
Foundational, Compositional (Co)datatypes for
Higher-Order Logic

Category Theory Applied to Theorem Proving

Dmitriy Traytel
Technische Universität München

Munich, Germany

Andrei Popescu
Technische Universität München

Munich, Germany
Institute of Mathematics Simion Stoilow

Bucharest, Romania

Jasmin Christian Blanchette
Technische Universität München

Munich, Germany

Abstract—Interactive theorem provers based on higher-order
logic (HOL) traditionally follow the definitional approach, reduc-
ing high-level specifications to logical primitives. This also applies
to the support for datatype definitions. However, the internal
datatype construction used in HOL4, HOL Light, and Isabelle/
HOL is fundamentally noncompositional, limiting its efficiency
and flexibility, and it does not cater for codatatypes.

We present a fully modular framework for constructing
(co)datatypes in HOL, with support for mixed mutual and
nested (co)recursion. Mixed (co)recursion enables type definitions
involving both datatypes and codatatypes, such as the type of
finitely branching trees of possibly infinite depth. Our framework
draws heavily from category theory. The key notion is that
of a bounded natural functor—an enriched type constructor
satisfying specific properties preserved by interesting categorical
operations. Our ideas are implemented as a definitional package
in Isabelle, addressing a frequent request from users.

Keywords-•—Category theory, higher-order logic, interactive
theorem proving, (co)datatypes, cardinals

I. INTRODUCTION

Higher-order logic (HOL, Sect. II) forms the basis of several
popular interactive theorem provers, notably HOL4 [10], HOL
Light [16], and Isabelle/HOL [27]. Its straightforward seman-
tics, which interprets types as sets (collections) of elements,
makes it an attractive choice for many computer science and
mathematical formalizations.

The theorem provers belonging to the HOL family tradi-
tionally encourage their users to adhere to the definitional
approach, whereby new types and constants are defined in
terms of existing constructs rather than introduced axiomat-
ically. Following the LCF philosophy [11], theorems can be
generated only within a small inference kernel, reducing the
amount of code that must be trusted.

The definitional approach is a harsh taskmaster. At the prim-
itive level, a new type is defined by carving out an isomorphic
subset from an existing type. Higher-level mechanisms are also
available, but behind the scenes they reduce the user-supplied
specification to primitive type definitions.

The most important high-level mechanism is undoubtedly
the datatype package, which automates the derivation of (freely

generated inductive) datatypes. Melham [26] had already
devised such a definitional package two decades ago. His
approach, considerably extended by Gunter [13], [14] and
simplified by Harrison [15], now lies at the heart of the
implementations in HOL4, HOL Light, and Isabelle/HOL.

Despite having withstood the test of time, the Melham–
Gunter approach suffers from a few limitations that impair its
usefulness. The most pressing issue is probably its ignorance
of codatatypes (the coinductive counterpart of datatypes).
Lacking a definitional package to automate the definition of
codatatypes, users face a tough choice between tedious manual
constructions and risky axiomatizations [17].

Creating a monolithic codatatype package to supplement the
datatype package is not an attractive prospect, because many
applications need to mix and match datatypes and codatatypes,
as in the following nested-(co)recursive specification of finitely
branching trees of possibly infinite depth:

datatype α list = Nil | Cons α (α list)
codatatype α tree = Node α ((α tree) list)

Ideally, users should also be allowed to define (co)datatypes
with (co)recursion through well-behaved non-free type con-
structors, such as the finite set constructor fset:

codatatype α tree = Node α ((α tree) fset)

This paper presents a fully compositional framework for
defining datatypes and codatatypes in HOL, including mutual
and nested (co)recursion through an arbitrary combination of
datatypes, codatatypes, and other interesting type constructors
(Sect. III). The underlying mathematical apparatus is taken
from category theory. Our type constructors are functors
satisfying specific semantic properties; we call them bounded
natural functors (BNFs). Unlike all previous approaches im-
plemented in HOL-based provers, our framework imposes
no syntactic restrictions on the type constructors that can
participate in nested (co)recursion.

The main mathematical contribution of this paper is a
novel class of functors—the BNFs—that is closed under the
initial algebra, final coalgebra, and composition operations
and that allows initial and final constructions in a sufficiently

“local” way (Sect. IV). Cardinality reasoning with canonical
membership-based well-orders lies beyond HOL’s expressive
power, so we need a theory of cardinals that circumvents
this limitation. Performing global categorical constructions in
a weak, “local” formalism arguably constitutes the logical
equivalent of walking on a tightrope.

We have formalized the development in Isabelle/HOL and
are proceeding to implement a fully automatic definitional
package for (co)datatypes based on these ideas to supplant
the existing datatype package (Sect. V).

II. HIGHER-ORDER LOGIC (HOL)

By HOL we mean classical higher-order logic with Hilbert
choice, the axiom of infinity, and rank-1 polymorphism. HOL
is based on Church’s simple type theory [9]. It is the logic of
Gordon’s original HOL system [10] and of its many successors
and emulators. To keep the focus on the relevant issues, we
present HOL not as a formal system but rather as a framework
for expressing mathematics, much in the way that set theory
is employed by working mathematicians.

The standard semantics of HOL relies on a universe U
of types, ranged over by α, β, γ, which we view as nonempty
collections of elements. Membership of an element a in a type
α is written a : α. The type unit consists of a single element
(), bool is the Boolean type, and nat is the type of natural
numbers. Fixed elements of types, such as () : unit, are called
constants. Given α and β, we can form the type α→ β of (total)
functions from α to β. If f : α→ β and a : α, then f a : β is
the result of applying f to a. The types α+β and α×β are
the disjoint sum and the product of α and β, respectively. For
n-ary functions, we generally prefer the curried form f : α1→
·· · → αn→ β to the tuple form.

HOL supports a restrictive, simply typed flavor of set theory.
We write α set for the powertype of α, consisting of sets of
α elements; it is isomorphic to α→ bool. The universe set
of α, Uα : α set, is the set consisting of all the elements of
α. For notational convenience, we sometimes write α instead
of Uα. Given an element a : α and a set A : α set, a ∈ A tests
whether a belongs to A. Although the two concepts are related,
set membership is not to be confused with type membership.
Given a type α and a predicate ϕ : α→ bool, we can form by
comprehension the set {a :α. ϕ a} of type α set.

While unit, bool, and nat are types in their own right, set,
→, +, and × are type constructors, i.e., functions on the
universe of types. The first of these is unary, and the last
three are binary. Types are a special case of type constructors,
with arity 0. We can introduce new type constructors as
combinations of existing ones; for example, we can define the
ternary type constructor (α1, α2, α3) F as (α2+α1)× (α3 set).
Except for infix operators, type constructor application is
written in postfix notation (e.g., α F) and function application
in prefix notation (e.g., f a).

Depending on the context, (α1, . . . , αn) F either denotes the
application of F to (α1, . . . , αn) or simply indicates that F is
an n-ary type constructor. We abbreviate (α1, . . . , αn) F to α F.
Given a binary type constructor (α1, α2) F and a fixed type β,

(_, β) F denotes the unary type constructor sending an arbitrary
type α to (α, β) F, and similarly for (β, _) F.

As the main primitive way of introducing custom types,
HOL lets us carve out from an existing type α a type
isomorphic to a nonempty set A : α set, yielding a type β and
an injective function f : β→ α whose image is A.

Polymorphic constants can be regarded as families of con-
stants indexed by types. For example, the identity function
id :α→α is defined for any type α and corresponds to a family
(idα)α∈U . Id : (α× α) set is the identity relation. Function
composition ◦ has type (β→ γ)→ (α→ β)→ α→ γ. Type
arguments can be indicated by a subscript (e.g., Uα).

HOL is significantly weaker than the set theories popular
as foundations of mathematics, such as Zermelo–Fraenkel
with the axiom of choice (ZFC). Some standard mathematical
constructions cannot be performed in HOL, notably those
dealing with proper classes or families of unboundedly large
sets. A typical example is the representation of the HOL
semantics, due to the unbounded nature of the simple type
hierarchy. Another example is the standard (membership-
based) theory of ordinals and cardinals, which involves the
well-ordered class of ordinals. Nonetheless, many standard
mathematical constructions are local, meaning that they are
performed within an arbitrary but fixed universe set. These
are particularly well suited to (polymorphic) HOL. Examples
include basic algebra and analysis, formal language theory, and
structural operational semantics. A large body of mathematics
can be expressed adequately in HOL, as witnessed by the
extensive library developments in HOL-based provers.

III. DATATYPES IN HOL

The limitations of HOL mentioned above may seem exotic
and contrived. Yet our application—datatype definitions—is
precisely one of those areas where HOL’s lack of expressive-
ness is most painfully felt. Category theory offers a pow-
erful, modular methodology for constructing (co)datatypes,
but filling the gap between theoretical category theory and
theorem proving in HOL, with its simply typed set theory, is
challenging; indeed, it is the main concern of this paper.

A. The Melham–Gunter Approach

Melham’s original datatype package [26] is based on a
manually defined polymorphic datatype of finite labeled trees,
from which simple datatypes are carved out as subsets. Gunter
[13] generalized the package to support mutually recursive
datatypes. She also showed how to reduce specifications with
nested recursion to mutually recursive specifications. A typical
example is the recursive occurrence of α treeF nested in the
list type constructor in the definition of finite trees. To define
such a type, Gunter unfolds the definition of list, resulting in
a mutually recursive definition of trees (α treeF) and “lists-of-
trees” (α treeF_list):

datatype α treeF = Node α (α treeF_list)
and α treeF_list = Nil | Cons (α treeF) (α treeF_list)

Exploiting an isomorphism, the package translates occurrences
of α treeF_list to (α treeF) list, maintaining to a large extent

the illusion of nested recursion. Orthogonally, Gunter [14]
extended Melham’s labeled trees with infinite branching to
support positive recursion through functions.

The handling of nested recursion by mutual recursion has
several limitations, all related to its nonmodularity. Most
importantly, it is not clear how to extend the approach to
nested recursion and corecursion or to non-free constructors.
Also, replaying recursive definitions and transferring results
via isomorphisms is prohibitively slow for datatypes with
many layers of nesting.

B. Bringing HOL Closer to Category Theory

Let α F be a unary type constructor. Category theory has
elegant devices to define, based on F, the associated data-
type and codatatype by solving the equation α ∼= α F (up to
isomorphism) in a minimal and maximal way, obtaining the
initial F-algebra and final F-coalgebra, respectively. However,
this requires F to be complemented by an action on functions
between types, usually called a “map.”

The universe of types U naturally forms a category where
the objects are types and the morphisms are functions between
types. We are interested in type constructors (α1, . . . , αn)F that
are also functors on U , i.e., that are equipped with an action on
morphisms commuting with identities and composition. Tak-
ing advantage of polymorphism, this action can be expressed
as a constant Fmap : (α1→ β1)→ ··· → (αn→ βn)→ α F→
β F satisfying Fmap id . . . id = id and Fmap (g1 ◦ f1) . . . (gn ◦
fn) = Fmap g ◦ Fmap f . Functors on U can be written as pairs
(F, Fmap). Let us review some basic examples of functors.

(n, α)-constant functor (Cn,α, Cmapn,α): The (n, α)-
constant functor (Cn,α, Cmapn,α) is the n-ary functor consisting
of the constant type constructor (β1, . . . , βn) Cn,α = α and the
constant map function Cmapn,α f1 . . . fn = id.

Sum functor (+,⊕): α1 +α2 consists of a copy Inl a1 of
each element a1 : α1 and a copy Inr a2 of each element a2 : α2.
Given f1 : α1→ β and f2 : α2→ β, let [f1, f2] : α1+α2→ β be
the function sending Inl a1 to f1 a1 and Inr a2 to f2 a2. Given
f1 : α1→ β1 and f2 : α2→ β2, let f1⊕ f2 : α1 +α2→ β1 +β2
be [Inl◦ f1, Inr ◦ f2].

Product functor (×,⊗): Let fst : α1×α2 → α1 and snd :
α1×α2 → α2 denote the two standard projection functions.
Given f1 : α→ β1 and f2 : α→ β2, let 〈 f1, f2〉 : α→ β1× β2
be the function a 7→ (f1 a, f2 a). Given f1 : α1→ β1 and f2 :
α2→ β2, let f1⊗ f2 : α1×α2→ β1×β2 be 〈 f1 ◦ fst, f2 ◦ snd〉.
α-Function space functor (funcα, compα): Given a type α,

let β funcα = α → β. For all g : β → γ, we define
compα g : β funcα→ γ funcα as compα g f = g◦ f .

Powertype functor (set, image): The function image f :
α set→ β set sends each set A to the image of A through
the function f : α→ β.

k-Powertype functor (setk, imagek): Given a cardinal k, for
all types α, we define the type α setk by comprehension,
carving out from α set only those sets of cardinality < k.

Although specific map functions are heavily used in HOL
theories (e.g., map, image), the theorem provers traditionally
do not record the functorial structure Fmap of F or take

advantage of it when defining datatypes. The next examples
illustrate the benefits of keeping such additional structure.

Finite lists: The unary type constructor list, which sends
each type α to the type α list of lists of α elements, is categori-
cally given as the initial algebra on the second argument of the
binary functor (F, Fmap), where (α, β) F = unit+α× β and
Fmap f g = id⊕ f ⊗ g. More precisely, there exists a (poly-
morphic) folding bijection fld : (α, α list) F→ α list making
(α list, fld) the initial algebra for the unary functor (α, _) F.
Here, fld = 〈Nil, Cons〉, where Nil and Cons are the familiar
list operations. The initial algebra property corresponds to the
availability of the standard iterator for lists. Then (list, map)
is itself a unary functor.

Finitely branching trees of finite depth: Defining lists is
hardly a spectacular achievement. It is the abstract interface
to lists that makes category theory relevant: (list, map) is
simply another functor available for nesting in (co)datatype
definitions. Assume we want to define finitely branching
trees of finite depth. This involves taking the initial algebra
α treeF on the second argument of the functor (G, Gmap),
where (α, β) G = α× β list and Gmap f g = f ⊗ map g. The
resulting iterator iter : (α×β list→ β)→ α treeF→ β has the
characteristic equation iter s ◦ fld = s ◦ (id ⊗ map (iter s)),
where fld is the folding bijection for α treeF (Fig. 1). Thus,
the “contract” of tree iteration reads: Given tree-like structure
on β as the function s : α×β list→ β (viewing β as consisting
of “abstract trees,” with constructor s), provide iter s such
that iter s (fld (a, trl)) = s (a, map (iter s) trl) for all a : α and
trl : (α treeF) list. By using the map interface for accessing
lists, the characteristic equation for iter abstracts away from
the definition of lists, enabling truly modular nesting of
recursive types inside recursive definitions of larger types. The
categorical approach also handles nested recursion through
corecursion, as illustrated next.

Finitely branching trees of possibly infinite depth: To define
trees of possibly infinite depth, we can take the final coalgebra
α tree I on the second argument of the functor (G, Gmap)
defined above. The resulting coiterator coiter has polymorphic
type (β → α× β list) → β → α tree I, and its characteristic
equation is unf ◦ coiter s = (id ⊗ map (coiter s)) ◦ s, where
unf is the unfolding bijection associated with α tree I (Fig. 2).
Normally, we would split unf into two functions as unf =
〈lab, sub〉, where, for any tr : α tree I, lab tr : α is the label
of the root and sub tr is the list of its subtrees. By also
splitting s : β→ α×β list into a pair of functions L and S , the
contract of tree coiteration reads: Given a tree-like structure on
β consisting of functions L : β→ α and S : β→ β list, yield a
function coiter 〈L, S 〉 such that lab (coiter 〈L, S 〉 b) = L b and
sub (coiter 〈L, S 〉 b) = map (coiter 〈L, S 〉) (S b) for all b : β.

Unordered finitely branching trees of possibly infinite depth:
Assume that we want our finitely branching trees to be
unordered. Instead of lists, we can employ finite sets (or even
finite multisets). We can then define α treeUI as the final co-
algebra of the functor (H, Hmap), where (α, β) H = α×β fset
and Hmap f g = f ⊗ image g.

α× (α treeF) list
fld //

id ⊗ map (iter s)

��

α treeF

iter s

��
α×β list

s // β

Fig. 1. Iterator for finitely branching trees of finite depth

β
s //

coiter s

��

α×β list

id ⊗ map (coiter s)

��
α tree I

unf // α× (α tree I) list

Fig. 2. Coiterator for finitely branching trees of possibly infinite depth

C. Bringing Category Theory Closer to HOL

Next we focus on devising a proper categorical setting to
accommodate (co)datatype definitions. Our desired class K
of functors (perhaps with additional structure) on the universe
of types should satisfy the following four constraints:

C1 K contains basic functors, including the constant, sum,
product, and function-space functors.

C2 All functors in K admit both (a) initial algebras and (b)
final coalgebras.

C3 K is closed under (a) initial algebras; (b) final coal-
gebras; and (c) composition.

C4 The initial algebra and final coalgebra operations over
K are expressible in HOL.

In addition to the above nonnegotiable requirements, we
formulate a desideratum:

D K contains interesting non-free functors, such as the
bounded sets and multisets.

Among the basic functors mentioned in constraint C1, con-
stants, +, and × are needed for constructing even simple
datatypes, whereas funcα enables infinite branching. The non-
free functors mentioned in the desideratum D further extend
(co)datatypes with permutative structures, among which finite
sets and multisets are especially useful in computer science
formalizations, e.g., the semantics of programming languages.

In C3, closure under initial algebras means the following,
say, for binary functors ((α, β) F, Fmap). If we fix an argu-
ment, say, the first, then, by C2, for each fixed type α, there
exists the initial F-algebra on the second argument, α IF, for
which we can define a map operator IFmap. C3 requires that
the unary functor (IF, IFmap) be in K . And similarly for
closure under final coalgebras.

C4 is required because we are committed to a definitional
framework. Otherwise, we could simply postulate the types
corresponding to initial and final coalgebras, together with the
necessary (co)iterators and their properties.

The literature does not appear to provide a complete solution
for the above system of constraints. An obvious candidate, the
class of ω-bicontinuous functors [25], satisfies C1–C3 but not
C4, because the associated limit construction requires a logic
that can express infinite type families (e.g., (unit Fn)n for the
final coalgebra).

Many results from the literature are concerned only with a
given type of construction, and only with admissibility (C2),
ignoring closure (C3). Rutten’s monograph [33] focuses on
coalgebras. It describes a general class of functors on sets,
namely, those that preserve weak pullbacks and have a set
of generators, or, sufficiently, preserve weak pullbacks and
are bounded (in that there exists a cardinal upper bound for
the coalgebras generated by any singleton in any of their
coalgebras). The main issue with this class of functors is
admissibility of initial algebras (C2-a). Closure properties
(C3), which Rutten omits to discuss, might also be an issue.

Also focusing on coalgebra, Barr [5], [6] proves the ex-
istence of a final coalgebra for accessible functors on sets
(i.e., functors preserving k-filtered colimits for some k). This
result is an internalization to sets of Aczel and Mendler’s final
coalgebra theorem [2] stated for set-based functors on classes.
Moreover, Barr produces a bound for the size of the final
coalgebra, assuming the existence of a certain large cardinal
(subject to a property intermediate between weak and strong
inaccessibility). However, k-filtered colimits are incompatible
with C4 for the same reason ω-limit constructions are, and
internalizing the construction to a sufficiently large type using
the provided cardinal bound is also infeasible, because it
requires large cardinals whose existence is not provable in
HOL or even ZFC. (C2-a and C3 might also be problematic.)

A different result from Barr [5] suggests yet another ap-
proach. It states that any quotient functor of an ω-bicontinuous
functor admits a weakly final coalgebra obtained from any
weakly final coalgebra of the latter. A subclass of ω-bicontin-
uous that admits HOL-expressible (co)datatype constructions
could prove to be an answer to C1–C4 via this result. In fact,
the class K we adopt in this paper includes the class K ′ of
functors F that are quotients of Fbd-function-space functors,
with Fbd a cardinal number depending on F. Whether K ′ is
also a solution to C1–C4 remains for us an open question.

Hensel and Jacobs [18] propose a modular development of
(co)datatypes for datafunctors, a syntactically specified class
consisting of functors obtained from constants, +, and ×
by repeated application of composition, initial algebra, and
final coalgebra. Datafunctors satisfy C1–C3 but ostensibly not
C4, because the arguments, which employ abstract results
on categorical logic and fibrations [19], rely on (co)limits.
Another drawback of datafunctors is their failure to satisfy
the desideratum D (even though the abstract results [19] may
apply to a much larger class).

Abbott, Altenkirch, and Ghani [1] define container types
(with an indexed extension [3] also covering terms with
bindings) satisfying C1–C3, but not C4 (as they rely on
dependent types) or D. Finally, Hoogendijk and de Moor [22]
discuss container types as relators without analyzing C2–C4.

. a2. a1 . a3

Fig. 3. An element x of α F with Fset x = {a1, a2, a3}

α F
Fset //

Fmap f

��

α set

image f

��
β F

Fset // β set

Fig. 4. The “set” natural transformation

IV. BOUNDED NATURAL FUNCTORS

To accommodate constraints C1–C4 in HOL, we must
work in a strict cardinal-bounded fashion, always keeping in
sight a universe type able to host the necessary construction.
Consequently, our functors will carry their cardinal bounds.

A useful means to keep cardinality under control is the
consideration of a natural “atom” structure potentially avail-
able for the HOL type constructors in addition to the map
structure. For the unary type constructor F, we consider a
polymorphic constant Fset : α F→ α set, where Fset x consists
of all “atoms” of x; for example, if F is list, Fset returns the
set of elements in the list.

We think of the elements x of α F as consisting of a
shape together with a content that fills the shape with ele-
ments of α, with Fset x returning this content in flattened
format, as a set (Fig. 3). This suggests that Fset should be
a natural transformation between the functors (F, Fmap) and
(set, image) (i.e., the diagram in Fig. 4 commutes for all
f : α→ β). Fset allows us to internalize the type constructor
F to sets of elements of given types α. Namely, we define
Fin : α set → (α F) set by Fin A = {x : α F. Fset x ⊆ A}.
The generalization to n-ary functors is straightforward, with
Fin A1 . . . An = {x : (α1, . . . , αn) F.

∧
i Fseti x ⊆ Ai}. In par-

ticular, Fin α1 A2 = {x : (α1, α2) F. Fset2 x ⊆ A2} (where the
first occurrence of α1 is an abbreviation for Uα1).

Combining the map and set operators with suitable cardinal
bounds, we obtain the following key notion, presented here
for the binary case. A binary bounded natural functor (BNF)
is a tuple F = (F, Fmap, Fset, Fbd), where

• F is a binary type constructor,
• Fmap : (α1→β1)→ (α2→β2)→ (α1, α2) F→ (β1, β2) F,
• Fseti : (α1, α2) F→ αi set for i ∈ {1, 2},
• Fbd is an infinite cardinal number,

satisfying the following properties:

FUNC (F, Fmap) is a binary functor.
NAT1 For all α2, Fset1 is a natural transformation

between ((_, α2) F, Fmap) and (set, image).

NAT2 For all α1, Fset2 is a natural transformation
between ((α1, _) F, Fmap) and (set, image).

WP (F, Fmap) preserves weak pullbacks.
CONG If ∀a ∈ Fseti x. fi a = gi a for all i ∈ {1, 2}, then

Fmap f1 f2 x = Fmap g1 g2 x.
CBD The following cardinal-bound conditions hold:

a. ∀x : (α1, α2) F. |Fseti x| ≤ Fbd for i ∈ {1,2};
b. |Fin A1 A2| ≤ (|A1|+ |A2|+2)Fbd.

Binary functors suffice to illustrate the functorial structure of
the initial and final algebras, a structure that would be trivial if
we started with unary functors. (The definition of n-ary BNFs
is given elsewhere [34].)

Among the above conditions, FUNC and NATi were already
explained and motivated. WP is a technical condition allowing
a smooth treatment of bisimulation relations, relevant for
coinduction and corecursion [33]; unlike other (weak) limits,
weak pullbacks involve a finite number of types and are hence
expressible in HOL. CONG states that Fmap f1 f2 x is uniquely
determined by the action of fi on the atoms of x, Fseti x—it
ensures that Fmap behaves well with respect to Fin. Finally,
the cardinality conditions put bounds on the branching (CBD-
a) and on the number of elements (CBD-b) of the functor
(F, Fmap), and can be understood in terms of shape and
content. Thus, CBD-a states that the F-shapes have no more
than Fbd slots for contents, and CBD-b states that shapes
are not too redundant, so that all possible combinations of
shape and content do not exceed the number of assignments
of contents to slots, A1 + A2 → Fbd. (The + 2 addition is a
technicality that covers the case where A1 = A2 = /0.) We are
now ready to state the main theoretical result of this paper:

Theorem 1: The class of BNFs satisfies constraints C1–C4
and desideratum D.

Proof sketch: We must show that basic type constructors
form BNFs and that the operations of composition, initial
algebra, and final coalgebra exist in HOL and have themselves
a BNF structure. Sects. A–F below outline our proofs.

A. Basic Type Constructors

Sect. III-B described the basic constructors’ map structure.
We now present their set structure and cardinal bound, guided
by our “shape and content” intuition.
• F = Cn,α: Fset x = /0; Fbd = ℵ0.
• F =+: Fset1 (Inl a1) = {a1}, Fset2 (Inl a1) = /0,

Fset1 (Inr a2) = /0, Fset2 (Inr a2) = {a2}; Fbd = ℵ0.
• F =×: Fset1 (a1, a2) = {a1}, Fset2 (a1, a2) = {a2};

Fbd = ℵ0.
• F = funcα: Fset1 g = image g α; Fbd = max (|α|, ℵ0).
• F = set: Fset x = x; set is not a BNF, though, due to the

absence of a proper bound.
• F = setk: Fset x is the set corresponding to x via the

embedding of α setk into α set; Fbd = max (k, ℵ0).

B. Composition

For composition, we focus on the binary–unary case. (The
general (n, m)-ary case is covered elsewhere [34].) Given

unary BNFs Fi = (Fi, Fmapi, Fseti, Fbdi) with i ∈ {1, 2} and
a binary BNF G = (G, Gmap, Gset, Gbd), their composition is
the unary BNF H = G ◦ (F1,F2) defined as follows:
• (H, Hmap) is the functorial composition of (G, Gmap)

with (Fi, Fmapi);
• Hset y =

⋃
x∈Gset1 y Fset1 x ∪

⋃
x∈Gset2 y Fset2 x;

• Hbd = Gbd ∗ (Fbd1 +Fbd2).
Although we seldom emphasize its role, composition is a

pervasive auxiliary operation in interesting (co)datatype defi-
nitions. For example, the list-defining BNF (α, β) F discussed
in Sect. III-B is a composition of basic BNFs.

C. Relators

A key insight due to Rutten [32] is that, thanks to WP,
the functor (F, Fmap) has a natural extension to a relator,
i.e., a functor on the category of types and binary relations,
denoted R. We can express the relator action of F as a
polymorphic constant Frel : (α1×α2) set→ (β1× β2) set→
((α1, α2) F× (β1, β2) F) set defined as Frel Q R = {(Fmap fst
fst z, Fmap snd snd z). z ∈ Fin Q R}.

For reasoning in HOL, it is convenient to take an alternative
(equivalent) view of Frel, as an action on curried binary
predicates Fpred : (α1→ α2→ bool)→ (β1→ β2→ bool)→
(α1, α2) F→ (β1, β2) F→ bool. Fpred ϕ ψ should be regarded
as the componentwise extension of the predicates ϕ and ψ.
For example:
• if F is the product functor, Fpred ϕ1 ϕ2 (a1, a2) (b1, b2)
⇐⇒ ϕ1 a1 b1 ∧ ϕ2 a2 b2;

• if F is the sum functor, Fpred ϕ1 ϕ2 a b⇐⇒ (∃a1 b1. a =
Inl a1 ∧ b = Inl b1 ∧ ϕ1 a1 b1) ∨ (∃a2 b2. a = Inr a2 ∧ b =
Inr b2 ∧ ϕ2 a2 b2).

D. The Categories of (Co)algebras

For this and the next two subsections, we fix a binary BNF
F = (F, Fmap, Fset, Fbd). We first show how to construct in
HOL the initial algebra (or, dually, the final coalgebra) on
the second argument—that is, the minimal solution α IF (or
maximal solution α JF) of the equation α∼= (β, α) F. The gen-
eral constructions involve n (m+ n)-ary BNFs F i with type
constructors (β, α) Fi and yield n m-ary BNFs IF 1, . . . ,IF n

(or JF 1, . . . ,JF n) with their type constructors of the form
β IFi (or β JFi).

Abstractly, the theories of algebras and of coalgebras are
dual, allowing a unified treatment of the basic (co)algebraic
concepts. However, since the category of types is not self-dual,
concrete constructions are often specific to each.

We fix a type β. A (β-)algebra is a pair A = (A, s) where
• A : α set is the carrier set of A (and α is the underlying

type of A),
• s : (β, α) F→ α is the structural function of A ,

such that A is closed under s, in that ∀x∈ Fin β A. s x∈ A (and
thus we may regard s as a function s : Fin β A→ A). Dually,
a (β-)coalgebra is given by a pair (A : α set, s : α→ (β, α) F)
such that ∀x ∈ A. s x ∈ Fin β A. Algebras form a category
where morphisms f : (A1, s1)→ (A2, s2) are functions f :α1→

Fin β A1
s1 //

Fmap id f

��

A1

f

��
Fin β A2

s2 // A2

Fin β A1

Fmap id f

��

A1
s1oo

f

��
Fin β A2 A2

s2oo

Fig. 5. Algebra morphism (left) and coalgebra morphism (right)

α2 such that the diagram on the left of Fig. 5 commutes, and
dually for coalgebras and the diagram on the right.

In the category of algebras, we can form products of
families of algebras having the same underlying type, the
carrier set of the product being the product of the carrier sets
of the components. Dually, we can form sums of families
of coalgebras using sums of sets. An algebra A is called
initial if for all algebras A ′ there exists a unique morphism
f : A → A ′, and weakly initial if we omit the uniqueness
requirement. Dually, a coalgebra is (weakly) final if it admits
a (unique) morphism from any other coalgebra.

We are looking for a type constructor β IF (dually, β JF) and
function fld : (β, β IF)→ β IF (dually, unf : β JF→ (β, β JF))
such that the algebra (β IF, fld) is initial (dually, the coalgebra
(β JF, unf) is final).

Typically, such a (co)algebra is obtained in two phases:
1. Construction of a weakly initial algebra (weakly final

coalgebra) C.
2. Construction of an initial algebra (final coalgebra) as a

subalgebra (quotient coalgebra) of C.
The next two subsections describe the key aspects of these
constructions in HOL, starting in each case with phase 2.

E. Initial Algebra

Initial algebra from weakly initial algebra: Given an al-
gebra A = (A, s), let Ms be the intersection of all sets B
such that (B, s) is an algebra, and let M (A), the minimal
subalgebra of A , be (Ms, s). It is obvious that there exists at
most one morphism from M (A) to any other algebra. Then,
given a weakly initial algebra C, the desired initial β-algebra
is its minimal subalgebra, M (C). Of course, M (C) depends
on β (which was fixed all along). Now β IF is introduced by
a type definition, carving out the carrier set of M (C) as a
new type, and the folding map fld is defined by copying on
β IF the structural map of M (C) (so that in effect (β IF, fld)
becomes isomorphic to M (C)).

Construction of a weakly initial algebra: This relies on a
crucial lemma about the cardinality of minimal subalgebras,
whose proof [34] employs the cardinality assumptions CBD.

Lemma 2: Let s : (β, α) F→α. Then |Ms| ≤ (|β|+2)Suc Fbd

(where Suc Fbd is the successor cardinal of Fbd).
Let Θ be the set of all algebras A having as underlying type

a type γ of sufficiently large cardinality, (|β|+2)Suc Fbd. The
desired weakly initial algebra C is the product of all algebras
in Θ. Indeed, by Lemma 2, for any algebra B, its minimal
subalgebra M (B) is isomorphic to one in Θ, to which C

(β, β IF) F
fld //

Fmap id IFset

��

β IF

IFset

��
(β, β set) F

collect // β set

Fig. 6. Set structure for IF

has a projection morphism. This gives a morphism from C to
M (B), hence also one from C to B. We have thus proved:

Prop. 3: (β IF, fld) is the initial β-algebra.
This yields an iterator iter : ((β, α) F→ α)→ β IF→ α such

that iter s ◦ fld = s ◦ Fmap id (iter s) (cf. Fig. 1).
Structural induction: The set structure Fset of a BNF not

only plays an auxiliary role in the datatype constructions but
also provides a simple means to express induction abstractly,
for arbitrary functors. Since fld is a bijection, for any element
b ∈ β IF there is a unique y ∈ (β, β IF) F such that b = fld y—
this is an abstract version of case analysis. Then the inductive
components of b are precisely the elements of Fset2 y, and we
have the following induction principle:

Prop. 4: Let ϕ : β IF→ bool and assume ∀y. (∀b ∈ Fset2 y.
ϕ b)⇒ ϕ (fld y). Then ∀b. ϕ b.

For F= unit+β×α with IF= list (cf. Sect. III-B), the above
is equivalent to the familiar induction principle.

BNF structure: It is standard to define a functorial structure
for the initial algebra: IFmap f = iter (fld ◦ Fmap f id). As for
the set structure, consider b ∈ β IF. Intuitively, IFset b should
contain all the Fset1 atoms of b, then the Fset1 atoms of
its inductive components, and so on, iteratively. Moreover,
as we have seen, delving into the inductive components is
achieved by means of Fset2. We are led to define IFset as
iter collect, i.e., as the unique function making the Fig. 6
diagram commute, where collect a = Fset1 a ∪

⋃
Fset2 a.

Prop. 5: (IF, IFmap, IFset, 2Fbd) is a BNF.
As a BNF, IF is also a relator (Sect. C). Importantly for

modular reasoning, we can express IFpred directly in terms
of Fpred. IFpred is characterized by the recursive equation
IFpred ϕ (fld x1) (fld x2)⇐⇒ Fpred ϕ (IFpred ϕ) x1 x2. For the
list functor, the above equation expands to four equations that
follow the relator structure of the component functors (unit, +,
and ×), revealing list_pred ϕ as the componentwise extension
of the predicate ϕ:
• list_pred ϕ Nil Nil⇐⇒ True;
• list_pred ϕ Nil (Cons b bs)⇐⇒ False;
• list_pred ϕ (Cons a as) Nil⇐⇒ False;
• list_pred ϕ (Cons a as) (Cons b bs)⇐⇒
ϕ a b ∧ list_pred ϕ as bs.

F. Final Coalgebra

Final coalgebra from weakly final coalgebra: This follows
by the standard coalgebraic theory of bisimulation relations
[33]. A bisimulation on a coalgebra A = (A, s) is a relation

A

s

��

R
fstoo snd //

���
�
�
� A

s

��
Fin β A Fin β R

Fmap id fstoo Fmap id snd// Fin β A

A oo R //

s

��

A

s

��
Fin β A ooFrel Id R// Fin β A

Fig. 7. Bisimulation

R⊆ A×A such that ∀(a, b) ∈ R. ∃z ∈ Fin β R. Fmap id fst z =
s a ∧ Fmap id snd z = s b, i.e., such that in Fig. 7 (left) there
exists a function along the dashed arrow making the two
diagrams commute. This abstract concept covers the natural
ad hoc notions of bisimulation for concrete functors [33]. A
bisimulation R is effectively an endomorphism on A in the
types-and-relations category R such that (a, b) ∈ R implies
(s a, s b) ∈ Frel Id R—Fig. 7 (right). Hence composition of
bisimulations is a bisimulation, and so it follows easily that
the largest bisimulation LB(A) on a coalgebra A is an
equivalence relation, and that the resulting quotient coalgebra
A /LB(A) has the property that any coalgebra has at most one
morphism to it.

Now let C be a weakly final coalgebra. By the above
discussion, via an argument dual to the corresponding one for
algebras, we have C /LB(C) final and based on it we define the
desired type β JF and its unfolding bijection unf.

Construction of a weakly final coalgebra: The abstract con-
struction indicated in Rutten [33], as the sum of all coalgebras
over a sufficiently large type (roughly dual to our weakly
initial algebra construction), is possible in HOL thanks to our
cardinality provisos. However, a more concrete construction
gives us a better grip on cardinality, allowing us to check the
BNF properties for the resulting coalgebra.

To lighten the presentation, we identify sets with types—
for example, we allow ourselves to apply type constructors
such as list to sets. Given a prefix-closed subset Kl of Fbd list
and kl ∈ Kl, we let BrKl,kl, the set of Kl-branches of kl, be
{k. kl @ [k] ∈ Kl}, where @ denotes list concatenation and
[k] the k-singleton list. We define an Fbd-tree to be a pair
(Kl, lab), where Kl ⊆ Fbd list is prefix-closed and lab : Kl→
Fin β Fbd is such that ∀kl ∈ Kl. Fset2 (lab kl) = BrKl,kl. Thus,
Fbd-trees are at most Fbd-branching trees labeled as follows:
Every node is labeled with an element of Fin β Fbd whose
set of second-argument atoms consists of precisely the node’s
emerging branches. Let C be the set of Fbd-trees. Given
(Kl, lab) ∈C, we define sub(Kl,lab) : {k. [k] ∈ Kl}→C to send
each k to the immediate k-subtree of (Kl, lab), more precisely,
sub(Kl,lab) k = (Kl ′, lab′), where Kl ′ = {kl ′. [k]@kl ′ ∈Kl} and
lab′ : Kl ′→ Fin β Fbd is defined by lab′ kl ′ = lab ([k]@ kl ′).

The set C can be naturally organized as a coalgebra C =
(C, s) defining s (Kl, lab) = Fmap id sub(Kl,lab) (lab Nil). Thus,
s (Kl, lab) operates on (Kl, lab)’s root label lab Nil, substitut-
ing in its shape the immediate subtrees for the contents. Then
C is shown to be a weakly final coalgebra by roughly the
following argument. For each element a in a coalgebra (A, t),
we define its behavior tree by iterating the unfolding of a

according to t—first t a, then t b for all b ∈ Fset2 (t a), and so
on. Thanks to CBD-a, such trees are at most Fbd-branching,
hence representable in C. We have thus proved:

Prop. 6: (β JF, unf) is the final β-coalgebra.
This yields a coiterator coiter : (α→ (β, α) F)→ α→ β JF

such that unf (coiter s) = Fmap id (coiter s)◦ s (cf. Fig. 2).
Structural coinduction: Since LB(C) is the greatest bisim-

ulation on C , it follows that Id is the greatest bisimulation on
the quotient coalgebra C /LB(C). This gives us the following
coinduction principle on (β JF, unf) (which is a copy of
C /LB(C)): If R is a bisimulation relation, then R⊆ Id. Viewing
bisimulations via the relator structure (cf. Fig. 7, left) and
using the predicate notation, we can rephrase the coinduction
principle as follows:

Prop. 7: Let ϕ : β JF → β JF → bool and assume
∀a b. ϕ a b⇒ Fpred Eq ϕ (unf a) (unf b) (where Eq : β→ β→
bool is the equality predicate). Then ∀a b. ϕ a b⇒ a = b.

BNF structure: The functorial structure of the final coalge-
bra is standard: JFmap f = coiter (Fmap f id ◦ unf). Moreover,
JFset can be defined by collecting all the Fset1 results of
repeated unfolding, namely JFset a =

⋃
i∈nat collecti,a, where

collecti,a is defined recursively on i as follows: collect0,a = /0;
collecti+1,a = Fset1 (unf a) ∪

⋃
{collecti,b. b∈ Fset2 (unf a)}.

Similarly to IFpred, the relator JFpred can be described in
terms of Fpred, by JFpred ϕ a1 a2 ⇐⇒ Fpred ϕ (JFpred ϕ)
(unf a1) (unf a2).

Prop. 8: (JF, JFmap, JFset, FbdFbd) is a BNF.

V. DEFINITIONAL PACKAGE

The results in this paper are formalized in Isabelle/HOL and
implemented in ML as a prototypical definitional package, to-
gether with a few examples of applications. This development
is publicly available [35].

A. Implementation

Our constructions require a theory of cardinals in HOL,
including cardinal arithmetic and regular cardinals. Simple
type theory does not cater for ordinals as a canonical collection
of well-orders, a very convenient concept for the standard
theory of cardinals. Therefore, we work with well-orders
directly, dispersed polymorphically over types, with cardinals
defined as well-orders minimal with respect to initial-segment
embeddings. This theory and its challenges are presented
separately [31].

With the new (co)datatype package, users define (co)data-
types using an intuitive high-level specification syntax; inter-
nally, the package ensures that each specification corresponds
to a BNF, defines the (co)datatype, and proves that the result
is itself a BNF. More specifically, each BNF is represented
by an ML record consisting of the polymorphic constants
and their properties as proved theorems, stored in Isabelle’s
theory database [39, §4.1]. The basic BNFs for unit, +, ×,
funcα, fset, countable sets, and finite multisets are constructed
in user space, as they do not require ML; users can register

custom BNFs (e.g., for various other non-free constructors) in
the same way.

In the simple (nonmutual) case, the package parses the right-
hand side of a (co)datatype specification as a composition F
of already defined BNFs and proves that the result forms a
BNF as in Sect. IV-B. Then the package defines the initial
algebra or final coalgebra for F and establishes automatically
their characteristic theorems (for (co)recursion, (co)induction,
etc.) and BNF structure as in Sect. IV-E or IV-F. All work is
performed by dedicated Isabelle tactics, whose running time is
independent of the amount of nesting (unlike for the Melham–
Gunter approach).

B. Example

We demonstrate the definitional package on the type of
finitely branching trees of possibly infinite depth [35]:

datatype α list = Nil | Cons α (α list)
codatatype α tree I = Node (lab: α) (sub: (α tree I) list)

The declaration syntax allows named selectors (lab and sub)
and constructors (Node).

The command derives the expected characteristic theorems
for α tree I, including the coinduction rule

ϕ x y
∀a b. ϕ a b ⇒ lab a = lab b ∧ list_pred ϕ (sub a) (sub b)

x = y
where list_pred ϕ is the componentwise extension of ϕ to
lists (Sect. IV-E). Corecursive (coiterative) functions can be
defined using a convenient syntax; for example, tree reversal
is specified below in terms of map and rev on lists:

corec trev where
lab (trev t) = lab t
sub (trev t) = rev (map trev (sub t))

Using the tree coinduction rule and Isabelle’s automation, we
can prove the following lemma with a one-line proof:

lemma trev (trev t) = t
The (co)datatype package interacts seamlessly with the

existing infrastructure for reasoning about (co)inductive pred-
icates (defined via Knaster–Tarski), as illustrated by the fol-
lowing proof of König’s lemma for α tree I. We first need a
stream type to represent infinite paths in a tree:

codatatype α strm = SCons (hd: α) (tl: α strm)

The existing coinductive package allows us to define the
notions of an infinite tree and a proper path in a tree as
the greatest predicates satisfying the equations infinite t ⇐⇒
(∃u ∈ set (sub t). infinite u) and proper_path p t ⇐⇒ hd p =
lab t ∧ (∃u∈ set (sub t). proper_path (tl p) u). The corecursive
function wpath uses Hilbert choice (ε) to return a witness
infinite path:

corec wpath where
hd (wpath t) = lab t
tl (wpath t) = wpath (εu. u ∈ set (sub t) ∧ infinite u)

We can then prove the desired lemma by coinduction:
lemma infinite t⇒ proper_path (wpath t) t

VI. FURTHER RELATED WORK

Interactive theorem provers include various mechanisms
for introducing new types, whether primitive (intrinsic), ax-
iomatic, or definitional [7, p. 3]. In the world of HOL,
the primitive type definition mechanism (Sect. II) and the
datatype package (Sect. III-A) are the most widely used, but
there are many others. Homeier [20] developed a package to
define quotient types in HOL4, now ported to Isabelle [24].
Nominal Isabelle [36] extends HOL with infrastructure for
reasoning about datatypes containing name binders; Urban
is rebasing it on the quotient package, possibly in unison
with our (co)datatype package to capitalize on the support
for non-free constructors. HOLCF, a HOL library for domain
theory, has long included an axiomatic package for defining
(co)recursive domains; Huffman [23] recast it into a purely
definitional package, based on a large enough universal domain
(a useful simplification that unfortunately is not available for
general HOL datatypes). The package combines many of the
categorical ideas present in our work, notably the modular
mixture of recursion via enriched type constructors. Some
ideas have yet to be automated in a definitional package:
Völker [37] sketches a categorical approach to datatypes that
prefigures our work; Vos and Swierstra [38] elaborate an ad
hoc construction for recursion through finite sets; and Paulson
[29] designed building blocks for codatatypes.

PVS, whose logic is a simple type theory extended with
dependent types and subtyping (but without polymorphism),
provides monolithic axiomatic packages for datatypes [28]
and codatatypes [12]. Hensel and Jacobs [18] illustrate the
categorical approach to (co)datatypes in PVS by axiomatic
declarations of various flavors of trees (including our treeF

and tree I) with associated (co)iterators and proof principles.
HOLω, which extends HOL4 with higher-rank polymorphism,
provides a safe primitive for introducing abstractly specified
types [21]. Isabelle/ZF, based on ZFC, reduces (co)datatypes
to (co)inductive predicates [30], with no support for mixed
(co)recursion; for codatatypes, it relies on a concrete, defi-
nitional treatment of non-well-founded objects. In Agda and
Coq, (co)datatypes are built into the underlying calculus.
Mixed (co)recursion is possible [8] but not the combination
with non-free types.

VII. CONCLUSION

We presented a theoretical framework for defining types
in higher-order logic. The framework relies on the abstract
notion of a bounded natural functor (BNF), consisting of a type
constructor plus further categorical structure. BNFs are closed
under composition and (co)algebraic fixpoints, providing all
the necessary ingredients to define (co)datatypes. The solution
is foundational: The characteristic (co)datatype theorems are
derived from an internal construction, rather than stated as
axioms. Unlike the traditional Melham–Gunter approach, our
solution is also fully compositional, enabling mutual and
nested (co)recursion involving arbitrary combinations of data-
types, codatatypes, and custom BNFs.

There is a large body of previous work on (co)datatypes
as (co)algebras in category theory. Our main contribution
has been to adapt this work to achieve compatibility with
HOL’s type system. Our ideas are implemented in a proto-
typical definitional package for Isabelle/HOL. The package
is expected to be included in the next official release of the
theorem prover, making Isabelle the first HOL-based prover
with general support for codatatypes and thereby addressing
a frequent request from users, helping Isabelle become an
attractive vehicle for formalizations of infinite systems.

After implementing the original datatype package for Is-
abelle, Berghofer and Wenzel [7] suggested three areas for
future work: codatatypes, non-freely generated types, and
composition of definitional packages. Thirteen years later, their
vision is very close to a full materialization. Although we
focused on Isabelle, our approach is equally applicable to the
other HOL-based theorem provers, such as HOL4 [10], HOL
Light [16], and ProofPower–HOL [4].

Methodologically, we found that category theory helped us
develop intuitions about the types of HOL, recasting them
as richly structured objects rather than mere collections of
elements. As a continuation of this program, we want to
dispel the myth that parametricity is inapplicable to HOL by
extending BNF-like structures with a parametricity predicate
and exploiting their relator nature. We also intend to transfer
further category theory insight, such as the (co)induction
mixture of Hensel, Hermida, and Jacobs [18], [19], to the
world of theorem provers.

Acknowledgment: We thank Tobias Nipkow for encouraging
this work, Brian Huffman and Christian Urban for their advice
regarding Isabelle package writing, Florian Haftmann, Andreas
Lochbihler, and Makarius Wenzel for inspiring discussions,
and finally Elsa Gunter and Mark Summerfield for feedback on
drafts of this paper. The research was supported by the project
Security Type Systems and Deduction (grant Ni 491/13-1) as
part of the program Reliably Secure Software Systems (RS3,
Priority Program 1496) of the Deutsche Forschungsgemein-
schaft (DFG). The third author was supported by the DFG
project Quis Custodiet (grant Ni 491/11-2).

REFERENCES

[1] M. Abbott, T. Altenkirch, and N. Ghani. Containers: Constructing
strictly positive types. Theor. Comput. Sci., 342(1):3–27, 2005.

[2] P. Aczel and N. P. Mendler. A final coalgebra theorem. In CTCS ’89,
vol. 389 of LNCS, pp. 357–365. Springer, 1989.

[3] T. Altenkirch and P. Morris. Indexed containers. In LICS 2009,
pp. 277–285, 2009.

[4] R. D. Arthan. Some mathematical case studies in ProofPower–HOL.
In TPHOLs 2004 (Emerging Trends), pp. 1–16, 2004.

[5] M. Barr. Terminal coalgebras in well-founded set theory. Theor.
Comput. Sci., 114(2):299–315, 1993.

[6] M. Barr. Additions and corrections to “Terminal coalgebras in
well-founded set theory.”. Theor. Comput. Sci., 124:189–192, 1994.

[7] S. Berghofer and M. Wenzel. Inductive datatypes in HOL—Lessons
learned in formal-logic engineering. In TPHOLs ’99, vol. 1690 of
LNCS, pp. 19–36, 1999.

[8] Y. Bertot. Filters on coinductive streams, an application to
Eratosthenes’ sieve. In TLCA ’05, pp. 102–115, 2005.

[9] A. Church. A formulation of the simple theory of types. J. Symb.
Logic, 5(2):56–68, 1940.

[10] M. J. C. Gordon and T. F. Melham, eds. Introduction to HOL: A
Theorem Proving Environment for Higher Order Logic. Cambridge
University Press, 1993.

[11] M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A
Mechanised Logic of Computation, vol. 78 of LNCS. Springer, 1979.

[12] H. Gottliebsen. Co-inductive proofs for streams in PVS. In TPHOLs
2007 (Emerging Trends), pp. 113–127, 2007.

[13] E. L. Gunter. Why we can’t have SML-style datatype declarations in
HOL. In TPHOLs ’92, vol. A-20 of IFIP Transactions, pp. 561–568.
North-Holland/Elsevier, 1993.

[14] E. L. Gunter. A broader class of trees for recursive type definitions for
HOL. In HUG ’93, vol. 780 of LNCS, pp. 141–154. Springer, 1994.

[15] J. Harrison. Inductive definitions: Automation and application. In
TPHOLs ’95, vol. 971 of LNCS, pp. 200–213. Springer, 1995.

[16] J. Harrison. HOL Light: A tutorial introduction. In FMCAD ’96,
vol. 1166 of LNCS, pp. 265–269. Springer, 1996.

[17] D. Hausmann, T. Mossakowski, and L. Schröder. Iterative circular
coinduction for COCASL in Isabelle/HOL. In FASE 2005, LNCS,
pp. 341–356, 2005.

[18] U. Hensel and B. Jacobs. Proof principles for datatypes with iterated
recursion. In Category Theory and Computer Science, pp. 220–241,
1997.

[19] C. Hermida and B. Jacobs. Structural induction and coinduction in a
fibrational setting. Inf. Comput., 145(2):107–152, 1998.

[20] P. V. Homeier. A design structure for higher order quotients. In
TPHOLs 2005, vol. 3603 of LNCS, pp. 130–146. Springer, 2005.

[21] P. V. Homeier. The HOL-Omega logic. In TPHOLs 2009, vol. 5674 of
LNCS, pp. 244–259. Springer, 2009.

[22] P. F. Hoogendijk and O. de Moor. Container types categorically.
J. Funct. Program., 10(2):191–225, 2000.

[23] B. Huffman. A purely definitional universal domain. In TPHOLs
2009, vol. 5674 of LNCS, pp. 260–275. Springer, 2009.

[24] C. Kaliszyk and C. Urban. Quotients revisited for Isabelle/HOL. In
SAC ’11, pp. 1639–1644. ACM, 2011.

[25] E. G. Manes and M. A. Arbib. Algebraic Approaches to Program
Semantics. Springer, 1986.

[26] T. F. Melham. Automating recursive type definitions in higher order
logic. In Current Trends in Hardware Verification and Automated
Theorem Proving, pp. 341–386. Springer, 1989.

[27] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, vol. 2283 of LNCS. Springer, 2002.

[28] S. Owre and N. Shankar. Abstract datatypes in PVS. Tech.
report CSL-93-9R, C.S. Lab., SRI International, 1993.

[29] L. C. Paulson. Mechanizing coinduction and corecursion in
higher-order logic. J. Log. Comput., 7(2):175–204, 1997.

[30] L. C. Paulson. A fixedpoint approach to (co)inductive and (co)datatype
definitions. In Proof, Language, and Interaction, pp. 187–212. MIT
Press, 2000.

[31] A. Popescu and D. Traytel. Ordinals and cardinals in HOL.
http://www21.in.tum.de/~traytel/lics12_card.tgz, 2012.

[32] J. J. M. M. Rutten. Relators and metric bisimulations. Electr. Notes
Theor. Comput. Sci., 11:252–258, 1998.

[33] J. J. M. M. Rutten. Universal coalgebra: A theory of systems. Theor.
Comput. Sci., 249:3–80, 2000.

[34] D. Traytel. A Category Theory Based (Co)datatype Package for
Isabelle/HOL. M.Sc. thesis, TU München, 2012.
http://www21.in.tum.de/~traytel/mscthesis.pdf.

[35] D. Traytel, A. Popescu, and J. C. Blanchette. Formal development
associated with this paper.
http://www21.in.tum.de/~traytel/lics12_data.tgz.

[36] C. Urban. Nominal techniques in Isabelle/HOL. J. Autom. Reasoning,
40(4):327–356, 2008.

[37] N. Völker. On the representation of datatypes in Isabelle/HOL.
Isabelle Users Workshop, 1995.

[38] T. E. J. Vos and S. D. Swierstra. Inductive data types with negative
occurrences in HOL. Thirty Five Years of Automath, 2002.

[39] M. Wenzel and B. Wolff. Building formal method tools in the
Isabelle/Isar framework. In TPHOLs 2007, vol. 4732 of LNCS,
pp. 352–367. Springer, 2007.

