�n · 0�n · xs ∈ legal
SERV_30: 15�n · xs ∈ legal =⇒ 30�n · 15�n · xs ∈ legal

...
RECV_GAME: n�40 · xs ∈ legal =⇒ n 6= 40 =⇒ Game Recv · n�40 · xs ∈ legal
DEUCE_ADV: 40�40 · xs ∈ legal =⇒ Adv p · 40�40 · xs ∈ legal
ADV_DEUCE: Adv p · xs ∈ legal =⇒ 40�40 ·Adv p · xs ∈ legal
ADV_GAME: Adv p · xs ∈ legal =⇒ Game p ·Adv p · xs ∈ legal

A game is a trace [sn, . . . , s1] of successive scores listed in reverse order. The inductively
defined set legal is the set of all legal (complete or incomplete) games, starting from the
score 0�0. For example, [15�15, 15�0, 0�0] and [Game Recv, 0�40, 0�30, 0�15, 0�0]
are legal games, but [15�0] is not.

By manually inspecting the rules, it is easy to persuade ourselves that no player can
reach more than 40 points. Nitpick is also convinced:

theorem LE_40: g ∈ legal =⇒ a�b ∈ g−→ max a b≤ 40
nitpick

Nitpick found no counterexample.

(The symbol ‘∈’ is overloaded to denote list membership as well as set membership.)
Let us try to prove the above property by rule induction:

proof (induct set: legal)
case LOVE_ALL thus ?case by simp

The first line of the proof script tells Isabelle that we want to perform a proof by rule
induction over the set legal. The second line selects the proof obligation associated with
the LOVE_ALL rule from legal’s definition and discharges it using the simp method,
which performs equational reasoning.

case (SERV_15 n xs) thus ?case

The next line selects the proof obligation associated with the SERV_15 rule. At this
point, the induction hypothesis is

a�b ∈ 0�n · xs −→ max a b≤ 40, (IH)

and we must prove

a�b ∈ 15�n · 0�n · xs −→ max a b≤ 40. (G)

We may also assume
0�n · xs ∈ legal, (R)

since it occurs as a hypothesis in SERV_15. Observe that the hypothesis R involves
legal, which is precisely the set on which we are performing rule induction. If we stated

our theorem “strongly enough,” it should be sufficient to use the induction hypothesis
IH to prove the goal G , without reasoning about legal directly. (There is certainly
nothing wrong with reasoning about legal, but this would mean performing a nested
induction proof or invoking a lemma that we would then prove by induction. We want
to avoid this if we can.)

Can we prove IH =⇒G without R ? None of Isabelle’s automatic tactics appear to
work, and if we tell Nitpick to ignore R , it finds the following counterexample:

Free variables: a = 15 b = 41 n = 41 xs = []

Indeed, the induction hypothesis is not applicable, because 15�41 /∈ [0�41]; and the
goal is falsifiable, because 15�41 ∈ [15�41] and max 15 41 6≤ 40. The counterexample
disappears if we reintroduce R , since [0�41] is not a legal game. This suggests that the
stated theorem is correct, but that it is not general enough to support the induction step.

The countermodel tells us additional information that we can use to guide our search
for a proof. First, notice that the counterexample falsifies a�b ∈ 0�n · xs, and so the
induction hypothesis is useless. On closer inspection, instantiating a with 15 in the
induction hypothesis is odd; it would make more sense to let a be 0. Then IH becomes
0�41 ∈ [0�41] −→ max 0 41 ≤ 40, which is false—and the countermodel disappears
because IH =⇒ G is true. If we can eradicate all countermodels, it is likely that the
formula will become provable.

This instantiation of a would have been possible if a had been universally quantified
in IH . This can be achieved by explicitly quantifying over a in the statement of the
theorem. We do the same for b. The proof is now within the auto tactic’s reach:

theorem LE_40: g ∈ legal =⇒ ∀a b. a�b ∈ g−→ max a b≤ 40
by (induct set: legal) auto

Explicit universal quantification is a standard proof heuristic [13, pp. 33–36]. An equally
valid approach would have been to precisely characterize the possible scores in a legal
game and then use that characterization to prove the desired property:

theorem ALL_LEGAL:
g ∈ legal =⇒ ∀s ∈ g. s ∈ {m�n | {m,n}⊆ {0,15,30,40}}

∪ range Adv ∪ range Game
by (induct set: legal) auto

theorem LE_40: g ∈ legal =⇒ a�b ∈ g−→ max a b≤ 40
by (frule ALL_LEGAL [THEN BALL_E, where x = “a�b”]) auto

What can we learn from this example? In general, proofs by rule induction give rise
to subgoals of the form R ∧ IH ∧ SC =⇒ G , where R represents the recursive an-
tecedents of the rule, IH represents the induction hypotheses, and SC is the rule’s side
condition. When we claim that an induction hypothesis is “strong enough,” we usually
mean that we can carry out the proof without invoking R . If IH ∧ SC =⇒ G admits a
counterexample, the induction hypothesis is too weak: We must strengthen the formula
we want to prove or exploit R in some way.

This issue arises whenever we perform induction proofs over inductively defined
“legal” values or “reachable” states. In the next section, we will carry this idea over to
structural induction.

3.2 Structural Induction

As an example, consider the following mini-formalization of full binary trees:

datatype α btree = Lf α | Br (α btree) (α btree)

fun labels :: α btree→ α→ bool where
labels (Lf a) = {a}
labels (Br t1 t2) = labels t1 ∪ labels t2

fun swap :: α btree→ α→ α→ α btree where
swap (Lf c) a b = Lf (if c = a then b else if c = b then a else c)
swap (Br t1 t2) a b = Br (swap t1 a b) (swap t2 a b)

A tree is either a labeled leaf (Lf) or an unlabeled inner node (Br) with a left and right
child. The labels function returns the set of labels that occur on a tree’s leaves, and swap
simultaneously substitutes two labels for each other. Intuitively, if two labels a and b
occur in a tree t, they should also occur in the tree obtained by swapping a and b:

theorem LABELS_SWAP: {a,b}⊆ labels t −→ labels (swap t a b) = labels t

Nitpick cannot disprove this, so we proceed with structural induction on the tree t:

proof (induct t)
case LF thus ?case by simp
case (BR t1 t2) thus ?case

The induction hypotheses are

{a,b}⊆ labels t1 −→ labels (swap t1 a b) = labels t1 (IH 1)
{a,b}⊆ labels t2 −→ labels (swap t2 a b) = labels t2 (IH 2)

and the goal is

{a,b}⊆ labels (Br t1 t2)−→ labels (swap (Br t1 t2) a b) = labels (Br t1 t2). (G)

Nitpick cannot find any counterexample to IH 1 ∧ IH 2 =⇒ G , but thanks to the tech-
nique we present in this paper it now makes the following suggestion:

Hint: To check that the induction hypothesis is general enough, try this command:
nitpick [non_std, show_all].

If we follow the hint, we get the output below.

Nitpick found a nonstandard counterexample for |α| = 3:

Free variables: a = a1 b = a2 t1 = ξ1 t2 = ξ2
Datatype: α btree = {ξ1 = Br ξ1 ξ1, ξ2 = Br ξ2 ξ2, Br ξ1 ξ2}

Constants: labels = (λx. ?)(ξ1 7→ {a2, a3}, ξ2 7→ {a1},
Br ξ1 ξ2 7→ {a1, a2, a3})

λx. swap x a b = (λx. ?)(ξ1 7→ ξ2, ξ2 7→ ξ2, Br ξ1 ξ2 7→ ξ2)

The existence of a nonstandard model suggests that the induction hypothesis is
not general enough or may even be wrong. See the Nitpick manual’s “Inductive
Properties” section for details.

(a) abstract view (b) concrete view

Fig. 1. A nonstandard tree

What is happening here? The non_std option told the tool to look for nonstandard
models of binary trees, which means that new nonstandard trees ξ1, ξ2, . . . , are now
allowed in addition to the standard trees generated by Lf and Br. Unlike standard trees,
these new trees contain cycles: The “Datatype” section of Nitpick’s output tells us that
ξ1 = Br ξ1 ξ1 and ξ2 = Br ξ2 ξ2. Although this may seem counterintuitive, every prop-
erty of acyclic objects that can be proved without using induction also holds for cyclic
objects. Hence, if Nitpick finds a counterexample with cyclic objects in it (a nonstan-
dard countermodel), the property cannot be proved without using induction.

Here the tool found the nonstandard trees t1 = ξ1 and t2 = ξ2 such that a /∈ labels t1,
b ∈ labels t1, a ∈ labels t2, and b /∈ labels t2. The situation is depicted in Figure 1.
Because neither subtree contains both a and b, the induction hypothesis tells us nothing
about the labels of swap t1 a b and swap t2 a b. Thus, the model finder can assign
arbitrary values to the results of labels and swap for the nonstandard trees, as long as
the equations defining those functions are respected. The theorem is “falsified” because
labels (swap t1 a b) = {b,a3} but labels t1 = {a}. This could never happen for a
standard tree t1, but we need induction to prove this.

We can repair the proof of the theorem by ensuring that we always know what the
labels of the subtrees are in the induction step, by also covering the cases where a
and/or b is not in t:

theorem LABELS_SWAP:
labels (swap t a b) = (if a ∈ labels t then

if b ∈ labels t then labels t else (labels t−{a}) ∪ {b}
else

if b ∈ labels t then (labels t−{b}) ∪ {a} else labels t)

This time Nitpick will not find any nonstandard counterexample, and we can prove the
induction step using the auto tactic.

4 The Approach

The previous section offered a black-box view of our approach to debugging structural
induction steps. Let us now take a look inside the box.

4.1 Description

Our approach consists in weakening the datatype axioms so that the induction principle
no longer holds. As a result, properties that can only be proved by induction are no
longer valid and admit countermodels. To illustrate this, we restrict our attention to the
type nat of natural numbers generated from 0::nat and Suc ::nat→ nat. It is axiomatized
as follows [3]:

DISTINCT: 0 6= Suc n
INJECT: Suc m = Suc n ←→ m = n

INDUCT: P 0 =⇒
(∧

n. P n =⇒ P (Suc n)
)
=⇒ P n

When we declare a datatype, Isabelle constructs a set-theoretic definition for the
type, derives characteristic theorems from the definition, and derives other useful the-
orems that follow from the characteristic theorems. From the user’s point of view, the
characteristic theorems axiomatize the datatype, and the underlying set-theoretic defi-
nition can be ignored. Accordingly, we will allow ourselves to write “axioms” instead
of “characteristic theorems.”3

The following theorem is a consequence of INDUCT:

NCHOTOMY: n = 0 ∨ (∃m. n = Suc m)

A well-known result from first-order logic is that if we consider only the DISTINCT
and INJECT axioms and leave out INDUCT (which is second-order), nonstandard models
of natural numbers are allowed alongside the standard model [15]. In these nonstandard
models, we still have distinct values for 0, Suc 0, Suc (Suc 0), . . . , but also additional
values (“junk”) that cannot be reached starting from 0 by applying Suc a finite number
of times. For example, the domain

|M |= {0,1,2, . . .} ∪ {0̃, 1̃, 2̃, . . .} ∪ {a,b,c}

with

0M = 0 SucM (0) = 1 SucM (0̃) = 1̃ SucM (a) = a

SucM (1) = 2 SucM (1̃) = 2̃ SucM (b) = c
...

... SucM (c) = b

is a nonstandard model of natural numbers (Figure 2). If we introduce NCHOTOMY as
an axiom, the above is no longer a model, because 0̃ is neither zero nor the successor
of some number. In contrast, |M ′| = {0,1,2, . . .} ∪ {a,b,c} is a model, with 0M ′

and
SucM ′

defined as for M .
3 Isabelle’s definitional approach stands in contrast to the axiomatic approach adopted by PVS

and other provers, where the datatype axioms’ consistency must be trusted [14]. Here, we take
a PVS view of Isabelle.

Fig. 2. A nonstandard model of the natural numbers

Our method relies on the following key observation: If a property P is “general
enough,” the induction step P n =⇒ P (Suc n) can be proved without using the INDUCT
axiom and hence it admits no countermodel even if we substitute NCHOTOMY for IN-
DUCT. It makes sense to add NCHOTOMY because users normally do not think of case
distinction as a form of induction; NCHOTOMY is first-order and easy to apply.

The method was illustrated on natural numbers but is easy to generalize to all re-
cursive datatypes. Self-recursive datatypes such as α list and α btree are handled in the
same way. Mutually recursive datatypes share their INDUCT axiom, but each type has its
own NCHOTOMY theorem; we simply replace INDUCT by the NCHOTOMY theorems.

4.2 Theoretical Properties

The soundness of our method follows directly from the definition.

Definition 1 (Nonstandard Models). Let τ̄ be some datatypes, C be a formula, and
A the set of relevant axioms to C . A τ̄-nonstandard model of C with respect to A
is a model of Ã ` C , where Ã is constructed from A by replacing INDUCT with
NCHOTOMY for all types τ̄.

Theorem 1 (Soundness). If there exists a τ̄-nonstandard countermodel to C , then C
cannot be proved using only the DISTINCT, INJECT, and NCHOTOMY properties of τ̄.

Proof. This follows directly from the definition of nonstandard models and the sound-
ness of the proof system. ut

The converse to Theorem 1, completeness, does not hold, because the HOL proof sys-
tem is incomplete with respect to standard models, and because model finders such as
Nitpick must necessarily miss some infinite models or be unsound.

4.3 Implementation

The implementation in Nitpick deviates from the above description, because it has its
own axiomatization of datatypes based on selectors, directly encoded in Kodkod’s rela-
tional logic [4]. The type nat would be axiomatized as follows:

DISJ: no zero ∩ sucs UNIQ0: lone zero

EXHAUST: zero ∪ sucs = nat UNIQSuc: lone prec−1(n)

SELECTprec: if n ∈ sucs then one prec(n)
else no prec(n)

ACYCL: (n,n) /∈ prec+.

In Kodkod’s logic, terms denote relations; for example, prec(n) denotes the set (or
unary relation) of all m such that (n,m) belongs to the binary relation prec. Free vari-
ables denote singletons. The constraint no r expresses that r is the empty relation, one r
expresses that r is a singleton, and lone r⇐⇒ no r ∨ one r.

Users can instruct Nitpick to generate nonstandard models by specifying the non_std
option, in which case the ACYCL axiom is omitted. For finite model finding, the ACYCL
axiom, together with EXHAUST, is equivalent to INDUCT, but it can be expressed com-
fortably in Kodkod’s logic.

Cyclic objects are displayed as ξ1, ξ2, . . . , and their internal structure is shown under
the “Datatypes” heading. For the benefit of users who have not read the manual, Nitpick
detects structural induction steps and gives a hint to the user, as we saw in Section 3.2.

5 A More Advanced Example

The next example is taken from the Isabelle tutorial [13, pp. 9–15]. We want to prove
that reversing a list twice yields the original list:

theorem REV_REV: rev (rev ys) = ys

The rev function is defined in terms of the append operator (@). Their equational spec-
ifications follow:

rev [] = [] [] @ ys = ys

rev (x·xs) = rev xs @ [x] (x·xs) @ ys = x · (xs @ ys).

The base case of the induction proof of REV_REV is easy to discharge using the simp
method. For the induction step, we may assume

rev (rev zs) = zs (IH)

and the goal is
rev (rev (z·zs)) = z·zs. (G)

Applying simp rewrites the goal to

rev (rev zs @ [z]) = z·zs (G ′)

using the equational specification of rev. If we run Nitpick at this point, it does not find
any standard countermodel, suggesting that IH =⇒ G ′ is valid. And if we instruct it to
look for nonstandard countermodels, it quickly finds one:

Free variables: z = a1 zs = ξ1
Datatype: α list = {[], [a1], ξ1 = a1 ·ξ2, ξ2 = a1 ·ξ1, . . .}

Constants: rev = (λx. ?)([] 7→ [], [a1] 7→ [a1], ξ1 7→ ξ1, ξ2 7→ ξ1)
op @ = (λx. ?) (([], []) 7→ [], ([], [a1]) 7→ [a1], ([], ξ1) 7→ ξ1,

([], ξ2) 7→ ξ2, ([a1], []) 7→ [a1], ([a1], ξ1) 7→ ξ2,

([a1], ξ2) 7→ ξ1, (ξ1, [a1]) 7→ ξ1, (ξ2, [a1]) 7→ ξ2)

Fig. 3. Two nonstandard lists

The existence of the countermodel tells us that we must provide additional prop-
erties of rev, @, or both. It turns out the countermodel can provide some insight as to
how to proceed. The model contains two distinct nonstandard lists, ξ1 and ξ2, that fal-
sify the conjecture: rev (rev ξ2) = ξ1. The function table for @ contains the following
information about them:

ξ1 @ [a1] = ξ1 [a1] @ ξ1 = ξ2

ξ2 @ [a1] = ξ2 [a1] @ ξ2 = ξ1.

The left column of the function table implies that both ξ1 and ξ2 represent infinite lists,
because appending elements does not change them. The right column is depicted in
Figure 3. Both lists ξ1 and ξ2 seem to only consist of the element a1 repeated infinitely
([a1,a1, . . .]), and yet ξ1 6= ξ2.

A striking property of the function table of @ is that the left and right columns are
not symmetric. For standard finite lists, appending and prepending an element should
be symmetric. We can involve the function rev to make this relationship explicit: Ap-
pending an element and reversing the resulting list should construct the same list as
reversing the list first and prepending the element. This clearly does not hold for the
nonstandard model: rev (ξ1 @ [a1]) = ξ1 but [a1] @ rev ξ1 = ξ2.

We thus add and prove the following lemma.

theorem REV_SNOC: rev (xs @ [x]) = [x] @ rev xs
by (induct xs) auto

Equipped with this lemma, the induction step of rev (rev ys)= ys is now straightforward
to prove:

case (CONS y ys) note IH = this
have rev (rev (y·ys)) = rev (rev ys @ [y]) by simp
moreover have . . . = y · rev (rev ys) using REV_SNOC .
moreover have . . . = y · ys using IH by simp
ultimately show ?case by simp

Admittedly, some imagination is required to come up with the REV_SNOC lemma.
However, it is the same kind of reasoning (building an intuition and then generalizing)
that is needed to repair non-theorems on the basis of standard counterexamples.

6 Evaluation

Evaluating our method directly would require observing Isabelle users and estimating
how much time they saved (or wasted) thanks to it. We chose instead to benchmark our
core procedure: finding nonstandard models to properties that require structural induc-
tion. To achieve this, we took all the theories from the Archive of Formal Proofs [10]
that are based on Isabelle’s HOL theory and that contain at least 5 theorems proved by
structural induction. We assumed that every theorem that was proved by structural in-
duction needed it (but took out a few obviously needless inductions). For every theorem,
we invoked Nitpick with the non_std option and a time limit of 30 seconds.

The table below summarizes the results per theory.

THEORY FOUND SUCCESS

Comp.-Except.-Correctly 8/8 100.0%
Huffman 27/28 96.4%
FOL-Fitting 31/38 81.6%
POPLmark-deBruijn 90/112 80.4%
RSAPSS 33/47 70.2%
HotelKeyCards 16/23 69.6%
Presburger-Automata 12/19 63.2%
SATSolverVerification 106/172 61.6%
AVL-Trees 8/13 61.5%
Collections 33/58 56.9%
FeatherweightJava 9/16 56.2%
BytecodeLogicJmlTypes 10/18 55.6%
Flyspeck-Tame 92/166 55.4%
Tree-Automata 32/64 50.0%
MuchAdoAboutTwo 4/8 50.0%
Verified-Prover 4/8 50.0%
VolpanoSmith 3/6 50.0%
NormByEval 16/41 39.0%

THEORY FOUND SUCCESS

Prog.-Conflict-Analysis 20/53 37.7%
Simpl 38/109 34.9%
Completeness 15/44 34.1%
CoreC++ 17/60 28.3%
Group-Ring-Module 41/151 27.2%
SIFPL 6/23 26.1%
BinarySearchTree 5/22 22.7%
Functional-Automata 9/41 22.0%
Fermat3_4 2/12 16.7%
Recursion-Theory-I 5/31 16.1%
Cauchy 1/9 11.1%
Coinductive 4/53 7.5%
Lazy-Lists-II 1/25 4.0%
MiniML 0/98 0.0%
Ordinal 0/20 0.0%
Integration 0/8 0.0%
Topology 0/5 0.0%

An entry m/n indicates that Nitpick found a nonstandard model for m of n theorems
proved by induction. The last column expresses the same result as a percentage.

The success rates vary greatly from theory to theory. Nitpick performed best on
theories involving lists, trees, and terms (Compiling-Exceptions-Correctly, Huffman,
POPLmark-deBruijn). It performed poorly on theories involving arithmetic (Cauchy,
Integration), complex set-theoretic constructions (Lazy-List-II, Ordinal), a large state
space (CoreC++, SIFPL, Recursion-Theory-I), or nondefinitional axioms (MiniML).
This is consistent with previous experience with Nitpick for finding standard models [5].

The main reason for the failures of our method is the inherent limitations of model
finding in general, rather than our definition of nonstandard models. Our tool Nitpick is
essentially a finite model finder, so only finite (fragments of) nonstandard models can

be found. Nonstandard models are slightly easier to find than standard models because
they have fewer axioms to fulfill, but they otherwise present the same challenges to
Nitpick. Users who are determined to employ Nitpick can customize its behavior using
various options, adapt their theories to avoid difficult idioms, or run it in an unsound
mode that finds more genuine countermodels but also some spurious ones.

At first glance, the theory BinarySearchTrees seemed perfectly suited to our method,
so we were surprised by the very low success rate. It turns out BinarySearchTree uses
the type int to label its leaf nodes. In Isabelle, int is not defined as a datatype, and
Nitpick handles it specially. Hence, proofs by induction on the structure or height of
the trees could be avoided by applying an induction-like principle on int. Replacing int
with nat for the labels increased the theory’s score to 16/22 (72.7%).

7 Discussion and Related Work

Interpretation of Nonstandard Models. Our method presents the user with a counter-
model whenever it detects that a property is noninductive. In some cases, the user must
understand the cyclic structure of the nonstandard values ξi and see how they interfere
with the induction step; in other cases, it is better to ignore the cyclic structures. Either
way, it is usually difficult to isolate the relevant parts of the model and infer which prop-
erties were violated by the model and any other countermodel. The traditional approach
of studying the form of the current goal to determine how to proceed always remains
an alternative. Even then, the concrete nonstandard countermodel we compute provides
added value, because we can use it to validate any assumption we want to add.

Inductiveness Modulo Theories. Arguably, users rarely want to know whether the step
IH =⇒G can be performed without induction; rather, they have already proved various
theorems T and want to know whether IH ∧ T =⇒G can be proved without induction.
The theorems T could be all the theorems available in Isabelle’s database (numbering in
the thousands), or perhaps those that are known to Isabelle’s automatic proof methods.
Some users may also want to specify the set T themselves.

The main difficulty here is that these theorems are generally free-form universally
quantified formulas and would occur on the left-hand side of an implication: If any
of the universal variables range over an infinite type, Nitpick gives up immediately
and enters an unsound mode in which the quantifiers are artificially bounded. Counter-
examples are then marked as “potential.” Infinite universal quantification is problematic
for any finite model finder. We have yet to try infinite (deductive) model finding [6] on
this type of problem.

On the other hand, users can instantiate the relevant theorems and add them as as-
sumptions. This requires guessing the proper instantiations for the theorem’s universal
variables. Nitpick can be quite helpful when trying different instantiations.

Possible Application to First-Order Proof Search. Isabelle includes a tool called Sledge-
hammer that translates the current HOL goal to first-order logic and dispatches it to au-
tomatic theorem provers (ATPs) [11, 12]. The tool heuristically selects theorems from
Isabelle’s database and encodes these along with the goal. Using nonstandard model

finding, it should sometimes be possible to determine that no first-order proof of a goal
exists and use this information to guide the theorem selection. Unfortunately, this suf-
fers from the same limitations as “inductiveness modulo theories” described above.

Alternative Approach: A Junk Constructor. Our first attempt at detecting noninductive
properties was also rooted in the world of nonstandard models, but instead of allowing
cyclic values we added an extra constructor Junk ::σ→ τ to each datatype τ, where σ
is a fresh type. The values constructed with Junk were displayed as ξ1, ξ2, . . . , to the
user. For many examples the results are essentially the same as with the “cyclic value”
approach, but the approaches behave differently for two classes of properties: (1) For
properties that can be proved with case distinction alone, the “extra constructor” ap-
proach leads to spurious countermodels. (2) For properties that follow from the acyclic-
ity of constructors, the “extra constructor” approach fails to exhibit counterexamples.
An example of such a property is Suc n 6= n, which can only be falsified by a cyclic n.

The “extra constructor” approach also has its merits: It relieves the user from having
to reason about cyclic structures, and it is easier to implement in counterexample gen-
erators such as Quickcheck [2] that translate HOL datatypes directly to ML datatypes.

More Related Work. There are two pieces of related work that have directly inspired the
ideas behind this paper. The first is work by Claessen and Svensson on different kinds of
counterexample generation in the context of reachability [8]; the rule induction example
presented in Section 3.1 is a direct adaptation of their approach. The second inspiration
is work by Ahrendt on counterexample generation in the context of specifications of
datatypes [1]. Ahrendt finds finite (and thus “nonstandard”) counterexamples by weak-
ening the specifications, which would otherwise only admit infinite models. Ahrendt’s
work was not done in the context of induction, and his notion of nonstandard models is
thus very different from ours.

There exists a lot of prior work on automating induction proofs. For example, us-
ing rippling [16], failed proof attempts are analyzed and may lead to candidates for
generalized induction hypotheses or new lemmas. Work in this area has the same gen-
eral aim as ours: providing useful feedback to provers (humans or machines) who get
stuck in induction proofs. Our approach differs most notably with this work in that it
provides definite feedback to the prover about the inadequacy of the used induction
technique. When our method generates a counterexample, it is certain that more induc-
tion is needed to proceed with the proof, if the conjecture is provable at all. Another
difference is that we focus on counterexamples rather than on failed proof attempts.
However, our longer-term hope is to exploit the nonstandard counterexamples in an
automatic induction prover. This remains future work.

8 Conclusion

We described a procedure for automatically detecting that a structural induction hypoth-
esis is too weak to support the induction step when proving a theorem, and explained
how we modified the model finder Nitpick for Isabelle/HOL to support it. The procedure
is based on the concept of nonstandard models of datatypes. The tight integration with
a model finder allows for precise feedback in the form of a concrete counterexample
that indicates why the induction step fails.

Although our focus is on interactive theorem proving, our approach is also appli-
cable to automatic inductive theorem provers. In particular, the nonstandard models
produced by the method contain a wealth of information that could be used to guide
the search for an induction proof. An exciting direction for future work would be to see
how to exploit this information automatically.

Acknowledgment. We want to thank Tobias Nipkow for sponsoring this collaboration
between Gothenburg and Munich, Sascha Böhme for helping with the implementation,
and Alexander Krauss, Mark Summerfield, and the anonymous reviewers for suggesting
textual improvements.

References
1. W. Ahrendt. Deductive search for errors in free data type specifications using model gener-

ation. In Proc. of 18th Int. Conf. on Automated Deduction (CADE). Springer, 2002.
2. S. Berghofer and T. Nipkow. Random testing in Isabelle/HOL. In J. Cuellar and Z. Liu, eds.,

SEFM 2004, pp. 230–239. IEEE C.S., 2004.
3. S. Berghofer and M. Wenzel. Inductive datatypes in HOL—lessons learned in formal-logic

engineering. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, eds., TPHOLs
’99, vol. 1690 of LNCS, pp. 19–36, 1999.

4. J. C. Blanchette. Relational analysis of (co)inductive predicates, (co)inductive datatypes, and
(co)recursive functions. In G. Fraser and A. Gargantini, eds., TAP 2010, LNCS. Springer,
2010. To appear.

5. J. C. Blanchette and T. Nipkow. Nitpick: A counterexample generator for higher-order logic
based on a relational model finder. In M. Kaufmann and L. Paulson, eds., ITP-10, LNCS.
Springer, 2010. To appear.

6. R. Caferra, A. Leitsch, and N. Peltier. Automated Model Building, vol. 31 of Applied Logic.
Springer, 2004.

7. A. Church. A formulation of the simple theory of types. J. Symb. Log., 5:56–68, 1940.
8. K. Claessen and H. Svensson. Finding counter examples in induction proofs. In B. Beckert

and R. Hähnle, eds., TAP 2008, vol. 4966 of LNCS, pp. 48–65. Springer, 2008.
9. M. J. C. Gordon and T. F. Melham, eds. Introduction to HOL: A Theorem Proving Environ-

ment for Higher Order Logic. Cambridge University Press, 1993.
10. G. Klein, T. Nipkow, and L. Paulson. The archive of formal proofs. http://afp.sf.net/.
11. J. Meng and L. C. Paulson. Translating higher-order clauses to first-order clauses. J. Auto.

Reas., 40(1):35–60, 2008.
12. J. Meng and L. C. Paulson. Lightweight relevance filtering for machine-generated resolution

problems. J. Applied Logic, 7(1):41–57, 2009.
13. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order

Logic, vol. 2283 of LNCS. Springer, 2002.
14. S. Owre and N. Shankar. Abstract datatypes in PVS. Technical report, SRI, 1993.
15. T. Skolem. Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzähl-

bar unendlich vieler Aussagen mit ausschließlich Zahlenvariablen. Fundam. Math., 23:150–
161, 1934.

16. J. Stark and A. Ireland. Invariant discovery via failed proof attempts. In Proc. 8th Int.
Workshop on Logic Based Program Synthesis and Transformation, 1998.

17. E. Torlak and D. Jackson. Kodkod: A relational model finder. In O. Grumberg and M. Huth,
eds., TACAS 2007, vol. 4424 of LNCS, pp. 632–647. Springer, 2007.

18. M. Wenzel and F. Wiedijk. A comparison of the mathematical proof languages Mizar and
Isar. J. Auto. Reas., 29(3–4):389–411, 2002.

