Foundational, Compositional (Co)datatypes for Higher-Order Logic

Category Theory Applied to Theorem Proving

Dmitriy Traytel Technische Universität München Munich, Germany Andrei Popescu Technische Universität München Munich, Germany Institute of Mathematics Simion Stoilow Bucharest, Romania Jasmin Christian Blanchette Technische Universität München Munich, Germany

Abstract—Interactive theorem provers based on higher-order logic (HOL) traditionally follow the definitional approach, reducing high-level specifications to logical primitives. This also applies to the support for datatype definitions. However, the internal datatype construction used in HOL4, HOL Light, and Isabelle/ HOL is fundamentally noncompositional, limiting its efficiency and flexibility, and it does not cater for codatatypes.

We present a fully modular framework for constructing (co)datatypes in HOL, with support for mixed mutual and nested (co)recursion. Mixed (co)recursion enables type definitions involving both datatypes and codatatypes, such as the type of finitely branching trees of possibly infinite depth. Our framework draws heavily from category theory. The key notion is that of a *bounded natural functor*—an enriched type constructor satisfying specific properties preserved by interesting categorical operations. Our ideas are implemented as a definitional package in Isabelle, addressing a frequent request from users.

Keywords—Category theory, higher-order logic, interactive theorem proving, (co)datatypes, cardinals

I. INTRODUCTION

Higher-order logic (HOL, Sect. II) forms the basis of several popular interactive theorem provers, notably HOL4 [10], HOL Light [16], and Isabelle/HOL [27]. Its straightforward semantics, which interprets types as sets (collections) of elements, makes it an attractive choice for many computer science and mathematical formalizations.

The theorem provers belonging to the HOL family traditionally encourage their users to adhere to the definitional approach, whereby new types and constants are defined in terms of existing constructs rather than introduced axiomatically. Following the LCF philosophy [11], theorems can be generated only within a small inference kernel, reducing the amount of code that must be trusted.

The definitional approach is a harsh taskmaster. At the primitive level, a new type is defined by carving out an isomorphic subset from an existing type. Higher-level mechanisms are also available, but behind the scenes they reduce the user-supplied specification to primitive type definitions.

The most important high-level mechanism is undoubtedly the datatype package, which automates the derivation of (freely generated inductive) datatypes. Melham [26] had already devised such a definitional package two decades ago. His approach, considerably extended by Gunter [13], [14] and simplified by Harrison [15], now lies at the heart of the implementations in HOL4, HOL Light, and Isabelle/HOL.

Despite having withstood the test of time, the Melham– Gunter approach suffers from a few limitations that impair its usefulness. The most pressing issue is probably its ignorance of codatatypes (the coinductive counterpart of datatypes). Lacking a definitional package to automate the definition of codatatypes, users face a tough choice between tedious manual constructions and risky axiomatizations [17].

Creating a monolithic codatatype package to supplement the datatype package is not an attractive prospect, because many applications need to mix and match datatypes and codatatypes, as in the following nested-(co)recursive specification of finitely branching trees of possibly infinite depth:

datatype α list = Nil | Cons α (α list) codatatype α tree = Node α ((α tree) list)

Ideally, users should also be allowed to define (co)datatypes with (co)recursion through well-behaved non-free type constructors, such as the finite set constructor fset:

codatatype α tree = Node α ((α tree) fset)

This paper presents a fully compositional framework for defining datatypes and codatatypes in HOL, including mutual and nested (co)recursion through an arbitrary combination of datatypes, codatatypes, and other interesting type constructors (Sect. III). The underlying mathematical apparatus is taken from category theory. Our type constructors are functors satisfying specific semantic properties; we call them *bounded natural functors* (*BNFs*). Unlike all previous approaches implemented in HOL-based provers, our framework imposes no syntactic restrictions on the type constructors that can participate in nested (co)recursion.

The main mathematical contribution of this paper is a novel class of functors—the BNFs—that is closed under the initial algebra, final coalgebra, and composition operations and that allows initial and final constructions in a sufficiently "local" way (Sect. IV). Cardinality reasoning with canonical membership-based well-orders lies beyond HOL's expressive power, so we need a theory of cardinals that circumvents this limitation. Performing global categorical constructions in a weak, "local" formalism arguably constitutes the logical equivalent of walking on a tightrope.

We have formalized the development in Isabelle/HOL and are proceeding to implement a fully automatic definitional package for (co)datatypes based on these ideas to supplant the existing datatype package (Sect. V).

II. HIGHER-ORDER LOGIC (HOL)

By HOL we mean classical higher-order logic with Hilbert choice, the axiom of infinity, and rank-1 polymorphism. HOL is based on Church's simple type theory [9]. It is the logic of Gordon's original HOL system [10] and of its many successors and emulators. To keep the focus on the relevant issues, we present HOL not as a formal system but rather as a framework for expressing mathematics, much in the way that set theory is employed by working mathematicians.

The standard semantics of HOL relies on a universe \mathscr{U} of *types*, ranged over by α , β , γ , which we view as nonempty collections of elements. Membership of an element *a* in a type α is written $a : \alpha$. The type unit consists of a single element (), bool is the Boolean type, and nat is the type of natural numbers. Fixed elements of types, such as (): unit, are called *constants*. Given α and β , we can form the type $\alpha \rightarrow \beta$ of (total) functions from α to β . If $f : \alpha \rightarrow \beta$ and $a : \alpha$, then $f a : \beta$ is the result of applying f to a. The types $\alpha + \beta$ and $\alpha \times \beta$ are the disjoint sum and the product of α and β , respectively. For *n*-ary functions, we generally prefer the curried form $f : \alpha_1 \rightarrow \cdots \rightarrow \alpha_n \rightarrow \beta$ to the tuple form.

HOL supports a restrictive, simply typed flavor of set theory. We write α set for the powertype of α , consisting of sets of α elements; it is isomorphic to $\alpha \rightarrow$ bool. The *universe set* of α , $U_{\alpha} : \alpha$ set, is the set consisting of all the elements of α . For notational convenience, we sometimes write α instead of U_{α} . Given an element $a : \alpha$ and a set $A : \alpha$ set, $a \in A$ tests whether a belongs to A. Although the two concepts are related, set membership is not to be confused with type membership. Given a type α and a predicate $\varphi : \alpha \rightarrow$ bool, we can form by comprehension the set $\{a : \alpha : \varphi a\}$ of type α set.

While unit, bool, and nat are types in their own right, set, \rightarrow , +, and × are *type constructors*, i.e., functions on the universe of types. The first of these is unary, and the last three are binary. Types are a special case of type constructors, with arity 0. We can introduce new type constructors as combinations of existing ones; for example, we can define the ternary type constructor ($\alpha_1, \alpha_2, \alpha_3$) F as ($\alpha_2 + \alpha_1$) × (α_3 set). Except for infix operators, type constructor application is written in postfix notation (e.g., α F) and function application in prefix notation (e.g., f a).

Depending on the context, $(\alpha_1, ..., \alpha_n)$ F either denotes the application of F to $(\alpha_1, ..., \alpha_n)$ or simply indicates that F is an *n*-ary type constructor. We abbreviate $(\alpha_1, ..., \alpha_n)$ F to $\overline{\alpha}$ F. Given a binary type constructor (α_1, α_2) F and a fixed type β ,

 $(_,\beta)$ F denotes the unary type constructor sending an arbitrary type α to (α,β) F, and similarly for $(\beta,_)$ F.

As the main primitive way of introducing custom types, HOL lets us carve out from an existing type α a type isomorphic to a nonempty set $A : \alpha$ set, yielding a type β and an injective function $f : \beta \to \alpha$ whose image is A.

Polymorphic constants can be regarded as families of constants indexed by types. For example, the identity function $id : \alpha \to \alpha$ is defined for any type α and corresponds to a family $(id_{\alpha})_{\alpha \in \mathscr{U}}$. Id : $(\alpha \times \alpha)$ set is the identity relation. Function composition \circ has type $(\beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma$. Type arguments can be indicated by a subscript (e.g., U_{α}).

HOL is significantly weaker than the set theories popular as foundations of mathematics, such as Zermelo-Fraenkel with the axiom of choice (ZFC). Some standard mathematical constructions cannot be performed in HOL, notably those dealing with proper classes or families of unboundedly large sets. A typical example is the representation of the HOL semantics, due to the unbounded nature of the simple type hierarchy. Another example is the standard (membershipbased) theory of ordinals and cardinals, which involves the well-ordered class of ordinals. Nonetheless, many standard mathematical constructions are *local*, meaning that they are performed within an arbitrary but fixed universe set. These are particularly well suited to (polymorphic) HOL. Examples include basic algebra and analysis, formal language theory, and structural operational semantics. A large body of mathematics can be expressed adequately in HOL, as witnessed by the extensive library developments in HOL-based provers.

III. DATATYPES IN HOL

The limitations of HOL mentioned above may seem exotic and contrived. Yet our application—datatype definitions—is precisely one of those areas where HOL's lack of expressiveness is most painfully felt. Category theory offers a powerful, modular methodology for constructing (co)datatypes, but filling the gap between theoretical category theory and theorem proving in HOL, with its simply typed set theory, is challenging; indeed, it is the main concern of this paper.

A. The Melham–Gunter Approach

Melham's original datatype package [26] is based on a manually defined polymorphic datatype of finite labeled trees, from which simple datatypes are carved out as subsets. Gunter [13] generalized the package to support mutually recursive datatypes. She also showed how to reduce specifications with nested recursion to mutually recursive specifications. A typical example is the recursive occurrence of α tree_F nested in the list type constructor in the definition of finite trees. To define such a type, Gunter unfolds the definition of list, resulting in a mutually recursive definition of trees (α tree_F) and "lists-of-trees" (α tree_F_list):

datatype α tree_F = Node α (α tree_F_list)

and α tree_F_list = Nil | Cons (α tree_F) (α tree_F_list)

Exploiting an isomorphism, the package translates occurrences of α tree_F list to (α tree_F) list, maintaining to a large extent

the illusion of nested recursion. Orthogonally, Gunter [14] extended Melham's labeled trees with infinite branching to support positive recursion through functions.

The handling of nested recursion by mutual recursion has several limitations, all related to its nonmodularity. Most importantly, it is not clear how to extend the approach to nested recursion and corecursion or to non-free constructors. Also, replaying recursive definitions and transferring results via isomorphisms is prohibitively slow for datatypes with many layers of nesting.

B. Bringing HOL Closer to Category Theory

Let α F be a unary type constructor. Category theory has elegant devices to define, based on F, the associated datatype and codatatype by solving the equation $\alpha \cong \alpha$ F (up to isomorphism) in a minimal and maximal way, obtaining the initial F-algebra and final F-coalgebra, respectively. However, this requires F to be complemented by an *action on functions between types*, usually called a "map."

The universe of types \mathscr{U} naturally forms a category where the objects are types and the morphisms are functions between types. We are interested in type constructors $(\alpha_1, \ldots, \alpha_n)$ F that are also *functors* on \mathscr{U} , i.e., that are equipped with an action on morphisms commuting with identities and composition. Taking advantage of polymorphism, this action can be expressed as a constant Fmap : $(\alpha_1 \rightarrow \beta_1) \rightarrow \cdots \rightarrow (\alpha_n \rightarrow \beta_n) \rightarrow \overline{\alpha} \ F \rightarrow \overline{\beta} \ F$ satisfying Fmap id ... id = id and Fmap $(g_1 \circ f_1) \ldots (g_n \circ f_n) = \text{Fmap } \overline{g} \circ \text{Fmap } \overline{f}$. Functors on \mathscr{U} can be written as pairs (F, Fmap). Let us review some basic examples of functors.

 (n, α) -constant functor $(C_{n,\alpha}, Cmap_{n,\alpha})$: The (n, α) constant functor $(C_{n,\alpha}, Cmap_{n,\alpha})$ is the *n*-ary functor consisting of the constant type constructor $(\beta_1, \ldots, \beta_n) C_{n,\alpha} = \alpha$ and the constant map function $Cmap_{n,\alpha} f_1 \ldots f_n = id$.

Sum functor $(+, \oplus)$: $\alpha_1 + \alpha_2$ consists of a copy $\ln a_1$ of each element $a_1 : \alpha_1$ and a copy $\ln a_2$ of each element $a_2 : \alpha_2$. Given $f_1 : \alpha_1 \to \beta$ and $f_2 : \alpha_2 \to \beta$, let $[f_1, f_2] : \alpha_1 + \alpha_2 \to \beta$ be the function sending $\ln a_1$ to $f_1 a_1$ and $\ln a_2$ to $f_2 a_2$. Given $f_1 : \alpha_1 \to \beta_1$ and $f_2 : \alpha_2 \to \beta_2$, let $f_1 \oplus f_2 : \alpha_1 + \alpha_2 \to \beta_1 + \beta_2$ be $[\ln \circ f_1, \ln \circ \circ f_2]$.

Product functor (\times, \otimes) : Let fst : $\alpha_1 \times \alpha_2 \to \alpha_1$ and snd : $\alpha_1 \times \alpha_2 \to \alpha_2$ denote the two standard projection functions. Given $f_1 : \alpha \to \beta_1$ and $f_2 : \alpha \to \beta_2$, let $\langle f_1, f_2 \rangle : \alpha \to \beta_1 \times \beta_2$ be the function $a \mapsto (f_1 a, f_2 a)$. Given $f_1 : \alpha_1 \to \beta_1$ and $f_2 :$ $\alpha_2 \to \beta_2$, let $f_1 \otimes f_2 : \alpha_1 \times \alpha_2 \to \beta_1 \times \beta_2$ be $\langle f_1 \circ \text{fst}, f_2 \circ \text{snd} \rangle$.

 α -Function space functor (func_{α}, comp_{α}): Given a type α , let β func_{α} = $\alpha \rightarrow \beta$. For all $g : \beta \rightarrow \gamma$, we define comp_{α} $g : \beta$ func_{α} $\rightarrow \gamma$ func_{α} as comp_{α} $g f = g \circ f$.

Powertype functor (set, image): The function image f: $\alpha \text{ set } \rightarrow \beta$ set sends each set A to the image of A through the function $f: \alpha \rightarrow \beta$.

k-Powertype functor (set_k, image_k): Given a cardinal k, for all types α , we define the type α set_k by comprehension, carving out from α set only those sets of cardinality < k.

Although specific map functions are heavily used in HOL theories (e.g., map, image), the theorem provers traditionally do not record the functorial structure Fmap of F or take

advantage of it when defining datatypes. The next examples illustrate the benefits of keeping such additional structure.

Finite lists: The unary type constructor list, which sends each type α to the type α list of lists of α elements, is categorically given as the initial algebra on the second argument of the binary functor (F, Fmap), where (α, β) F = unit + $\alpha \times \beta$ and Fmap $f g = id \oplus f \otimes g$. More precisely, there exists a (polymorphic) *folding bijection* fld : $(\alpha, \alpha \text{ list})$ F $\rightarrow \alpha$ list making $(\alpha \text{ list, fld})$ the initial algebra for the unary functor $(\alpha, _)$ F. Here, fld = $\langle \text{Nil}, \text{Cons} \rangle$, where Nil and Cons are the familiar list operations. The initial algebra property corresponds to the availability of the standard iterator for lists. Then (list, map) is itself a unary functor.

Finitely branching trees of finite depth: Defining lists is hardly a spectacular achievement. It is the abstract interface to lists that makes category theory relevant: (list, map) is simply another functor available for nesting in (co)datatype definitions. Assume we want to define finitely branching trees of finite depth. This involves taking the initial algebra α tree_F on the second argument of the functor (G, Gmap), where $(\alpha, \beta) G = \alpha \times \beta$ list and Gmap $f g = f \otimes \text{map } g$. The resulting iterator iter : $(\alpha \times \beta \text{ list} \rightarrow \beta) \rightarrow \alpha \text{ tree}_{\mathsf{F}} \rightarrow \beta$ has the characteristic equation iter $s \circ \mathsf{fld} = s \circ (\mathsf{id} \otimes \mathsf{map}(\mathsf{iter} s))$, where fld is the folding bijection for α tree_F (Fig. 1). Thus, the "contract" of tree iteration reads: Given tree-like structure on β as the function $s: \alpha \times \beta$ list $\rightarrow \beta$ (viewing β as consisting of "abstract trees," with constructor s), provide iter s such that iter s (fld (a, trl)) = s (a, map (iter s) trl) for all $a : \alpha$ and $trl: (\alpha \text{ tree}_{\mathsf{F}})$ list. By using the map interface for accessing lists, the characteristic equation for iter abstracts away from the definition of lists, enabling truly modular nesting of recursive types inside recursive definitions of larger types. The categorical approach also handles nested recursion through corecursion, as illustrated next.

Finitely branching trees of possibly infinite depth: To define trees of possibly infinite depth, we can take the final coalgebra α tree₁ on the second argument of the functor (G, Gmap) defined above. The resulting coiterator coiter has polymorphic type $(\beta \rightarrow \alpha \times \beta \text{ list}) \rightarrow \beta \rightarrow \alpha$ tree₁, and its characteristic equation is unf \circ coiter $s = (\text{id} \otimes \text{map} (\text{coiter } s)) \circ s$, where unf is the *unfolding bijection* associated with α tree₁ (Fig. 2). Normally, we would split unf into two functions as unf = $\langle \text{lab}, \text{sub} \rangle$, where, for any $tr : \alpha$ tree₁, lab $tr : \alpha$ is the label of the root and sub tr is the list of its subtrees. By also splitting $s : \beta \rightarrow \alpha \times \beta$ list into a pair of functions L and S, the contract of tree coiteration reads: Given a tree-like structure on β consisting of functions $L : \beta \rightarrow \alpha$ and $S : \beta \rightarrow \beta$ list, yield a function coiter $\langle L, S \rangle$ such that lab (coiter $\langle L, S \rangle$ b) = L b and sub (coiter $\langle L, S \rangle$ b) = map (coiter $\langle L, S \rangle$) (S b) for all $b : \beta$.

Unordered finitely branching trees of possibly infinite depth: Assume that we want our finitely branching trees to be unordered. Instead of lists, we can employ finite sets (or even finite multisets). We can then define α tree_{UI} as the final coalgebra of the functor (H, Hmap), where (α, β) H = $\alpha \times \beta$ fset and Hmap $f g = f \otimes \text{image } g$.

Fig. 1. Iterator for finitely branching trees of finite depth

Fig. 2. Coiterator for finitely branching trees of possibly infinite depth

C. Bringing Category Theory Closer to HOL

Next we focus on devising a proper categorical setting to accommodate (co)datatype definitions. Our desired class \mathcal{H} of functors (perhaps with additional structure) on the universe of types should satisfy the following four constraints:

- C1 \mathscr{K} contains basic functors, including the constant, sum, product, and function-space functors.
- C2 All functors in \mathcal{K} admit both (a) initial algebras and (b) final coalgebras.
- C3 *K* is *closed under* (a) initial algebras; (b) final coalgebras; and (c) composition.
- C4 The initial algebra and final coalgebra operations over \mathcal{K} are *expressible* in HOL.

In addition to the above nonnegotiable requirements, we formulate a desideratum:

D \mathscr{K} contains interesting non-free functors, such as the bounded sets and multisets.

Among the basic functors mentioned in constraint C1, constants, +, and × are needed for constructing even simple datatypes, whereas func_{α} enables infinite branching. The nonfree functors mentioned in the desideratum D further extend (co)datatypes with permutative structures, among which finite sets and multisets are especially useful in computer science formalizations, e.g., the semantics of programming languages.

In C3, closure under initial algebras means the following, say, for binary functors $((\alpha, \beta) \mathsf{F}, \mathsf{Fmap})$. If we fix an argument, say, the first, then, by C2, for each fixed type α , there exists the initial F-algebra on the second argument, $\alpha \mathsf{IF}$, for which we can define a map operator IFmap . C3 requires that the unary functor $(\mathsf{IF}, \mathsf{IFmap})$ be in \mathscr{K} . And similarly for closure under final coalgebras.

C4 is required because we are committed to a definitional framework. Otherwise, we could simply postulate the types corresponding to initial and final coalgebras, together with the necessary (co)iterators and their properties.

The literature does not appear to provide a complete solution for the above system of constraints. An obvious candidate, the class of ω -bicontinuous functors [25], satisfies C1–C3 but not C4, because the associated limit construction requires a logic that can express infinite type families (e.g., (unit Fⁿ)_n for the final coalgebra).

Many results from the literature are concerned only with a given type of construction, and only with admissibility (C2), ignoring closure (C3). Rutten's monograph [33] focuses on coalgebras. It describes a general class of functors on sets, namely, those that preserve weak pullbacks and have a set of generators, or, sufficiently, preserve weak pullbacks and are bounded (in that there exists a cardinal upper bound for the coalgebras generated by any singleton in any of their coalgebras). The main issue with this class of functors is admissibility of initial algebras (C2-a). Closure properties (C3), which Rutten omits to discuss, might also be an issue.

Also focusing on coalgebra, Barr [5], [6] proves the existence of a final coalgebra for accessible functors on sets (i.e., functors preserving k-filtered colimits for some k). This result is an internalization to sets of Aczel and Mendler's final coalgebra theorem [2] stated for set-based functors on classes. Moreover, Barr produces a bound for the size of the final coalgebra, assuming the existence of a certain large cardinal (subject to a property intermediate between weak and strong inaccessibility). However, k-filtered colimits are incompatible with C4 for the same reason ω -limit constructions are, and internalizing the construction to a sufficiently large type using the provided cardinal bound is also infeasible, because it requires large cardinals whose existence is not provable in HOL or even ZFC. (C2-a and C3 might also be problematic.)

A different result from Barr [5] suggests yet another approach. It states that any quotient functor of an ω -bicontinuous functor admits a weakly final coalgebra obtained from any weakly final coalgebra of the latter. A subclass of ω -bicontinuous that admits HOL-expressible (co)datatype constructions could prove to be an answer to C1–C4 via this result. In fact, the class \mathcal{K} we adopt in this paper includes the class \mathcal{K}' of functors F that are quotients of Fbd-function-space functors, with Fbd a cardinal number depending on F. Whether \mathcal{K}' is also a solution to C1–C4 remains for us an open question.

Hensel and Jacobs [18] propose a modular development of (co)datatypes for datafunctors, a syntactically specified class consisting of functors obtained from constants, +, and \times by repeated application of composition, initial algebra, and final coalgebra. Datafunctors satisfy C1–C3 but ostensibly not C4, because the arguments, which employ abstract results on categorical logic and fibrations [19], rely on (co)limits. Another drawback of datafunctors is their failure to satisfy the desideratum D (even though the abstract results [19] may apply to a much larger class).

Abbott, Altenkirch, and Ghani [1] define container types (with an indexed extension [3] also covering terms with bindings) satisfying C1–C3, but not C4 (as they rely on dependent types) or D. Finally, Hoogendijk and de Moor [22] discuss container types as relators without analyzing C2–C4.

Fig. 3. An element x of α F with Fset $x = \{a_1, a_2, a_3\}$

Fig. 4. The "set" natural transformation

IV. BOUNDED NATURAL FUNCTORS

To accommodate constraints C1–C4 in HOL, we must work in a strict cardinal-bounded fashion, always keeping in sight a universe type able to host the necessary construction. Consequently, our functors will carry their cardinal bounds.

A useful means to keep cardinality under control is the consideration of a natural "atom" structure potentially available for the HOL type constructors in addition to the map structure. For the unary type constructor F, we consider a polymorphic constant Fset : $\alpha F \rightarrow \alpha$ set, where Fset *x* consists of all "atoms" of *x*; for example, if F is list, Fset returns the set of elements in the list.

We think of the elements x of α F as consisting of a *shape* together with a *content* that fills the shape with elements of α , with Fset x returning this content in flattened format, as a set (Fig. 3). This suggests that Fset should be a natural transformation between the functors (F, Fmap) and (set, image) (i.e., the diagram in Fig. 4 commutes for all $f: \alpha \rightarrow \beta$). Fset allows us to internalize the type constructor F to sets of elements of given types α . Namely, we define Fin : α set $\rightarrow (\alpha$ F) set by Fin $A = \{x : \alpha$ F. Fset $x \subseteq A\}$. The generalization to *n*-ary functors is straightforward, with Fin $A_1 \dots A_n = \{x : (\alpha_1, \dots, \alpha_n) \in A_i \in X \subseteq A_2\}$ (where the first occurrence of α_1 is an abbreviation for U_{α_1}).

Combining the map and set operators with suitable cardinal bounds, we obtain the following key notion, presented here for the binary case. A binary *bounded natural functor* (*BNF*) is a tuple $\mathscr{F} = (\mathsf{F}, \mathsf{Fmap}, \mathsf{Fset}, \mathsf{Fbd})$, where

- F is a binary type constructor,
- Fmap: $(\alpha_1 \rightarrow \beta_1) \rightarrow (\alpha_2 \rightarrow \beta_2) \rightarrow (\alpha_1, \alpha_2) \ \mathsf{F} \rightarrow (\beta_1, \beta_2) \ \mathsf{F},$
- $\mathsf{Fset}_i : (\alpha_1, \alpha_2) \mathsf{F} \to \alpha_i \text{ set for } i \in \{1, 2\},\$
- Fbd is an infinite cardinal number,

satisfying the following properties:

FUNC (F, Fmap) is a binary functor.

NAT₁ For all α_2 , Fset₁ is a natural transformation between ((_, α_2) F, Fmap) and (set, image).

- NAT₂ For all α_1 , Fset₂ is a natural transformation between $((\alpha_1, _) \mathsf{F}, \mathsf{Fmap})$ and (set, image).
- WP (F, Fmap) preserves weak pullbacks.
- CONG If $\forall a \in \mathsf{Fset}_i x$. $f_i a = g_i a$ for all $i \in \{1, 2\}$, then Fmap $f_1 f_2 x = \mathsf{Fmap} g_1 g_2 x$.
- CBD The following cardinal-bound conditions hold: a. $\forall x : (\alpha_1, \alpha_2) \text{ F. } |\text{Fset}_i x| \leq \text{Fbd for } i \in \{1, 2\};$ b. $|\text{Fin } A_1 A_2| \leq (|A_1| + |A_2| + 2)^{\text{Fbd}}.$

Binary functors suffice to illustrate the functorial structure of the initial and final algebras, a structure that would be trivial if we started with unary functors. (The definition of *n*-ary BNFs is given elsewhere [34].)

Among the above conditions, FUNC and NAT_i were already explained and motivated. WP is a technical condition allowing a smooth treatment of bisimulation relations, relevant for coinduction and corecursion [33]; unlike other (weak) limits, weak pullbacks involve a finite number of types and are hence expressible in HOL. CONG states that $\operatorname{Fmap} f_1 f_2 x$ is uniquely determined by the action of f_i on the atoms of x, $Fset_i x$ —it ensures that Fmap behaves well with respect to Fin. Finally, the cardinality conditions put bounds on the branching (CBDa) and on the number of elements (CBD-b) of the functor (F, Fmap), and can be understood in terms of shape and content. Thus, CBD-a states that the F-shapes have no more than Fbd slots for contents, and CBD-b states that shapes are not too redundant, so that all possible combinations of shape and content do not exceed the number of assignments of contents to slots, $A_1 + A_2 \rightarrow \mathsf{Fbd}$. (The +2 addition is a technicality that covers the case where $A_1 = A_2 = \emptyset$.) We are now ready to state the main theoretical result of this paper:

Theorem 1: The class of BNFs satisfies constraints C1–C4 and desideratum D.

Proof sketch: We must show that basic type constructors form BNFs and that the operations of composition, initial algebra, and final coalgebra exist in HOL and have themselves a BNF structure. Sects. A–F below outline our proofs.

A. Basic Type Constructors

Sect. III-B described the basic constructors' map structure. We now present their set structure and cardinal bound, guided by our "shape and content" intuition.

- $F = C_{n,\alpha}$: Fset $x = \emptyset$; Fbd = \aleph_0 .
- F = +: Fset₁ (Inl a_1) = { a_1 }, Fset₂ (Inl a_1) = Ø, Fset₁ (Inr a_2) = Ø, Fset₂ (Inr a_2) = { a_2 }; Fbd = \aleph_0 .
- $F = \times$: Fset₁ $(a_1, a_2) = \{a_1\}$, Fset₂ $(a_1, a_2) = \{a_2\}$; Fbd = \aleph_0 .
- $F = \text{func}_{\alpha}$: $Fset_1 g = \text{image } g \alpha$; $Fbd = \max(|\alpha|, \aleph_0)$.
- F = set: Fset x = x; set is not a BNF, though, due to the absence of a proper bound.
- F = set_k: Fset x is the set corresponding to x via the embedding of α set_k into α set; Fbd = max (k, ℵ₀).

B. Composition

For composition, we focus on the binary-unary case. (The general (n, m)-ary case is covered elsewhere [34].) Given

unary BNFs $\mathscr{F}_i = (\mathsf{F}^i, \mathsf{Fmap}^i, \mathsf{Fset}^i, \mathsf{Fbd}^i)$ with $i \in \{1, 2\}$ and a binary BNF $\mathscr{G} = (\mathsf{G}, \mathsf{Gmap}, \mathsf{Gset}, \mathsf{Gbd})$, their composition is the unary BNF $\mathscr{H} = \mathscr{G} \circ (\mathscr{F}_1, \mathscr{F}_2)$ defined as follows:

- (H, Hmap) is the functorial composition of (G, Gmap) with (Fⁱ, Fmapⁱ);
- Hset $y = \bigcup_{x \in \text{Gset}_1 y} \text{Fset}^1 x \cup \bigcup_{x \in \text{Gset}_2 y} \text{Fset}^2 x$;
- $Hbd = Gbd * (Fbd^1 + Fbd^2).$

Although we seldom emphasize its role, composition is a pervasive auxiliary operation in interesting (co)datatype definitions. For example, the list-defining BNF (α, β) F discussed in Sect. III-B is a composition of basic BNFs.

C. Relators

A key insight due to Rutten [32] is that, thanks to WP, the functor (F, Fmap) has a natural extension to a *relator*, i.e., a functor on the category of types and binary relations, denoted \mathscr{R} . We can express the relator action of F as a polymorphic constant Frel : $(\alpha_1 \times \alpha_2)$ set $\rightarrow (\beta_1 \times \beta_2)$ set \rightarrow $((\alpha_1, \alpha_2) \ F \times (\beta_1, \beta_2) \ F)$ set defined as Frel $QR = \{(\text{Fmap fst} \text{fst } z, \text{Fmap snd snd } z). z \in \text{Fin } QR \}.$

For reasoning in HOL, it is convenient to take an alternative (equivalent) view of Frel, as an action on curried binary predicates Fpred : $(\alpha_1 \rightarrow \alpha_2 \rightarrow \text{bool}) \rightarrow (\beta_1 \rightarrow \beta_2 \rightarrow \text{bool}) \rightarrow (\alpha_1, \alpha_2) F \rightarrow (\beta_1, \beta_2) F \rightarrow \text{bool}$. Fpred $\varphi \psi$ should be regarded as the *componentwise extension* of the predicates φ and ψ . For example:

- if F is the product functor, Fpred $\varphi_1 \varphi_2 (a_1, a_2) (b_1, b_2)$ $\Leftrightarrow \varphi_1 a_1 b_1 \land \varphi_2 a_2 b_2;$
- if *F* is the sum functor, Fpred $\varphi_1 \varphi_2 a b \Leftrightarrow (\exists a_1 b_1. a =$ lnl $a_1 \land b =$ lnl $b_1 \land \varphi_1 a_1 b_1) \lor (\exists a_2 b_2. a =$ lnr $a_2 \land b =$ lnr $b_2 \land \varphi_2 a_2 b_2).$

D. The Categories of (Co)algebras

For this and the next two subsections, we fix a binary BNF $\mathscr{F} = (\mathsf{F}, \mathsf{Fmap}, \mathsf{Fset}, \mathsf{Fbd})$. We first show how to construct in HOL the initial algebra (or, dually, the final coalgebra) on the second argument—that is, the minimal solution α IF (or maximal solution α JF) of the equation $\alpha \cong (\beta, \alpha)$ F. The general constructions involve $n \ (m+n)$ -ary BNFs \mathscr{F}^i with type constructors $(\overline{\beta}, \overline{\alpha}) \, \mathsf{F}^i$ and yield $n \, m$ -ary BNFs $\mathscr{IF}^1, \ldots, \mathscr{IF}^n$ (or $\mathscr{IF}^1, \ldots, \mathscr{IF}^n$) with their type constructors of the form $\overline{\beta} \, \mathsf{IF}^i$ (or $\overline{\beta} \, \mathsf{JF}^i$).

Abstractly, the theories of algebras and of coalgebras are dual, allowing a unified treatment of the basic (co)algebraic concepts. However, since the category of types is not self-dual, concrete constructions are often specific to each.

We fix a type β . A (β -)algebra is a pair $\mathscr{A} = (A, s)$ where

- A: α set is the *carrier set* of A (and α is the *underlying* type of A),
- $s: (\beta, \alpha) \to \alpha$ is the structural function of \mathscr{A} ,

such that *A* is *closed under s*, in that $\forall x \in \text{Fin } \beta A$. $s x \in A$ (and thus we may regard *s* as a function $s : \text{Fin } \beta A \to A$). Dually, a (β -)*coalgebra* is given by a pair ($A : \alpha \text{ set}, s : \alpha \to (\beta, \alpha) \text{ F}$) such that $\forall x \in A$. $s x \in \text{Fin } \beta A$. Algebras form a category where morphisms $f : (A_1, s_1) \to (A_2, s_2)$ are functions $f : \alpha_1 \to \beta$.

Fig. 5. Algebra morphism (left) and coalgebra morphism (right)

 α_2 such that the diagram on the left of Fig. 5 commutes, and dually for coalgebras and the diagram on the right.

In the category of algebras, we can form *products* of families of algebras having the same underlying type, the carrier set of the product being the product of the carrier sets of the components. Dually, we can form *sums* of families of coalgebras using sums of sets. An algebra \mathscr{A} is called *initial* if for all algebras \mathscr{A}' there exists a unique morphism $f : \mathscr{A} \to \mathscr{A}'$, and *weakly initial* if we omit the uniqueness requirement. Dually, a coalgebra is (*weakly*) *final* if it admits a (unique) morphism from any other coalgebra.

We are looking for a type constructor $\beta |\mathsf{F}$ (dually, $\beta |\mathsf{F}\rangle$) and function fld : $(\beta, \beta |\mathsf{F}\rangle \rightarrow \beta |\mathsf{F}\rangle$ (dually, unf : $\beta |\mathsf{JF}\rangle \rightarrow (\beta, \beta |\mathsf{JF}\rangle)$) such that the algebra ($\beta |\mathsf{F}\rangle$, fld) is initial (dually, the coalgebra ($\beta |\mathsf{JF}\rangle$, unf) is final).

Typically, such a (co)algebra is obtained in two phases:

- 1. Construction of a weakly initial algebra (weakly final coalgebra) *C*.
- 2. Construction of an initial algebra (final coalgebra) as a subalgebra (quotient coalgebra) of \mathscr{C} .

The next two subsections describe the key aspects of these constructions in HOL, starting in each case with phase 2.

E. Initial Algebra

Initial algebra from weakly initial algebra: Given an algebra $\mathscr{A} = (A, s)$, let M_s be the intersection of all sets B such that (B, s) is an algebra, and let $\mathscr{M}(\mathscr{A})$, the minimal subalgebra of \mathscr{A} , be (M_s, s) . It is obvious that there exists at most one morphism from $\mathscr{M}(\mathscr{A})$ to any other algebra. Then, given a weakly initial algebra \mathscr{C} , the desired initial β -algebra is its minimal subalgebra, $\mathscr{M}(\mathscr{C})$. Of course, $\mathscr{M}(\mathscr{C})$ depends on β (which was fixed all along). Now β IF is introduced by a type definition, carving out the carrier set of $\mathscr{M}(\mathscr{C})$ as a new type, and the folding map fld is defined by copying on β IF the structural map of $\mathscr{M}(\mathscr{C})$ (so that in effect (β IF, fld) becomes isomorphic to $\mathscr{M}(\mathscr{C})$).

Construction of a weakly initial algebra: This relies on a crucial lemma about the cardinality of minimal subalgebras, whose proof [34] employs the cardinality assumptions CBD.

Lemma 2: Let $s: (\beta, \alpha) \to \alpha$. Then $|M_s| \leq (|\beta| + 2)^{\text{Suc Fbd}}$ (where Suc Fbd is the successor cardinal of Fbd).

Let Θ be the set of all algebras \mathscr{A} having as underlying type a type γ of sufficiently large cardinality, $(|\beta| + 2)^{\text{Suc Fbd}}$. The desired weakly initial algebra \mathscr{C} is the product of all algebras in Θ . Indeed, by Lemma 2, for any algebra \mathscr{B} , its minimal subalgebra $\mathscr{M}(\mathscr{B})$ is isomorphic to one in Θ , to which \mathscr{C}

has a projection morphism. This gives a morphism from \mathscr{C} to $\mathscr{M}(\mathscr{B})$, hence also one from \mathscr{C} to \mathscr{B} . We have thus proved:

Prop. 3: (β IF, fld) is the initial β -algebra.

This yields an iterator iter : $((\beta, \alpha) \vdash (\beta, \alpha) \rightarrow \beta \vdash (\beta, \alpha) \rightarrow (\beta, \alpha)$

Structural induction: The set structure Fset of a BNF not only plays an auxiliary role in the datatype constructions but also provides a simple means to *express induction abstractly, for arbitrary functors.* Since fld is a bijection, for any element $b \in \beta$ IF there is a unique $y \in (\beta, \beta \text{ IF})$ F such that b = fld y—this is an abstract version of case analysis. Then the inductive components of *b* are precisely the elements of Fset₂ *y*, and we have the following induction principle:

Prop. 4: Let $\varphi : \beta \mid \mathsf{F} \to \mathsf{bool}$ and assume $\forall y. \ (\forall b \in \mathsf{Fset}_2 y. \varphi b) \Rightarrow \varphi \ (\mathsf{fld} y)$. Then $\forall b. \varphi b$.

For $F = \text{unit} + \beta \times \alpha$ with IF = list (cf. Sect. III-B), the above is equivalent to the familiar induction principle.

BNF structure: It is standard to define a functorial structure for the initial algebra: $|\text{Fmap } f = \text{iter } (\text{fld} \circ \text{Fmap } f \text{ id})$. As for the set structure, consider $b \in \beta$ IF. Intuitively, IFset b should contain all the Fset₁ atoms of b, then the Fset₁ atoms of its inductive components, and so on, iteratively. Moreover, as we have seen, delving into the inductive components is achieved by means of Fset₂. We are led to define IFset as iter collect, i.e., as the unique function making the Fig. 6 diagram commute, where collect $a = \text{Fset}_1 a \cup \bigcup$ Fset₂ a.

Prop. 5: (IF, IFmap, IFset, 2^{Fbd}) is a BNF.

As a BNF, IF is also a relator (Sect. C). Importantly for modular reasoning, we can express IFpred directly in terms of Fpred. IFpred is characterized by the recursive equation IFpred φ (fld x_1) (fld x_2) \Leftrightarrow Fpred φ (IFpred φ) $x_1 x_2$. For the list functor, the above equation expands to four equations that follow the relator structure of the component functors (unit, +, and ×), revealing list_pred φ as the componentwise extension of the predicate φ :

- list_pred φ Nil Nil \Leftrightarrow True;
- list_pred φ Nil (Cons b bs) \Leftrightarrow False;
- list_pred φ (Cons *a as*) Nil \Leftrightarrow False;
- list_pred φ (Cons a as) (Cons b bs) $\Leftrightarrow \varphi a b \land$ list_pred $\varphi as bs$.

F. Final Coalgebra

Final coalgebra from weakly final coalgebra: This follows by the standard coalgebraic theory of bisimulation relations [33]. A bisimulation on a coalgebra $\mathscr{A} = (A, s)$ is a relation

 $R \subseteq A \times A$ such that $\forall (a, b) \in R$. $\exists z \in \text{Fin }\beta R$. Fmap id fst $z = s \ a \land Fmap$ id snd $z = s \ b$, i.e., such that in Fig. 7 (left) there exists a function along the dashed arrow making the two diagrams commute. This abstract concept covers the natural ad hoc notions of bisimulation for concrete functors [33]. A bisimulation R is effectively an endomorphism on A in the types-and-relations category \mathscr{R} such that $(a, b) \in R$ implies $(s \ a, s \ b) \in Frel \ d R$ —Fig. 7 (right). Hence composition of bisimulations is a bisimulation, and so it follows easily that the largest bisimulation $LB(\mathscr{A})$ on a coalgebra \mathscr{A} is an equivalence relation, and that the resulting quotient coalgebra $\mathscr{A}/_{LB(\mathscr{A})}$ has the property that any coalgebra has at most one morphism to it.

Now let \mathscr{C} be a weakly final coalgebra. By the above discussion, via an argument dual to the corresponding one for algebras, we have $\mathscr{C}/_{\mathsf{LB}(\mathscr{C})}$ final and based on it we define the desired type β JF and its unfolding bijection unf.

Construction of a weakly final coalgebra: The abstract construction indicated in Rutten [33], as the sum of all coalgebras over a sufficiently large type (roughly dual to our weakly initial algebra construction), is possible in HOL thanks to our cardinality provisos. However, a more concrete construction gives us a better grip on cardinality, allowing us to check the BNF properties for the resulting coalgebra.

To lighten the presentation, we identify sets with typesfor example, we allow ourselves to apply type constructors such as list to sets. Given a prefix-closed subset Kl of Fbd list and $kl \in Kl$, we let $Br_{Kl,kl}$, the set of Kl-branches of kl, be {k. $kl @ [k] \in Kl$ }, where @ denotes list concatenation and [k] the k-singleton list. We define an Fbd-*tree* to be a pair (Kl, lab), where $Kl \subseteq \mathsf{Fbd}$ list is prefix-closed and $lab : Kl \rightarrow$ Fin β Fbd is such that $\forall kl \in Kl$. Fset₂ (*lab* kl) = Br_{Kl kl}. Thus, Fbd-trees are at most Fbd-branching trees labeled as follows: Every node is labeled with an element of $Fin \beta$ Fbd whose set of second-argument atoms consists of precisely the node's emerging branches. Let C be the set of Fbd-trees. Given $(Kl, lab) \in C$, we define $sub_{(Kl, lab)} : \{k, [k] \in Kl\} \rightarrow C$ to send each k to the immediate k-subtree of (Kl, lab), more precisely, $\operatorname{sub}_{(Kl,lab)} k = (Kl', lab')$, where $Kl' = \{kl', [k] \otimes kl' \in Kl\}$ and $lab': Kl' \rightarrow \text{Fin }\beta \text{ Fbd is defined by } lab' kl' = lab ([k] @ kl').$

The set *C* can be naturally organized as a coalgebra $\mathscr{C} = (C, s)$ defining $s(Kl, lab) = \text{Fmap id sub}_{(Kl, lab)} (lab Nil)$. Thus, s(Kl, lab) operates on (Kl, lab)'s root label *lab* Nil, substituting in its shape the immediate subtrees for the contents. Then \mathscr{C} is shown to be a weakly final coalgebra by roughly the following argument. For each element *a* in a coalgebra (A, t), we define its behavior tree by iterating the unfolding of *a*

according to *t*—first *t a*, then *t b* for all $b \in Fset_2(t a)$, and so on. Thanks to CBD-a, such trees are at most Fbd-branching, hence representable in *C*. We have thus proved:

Prop. 6: (β JF, unf) is the final β -coalgebra.

This yields a conterator conter : $(\alpha \rightarrow (\beta, \alpha) F) \rightarrow \alpha \rightarrow \beta JF$ such that unf (conter *s*) = Fmap id (conter *s*) $\circ s$ (cf. Fig. 2).

Structural coinduction: Since LB(\mathscr{C}) is the greatest bisimulation on \mathscr{C} , it follows that ld is the greatest bisimulation on the quotient coalgebra $\mathscr{C}/_{\text{LB}(\mathscr{C})}$. This gives us the following coinduction principle on (β JF, unf) (which is a copy of $\mathscr{C}/_{\text{LB}(\mathscr{C})}$): If *R* is a bisimulation relation, then $R \subseteq \text{Id}$. Viewing bisimulations via the relator structure (cf. Fig. 7, left) and using the predicate notation, we can rephrase the coinduction principle as follows:

Prop. 7: Let $\varphi : \beta \ \mathsf{JF} \to \beta \ \mathsf{JF} \to \mathsf{bool}$ and assume $\forall a \ b. \ \varphi \ a \ b \Rightarrow \mathsf{Fpred} \ \mathsf{Eq} \ \varphi \ (\mathsf{unf} \ a) \ (\mathsf{unf} \ b) \ (\mathsf{where} \ \mathsf{Eq} : \beta \to \beta \to \mathsf{bool}$ is the equality predicate). Then $\forall a \ b. \ \varphi \ a \ b \Rightarrow a = b$.

BNF structure: The functorial structure of the final coalgebra is standard: JFmap f = coiter (Fmap $f \text{ id} \circ \text{unf}$). Moreover, JFset can be defined by collecting all the Fset₁ results of repeated unfolding, namely JFset $a = \bigcup_{i \in \text{nat}} \text{ collect}_{i,a}$, where collect_{*i*,*a*} is defined recursively on *i* as follows: collect_{0,a} = \emptyset ; collect_{*i*+1,a} = Fset₁ (unf a) $\cup \bigcup$ {collect_{*i*,b}. $b \in \text{Fset_2}$ (unf a)}. Similarly to IFpred, the relator JFpred can be described in terms of Fpred, by JFpred $\varphi a_1 a_2 \Leftrightarrow$ Fpred φ (JFpred φ) (unf a_1) (unf a_2).

Prop. 8: (JF, JFmap, JFset, Fbd^{Fbd}) is a BNF.

V. DEFINITIONAL PACKAGE

The results in this paper are formalized in Isabelle/HOL and implemented in ML as a prototypical definitional package, to-gether with a few examples of applications. This development is publicly available [35].

A. Implementation

Our constructions require a theory of cardinals in HOL, including cardinal arithmetic and regular cardinals. Simple type theory does not cater for ordinals as a canonical collection of well-orders, a very convenient concept for the standard theory of cardinals. Therefore, we work with well-orders directly, dispersed polymorphically over types, with cardinals defined as well-orders minimal with respect to initial-segment embeddings. This theory and its challenges are presented separately [31].

With the new (co)datatype package, users define (co)datatypes using an intuitive high-level specification syntax; internally, the package ensures that each specification corresponds to a BNF, defines the (co)datatype, and proves that the result is itself a BNF. More specifically, each BNF is represented by an ML record consisting of the polymorphic constants and their properties as proved theorems, stored in Isabelle's theory database [39, §4.1]. The basic BNFs for unit, +, \times , func_{α}, fset, countable sets, and finite multisets are constructed in user space, as they do not require ML; users can register custom BNFs (e.g., for various other non-free constructors) in the same way.

In the simple (nonmutual) case, the package parses the righthand side of a (co)datatype specification as a composition \mathscr{F} of already defined BNFs and proves that the result forms a BNF as in Sect. IV-B. Then the package defines the initial algebra or final coalgebra for \mathscr{F} and establishes automatically their characteristic theorems (for (co)recursion, (co)induction, etc.) and BNF structure as in Sect. IV-E or IV-F. All work is performed by dedicated Isabelle tactics, whose running time is independent of the amount of nesting (unlike for the Melham– Gunter approach).

B. Example

We demonstrate the definitional package on the type of finitely branching trees of possibly infinite depth [35]:

datatype
$$\alpha$$
 list = Nil | Cons α (α list)

codatatype α tree_I = Node (lab: α) (sub: (α tree_I) list)

The declaration syntax allows named selectors (lab and sub) and constructors (Node).

The command derives the expected characteristic theorems for α tree₁, including the coinduction rule

$$\frac{\forall a \ b. \ \varphi \ a \ b}{x = y} \frac{\varphi \ x \ y}{(\operatorname{sub} a) (\operatorname{sub} b)}$$

where list_pred φ is the componentwise extension of φ to lists (Sect. IV-E). Corecursive (coiterative) functions can be defined using a convenient syntax; for example, tree reversal is specified below in terms of map and rev on lists:

corec trev where
lab (trev
$$t$$
) = lab t
sub (trev t) = rev (map trev (sub t))

Using the tree coinduction rule and Isabelle's automation, we can prove the following lemma with a one-line proof:

lemma trev (trev t) = t

The (co)datatype package interacts seamlessly with the existing infrastructure for reasoning about (co)inductive predicates (defined via Knaster–Tarski), as illustrated by the following proof of König's lemma for α tree₁. We first need a stream type to represent infinite paths in a tree:

```
codatatype \alpha strm = SCons (hd: \alpha) (tl: \alpha strm)
```

The existing coinductive package allows us to define the notions of an infinite tree and a proper path in a tree as the greatest predicates satisfying the equations infinite $t \Leftrightarrow (\exists u \in \text{set} (\text{sub } t). \text{ infinite } u)$ and proper_path $p \ t \Leftrightarrow \text{hd } p = \text{lab } t \land (\exists u \in \text{set} (\text{sub } t). \text{ proper_path} (\text{tl } p) u)$. The corecursive function wpath uses Hilbert choice (ε) to return a witness infinite path:

```
corec wpath where hd(wpath t) = lab t
```

tl (wpath t) = wpath (εu . $u \in set (sub t) \land infinite u$)

We can then prove the desired lemma by coinduction:

lemma infinite $t \Rightarrow \text{proper_path} (\text{wpath } t) t$

VI. FURTHER RELATED WORK

Interactive theorem provers include various mechanisms for introducing new types, whether primitive (intrinsic), axiomatic, or definitional [7, p. 3]. In the world of HOL, the primitive type definition mechanism (Sect. II) and the datatype package (Sect. III-A) are the most widely used, but there are many others. Homeier [20] developed a package to define quotient types in HOL4, now ported to Isabelle [24]. Nominal Isabelle [36] extends HOL with infrastructure for reasoning about datatypes containing name binders; Urban is rebasing it on the quotient package, possibly in unison with our (co)datatype package to capitalize on the support for non-free constructors. HOLCF, a HOL library for domain theory, has long included an axiomatic package for defining (co)recursive domains; Huffman [23] recast it into a purely definitional package, based on a large enough universal domain (a useful simplification that unfortunately is not available for general HOL datatypes). The package combines many of the categorical ideas present in our work, notably the modular mixture of recursion via enriched type constructors. Some ideas have yet to be automated in a definitional package: Völker [37] sketches a categorical approach to datatypes that prefigures our work; Vos and Swierstra [38] elaborate an ad hoc construction for recursion through finite sets; and Paulson [29] designed building blocks for codatatypes.

PVS, whose logic is a simple type theory extended with dependent types and subtyping (but without polymorphism), provides monolithic axiomatic packages for datatypes [28] and codatatypes [12]. Hensel and Jacobs [18] illustrate the categorical approach to (co)datatypes in PVS by axiomatic declarations of various flavors of trees (including our tree_F and tree₁) with associated (co)iterators and proof principles. HOL_{ω} , which extends HOL4 with higher-rank polymorphism, provides a safe primitive for introducing abstractly specified types [21]. Isabelle/ZF, based on ZFC, reduces (co)datatypes to (co)inductive predicates [30], with no support for mixed (co)recursion; for codatatypes, it relies on a concrete, definitional treatment of non-well-founded objects. In Agda and Coq, (co)datatypes are built into the underlying calculus. Mixed (co)recursion is possible [8] but not the combination with non-free types.

VII. CONCLUSION

We presented a theoretical framework for defining types in higher-order logic. The framework relies on the abstract notion of a bounded natural functor (BNF), consisting of a type constructor plus further categorical structure. BNFs are closed under composition and (co)algebraic fixpoints, providing all the necessary ingredients to define (co)datatypes. The solution is foundational: The characteristic (co)datatype theorems are derived from an internal construction, rather than stated as axioms. Unlike the traditional Melham–Gunter approach, our solution is also fully compositional, enabling mutual and nested (co)recursion involving arbitrary combinations of datatypes, codatatypes, and custom BNFs. There is a large body of previous work on (co)datatypes as (co)algebras in category theory. Our main contribution has been to adapt this work to achieve compatibility with HOL's type system. Our ideas are implemented in a prototypical definitional package for Isabelle/HOL. The package is expected to be included in the next official release of the theorem prover, making Isabelle the first HOL-based prover with general support for codatatypes and thereby addressing a frequent request from users, helping Isabelle become an attractive vehicle for formalizations of infinite systems.

After implementing the original datatype package for Isabelle, Berghofer and Wenzel [7] suggested three areas for future work: codatatypes, non-freely generated types, and composition of definitional packages. Thirteen years later, their vision is very close to a full materialization. Although we focused on Isabelle, our approach is equally applicable to the other HOL-based theorem provers, such as HOL4 [10], HOL Light [16], and ProofPower–HOL [4].

Methodologically, we found that category theory helped us develop intuitions about the types of HOL, recasting them as richly structured objects rather than mere collections of elements. As a continuation of this program, we want to dispel the myth that parametricity is inapplicable to HOL by extending BNF-like structures with a parametricity predicate and exploiting their relator nature. We also intend to transfer further category theory insight, such as the (co)induction mixture of Hensel, Hermida, and Jacobs [18], [19], to the world of theorem provers.

Acknowledgment: We thank Tobias Nipkow for encouraging this work, Brian Huffman and Christian Urban for their advice regarding Isabelle package writing, Florian Haftmann, Andreas Lochbihler, and Makarius Wenzel for inspiring discussions, and finally Elsa Gunter and Mark Summerfield for feedback on drafts of this paper. The research was supported by the project Security Type Systems and Deduction (grant Ni 491/13-1) as part of the program Reliably Secure Software Systems (RS³, Priority Program 1496) of the Deutsche Forschungsgemeinschaft (DFG). The third author was supported by the DFG project Quis Custodiet (grant Ni 491/11-2).

References

- [1] M. Abbott, T. Altenkirch, and N. Ghani. Containers: Constructing
- strictly positive types. *Theor. Comput. Sci.*, 342(1):3–27, 2005. [2] P. Aczel and N. P. Mendler. A final coalgebra theorem. In *CTCS* '89,
- vol. 389 of *LNCS*, pp. 357–365. Springer, 1989.
- [3] T. Altenkirch and P. Morris. Indexed containers. In *LICS 2009*, pp. 277–285, 2009.
- [4] R. D. Arthan. Some mathematical case studies in ProofPower–HOL. In *TPHOLs 2004 (Emerging Trends)*, pp. 1–16, 2004.
- [5] M. Barr. Terminal coalgebras in well-founded set theory. *Theor. Comput. Sci.*, 114(2):299–315, 1993.
- [6] M. Barr. Additions and corrections to "Terminal coalgebras in well-founded set theory." *Theor. Comput. Sci.*, 124:189–192, 1994.
- [7] S. Berghofer and M. Wenzel. Inductive datatypes in HOL—Lessons learned in formal-logic engineering. In *TPHOLs* '99, vol. 1690 of *LNCS*, pp. 19–36, 1999.
- [8] Y. Bertot. Filters on coinductive streams, an application to Eratosthenes' sieve. In *TLCA* '05, pp. 102–115, 2005.
- [9] A. Church. A formulation of the simple theory of types. J. Symb. Logic, 5(2):56–68, 1940.

- [10] M. J. C. Gordon and T. F. Melham, eds. Introduction to HOL: A Theorem Proving Environment for Higher Order Logic. Cambridge University Press, 1993.
- [11] M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanised Logic of Computation, vol. 78 of LNCS. Springer, 1979.
- [12] H. Gottliebsen. Co-inductive proofs for streams in PVS. In *TPHOLs* 2007 (*Emerging Trends*), pp. 113–127, 2007.
- [13] E. L. Gunter. Why we can't have SML-style datatype declarations in HOL. In *TPHOLs* '92, vol. A-20 of *IFIP Transactions*, pp. 561–568. North-Holland/Elsevier, 1993.
- [14] E. L. Gunter. A broader class of trees for recursive type definitions for HOL. In *HUG* '93, vol. 780 of *LNCS*, pp. 141–154. Springer, 1994.
- [15] J. Harrison. Inductive definitions: Automation and application. In TPHOLs '95, vol. 971 of LNCS, pp. 200–213. Springer, 1995.
- [16] J. Harrison. HOL Light: A tutorial introduction. In FMCAD '96, vol. 1166 of LNCS, pp. 265–269. Springer, 1996.
- [17] D. Hausmann, T. Mossakowski, and L. Schröder. Iterative circular coinduction for COCASL in Isabelle/HOL. In *FASE 2005*, LNCS, pp. 341–356, 2005.
- [18] U. Hensel and B. Jacobs. Proof principles for datatypes with iterated recursion. In *Category Theory and Computer Science*, pp. 220–241, 1997.
- [19] C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational setting. *Inf. Comput.*, 145(2):107–152, 1998.
- [20] P. V. Homeier. A design structure for higher order quotients. In TPHOLs 2005, vol. 3603 of LNCS, pp. 130–146. Springer, 2005.
- [21] P. V. Homeier. The HOL-Omega logic. In *TPHOLs 2009*, vol. 5674 of *LNCS*, pp. 244–259. Springer, 2009.
- [22] P. F. Hoogendijk and O. de Moor. Container types categorically. J. Funct. Program., 10(2):191–225, 2000.
- [23] B. Huffman. A purely definitional universal domain. In *TPHOLs* 2009, vol. 5674 of *LNCS*, pp. 260–275. Springer, 2009.
- [24] C. Kaliszyk and C. Urban. Quotients revisited for Isabelle/HOL. In SAC '11, pp. 1639–1644. ACM, 2011.
- [25] E. G. Manes and M. A. Arbib. *Algebraic Approaches to Program* Semantics. Springer, 1986.

- [26] T. F. Melham. Automating recursive type definitions in higher order logic. In *Current Trends in Hardware Verification and Automated Theorem Proving*, pp. 341–386. Springer, 1989.
- [27] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order Logic, vol. 2283 of LNCS. Springer, 2002.
- [28] S. Owre and N. Shankar. Abstract datatypes in PVS. Tech. report CSL-93-9R, C.S. Lab., SRI International, 1993.
- [29] L. C. Paulson. Mechanizing coinduction and corecursion in higher-order logic. J. Log. Comput., 7(2):175–204, 1997.
- [30] L. C. Paulson. A fixedpoint approach to (co)inductive and (co)datatype definitions. In *Proof, Language, and Interaction*, pp. 187–212. MIT Press, 2000.
- [31] A. Popescu and D. Traytel. Ordinals and cardinals in HOL. http://www21.in.tum.de/~traytel/lics12_card.tgz, 2012.
- [32] J. J. M. M. Rutten. Relators and metric bisimulations. *Electr. Notes Theor. Comput. Sci.*, 11:252–258, 1998.
- [33] J. J. M. M. Rutten. Universal coalgebra: A theory of systems. *Theor. Comput. Sci.*, 249:3–80, 2000.
- [34] D. Traytel. A Category Theory Based (Co)datatype Package for Isabelle/HOL. M.Sc. thesis, TU München, 2012. http://www21.in.tum.de/~traytel/mscthesis.pdf.
- [35] D. Traytel, A. Popescu, and J. C. Blanchette. Formal development associated with this paper.
- http://www21.in.tum.de/~traytel/lics12_data.tgz.
 [36] C. Urban. Nominal techniques in Isabelle/HOL. J. Autom. Reasoning, 40(4):327–356, 2008.
- [37] N. Völker. On the representation of datatypes in Isabelle/HOL. Isabelle Users Workshop, 1995.
- [38] T. E. J. Vos and S. D. Swierstra. Inductive data types with negative occurrences in HOL. Thirty Five Years of Automath, 2002.
- [39] M. Wenzel and B. Wolff. Building formal method tools in the Isabelle/Isar framework. In *TPHOLs 2007*, vol. 4732 of *LNCS*, pp. 352–367. Springer, 2007.