
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Proof Pearl: Mechanizing the Textbook Proof of
Huffman’s Algorithm

Jasmin Christian Blanchette

Received: date / Accepted: date

Abstract Huffman’s algorithm is a procedure for constructing a binary tree with minimum
weighted path length. Our Isabelle/HOL proof closely follows the sketches found in standard
algorithms textbooks, uncovering a few snags in the process. Another distinguishing feature
of our formalization is the use of custom induction rules to help Isabelle’s automatic tactics,
leading to very short proofs for most of the lemmas.
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1 Introduction

Huffman’s algorithm [9] is a simple and elegant procedure for constructing a binary tree
with minimum weighted path length—a measure of cost that considers both the lengths of
the paths from the root to the leaf nodes and weights associated with the leaf nodes. The
algorithm’s main application is data compression: By equating leaf nodes with characters
and weights with character frequencies, we can use it to derive optimum character codes.

This paper presents a formalization of the correctness proof of Huffman’s algorithm
written using Isabelle/HOL 2008 [13]. Our proof is based on the informal proofs given by
Knuth [10] and Cormen et al. [6]. The development was done independently of Laurent
Théry’s Coq proof [14,15], which through its “cover” concept represents a considerable
departure from the textbook proof. The complete development comprises 95 propositions
and is available online as part of the Archive of Formal Proofs [4].

The remainder of the paper is organized as follows. Section 2 provides a brief introduc-
tion to Isabelle/HOL. Section 3 introduces Huffman’s algorithm, and Section 4 presents a
functional implementation. Section 5 reviews the informal textbook proof. Sections 6 and 7
develop a small library of functions needed for the formal proof. Section 8 presents the key
lemmas and theorems of the formal proof. Section 9 describes the custom induction rules
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developed specifically for this proof. Section 10 compares our work with Théry’s Coq proof.
Finally, Section 11 concludes the paper.

2 Isabelle/HOL

Isabelle is a generic theorem prover whose built-in metalogic is an intuitionistic fragment of
higher-order logic [7,13]. Isabelle’s HOL object logic provides a more elaborate version of
higher-order logic, complete with the familiar connectives and quantifiers.

The term language consists of simply typed λ-terms written in an ML-like syntax [12].
Function application expects no parentheses around the argument list and no commas be-
tween the arguments, as in f x y. Syntactic sugar provides an infix syntax for common oper-
ators, such as x = y and x+ y. Variables may range over functions and predicates.

The type of lists over α consists of the empty list [] and the infix constructor x ·xs, where
x has type α and xs is a list over α. Sets are written using traditional notation.

3 Huffman’s Algorithm

Suppose we want to encode strings over a finite source alphabet as sequences of bits. Fixed-
length codes like ASCII are simple and fast, but they generally waste space. If we know the
frequency wa of each source symbol a, we can save space by using shorter code words for
the most frequent symbols. We say that a (variable-length) code is optimum if it minimizes
the sum ∑a waδa, where δa is the length of the binary code word for a.

As an example, consider the source string ‘abacabad’. Encoding ‘abacabad’ with the
code C1 = {a 7→ 0, b 7→ 10, c 7→ 110, d 7→ 111} gives the 14-bit code word 01001100100111.
The code C1 is optimum: No code that unambiguously encodes source symbols one at a
time could do better than C1 on the input ‘abacabad’. With a fixed-length code such as
C2 = {a 7→ 00, b 7→ 01, c 7→ 10, d 7→ 11} we need at least 16 bits to encode the same string.

Binary codes can be represented by binary trees. For example, the trees

and

correspond to C1 and C2. The code word for a given symbol can be obtained as follows:
Start at the root and descend toward the leaf node associated with the symbol one node at
a time; generate a 0 whenever the left child of the current node is chosen and a 1 whenever
the right child is chosen. The generated sequence of 0s and 1s is the code word.

To avoid ambiguities, we require that only leaf nodes are labeled with symbols. This
ensures that no code word is a prefix of another. It is sufficient to consider only full binary
trees (trees whose inner nodes all have two children), because any node with only one child
can advantageously be eliminated by removing it and letting the child take its parent’s place.
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Each node in a code tree is assigned a weight. For a leaf node, the weight is the frequency
of its symbol; for an inner node, it is the sum of the weights of its subtrees. In diagrams, the
nodes are often annotated with their weights.

David Huffman [9] discovered a simple algorithm for constructing an optimum code
tree for specified symbol frequencies: Create a forest consisting of only leaf nodes, one for
each symbol in the alphabet, taking the given symbol frequencies as initial weights for the
nodes. Then pick the two trees

and

with the lowest weights and replace them with the tree

Repeat this process until only one tree is left.
As an illustration, executing the algorithm for the frequencies fd = 3, fe = 11, ff = 5,

fs = 7, fz = 2 gives rise to the following sequence of states:

(1) (2)

(3) (4) (5)

Tree (5) is optimum for the given frequencies.

4 Functional Implementation of the Algorithm

The functional implementation of the algorithm [3, pp. 242–244] relies on an α tree datatype:

datatype α tree = Leaf nat α | InnerNode nat (α tree) (α tree).

Leaf nodes are of the form Leaf w a, where a is a symbol and w is the frequency associated
with a, and inner nodes are of the form InnerNode w t1 t2, where t1 and t2 are the left and
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right subtrees and w caches the sum of the weights of t1 and t2. The cachedWeight function
extracts the weight stored in a node:

cachedWeight (Leaf w a) = w; cachedWeight (InnerNode w t1 t2) = w.

The implementation builds on two additional auxiliary functions. The first one, unite-
Trees, combines two trees by adding an inner node above them:

uniteTrees t1 t2 = InnerNode (cachedWeight t1 + cachedWeight t2) t1 t2.

The second function, insortTree, inserts a tree into a forest sorted by cached weight,
preserving the sort order:

insortTree u [] = [u]
insortTree u (t · ts) = (if cachedWeight u ≤ cachedWeight t then u · t · ts

else t · insortTree u ts).

The main function that implements Huffman’s algorithm follows:

huffman [t] = t
huffman (t1 · t2 · ts) = huffman (insortTree (uniteTrees t1 t2) ts).

The function should initially be invoked with a list of leaf nodes sorted by weight. It repeat-
edly unites the first two trees of the forest it receives as argument until a single tree is left.
The time complexity of the algorithm is quadratic in the size of the forest.

5 The Textbook Proof

Why does the algorithm work? In his article, Huffman gave some motivation but no real
proof. For a proof sketch, we turn to Donald Knuth [10, pp. 403–404]:

It is not hard to prove that this method does in fact minimize the weighted path length
[i.e., ∑a waδa], by induction on m. Suppose we have w1 ≤ w2 ≤ w3 ≤ ·· · ≤ wm,
where m≥ 2, and suppose that we are given a tree that minimizes the weighted path
length. (Such a tree certainly exists, since only finitely many binary trees with m
terminal nodes are possible.) Let V be an internal node of maximum distance from
the root. If w1 and w2 are not the weights already attached to the children of V ,
we can interchange them with the values that are already there; such an interchange
does not increase the weighted path length. Thus there is a tree that minimizes the
weighted path length and contains the subtree

Now it is easy to prove that the weighted path length of such a tree is minimized if
and only if the tree with

replaced by

has minimum path length for the weights w1 +w2, w3, . . . , wm.
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There is, however, a small oddity in this proof: It is not clear why we must assert the exis-
tence of an optimum tree that contains the subtree

Indeed, the formalization works without it. Cormen et al. [6, pp. 385–391] provide a similar
proof, articulated around the following propositions:

Lemma 16.2 Let C be an alphabet in which each character c ∈ C has frequency
f [c]. Let x and y be two characters in C having the lowest frequencies. Then there
exists an optimal prefix code for C in which the codewords for x and y have the same
length and differ only in the last bit.

Lemma 16.3 Let C be a given alphabet with frequency f [c] defined for each char-
acter c ∈ C. Let x and y be two characters in C with minimum frequency. Let C′

be the alphabet C with characters x, y removed and (new) character z added, so that
C′ = C−{x,y}∪{z}; define f for C′ as for C, except that f [z] = f [x]+ f [y]. Let T ′

be any tree representing an optimal prefix code for the alphabet C′. Then the tree T ,
obtained from T ′ by replacing the leaf node for z with an internal node having x and
y as children, represents an optimal prefix code for the alphabet C.

Theorem 16.4 Procedure HUFFMAN produces an optimal prefix code.

6 Basic Auxiliary Functions

The formal proof is distributed over four sections. This section formally defines basic con-
cepts such as alphabet, consistency, and optimality, which are needed to specify the cor-
rectness of Huffman’s algorithm. The next section introduces more specialized functions
that arise in the proof. Section 8 presents the central lemmas and theorems, which echo the
textbook proof. Finally, Section 9 explains the use of custom induction rules.

The alphabet of a code tree is the set of symbols appearing in the tree’s leaf nodes:

alphabet (Leaf w a) = {a}; alphabet (InnerNode w t1 t2) = alphabet t1 ∪ alphabet t2.

For sets and predicates, Isabelle supports both inductive definitions and recursive func-
tions. We consistently favor recursion over induction, partly because recursion gives rise to
simplification rules that greatly help automatic proof tactics, and partly because Isabelle’s
counterexample generator quickcheck [2], which we used extensively during the top-down
development of the proof, has better support for recursive definitions.

A tree is consistent if for each inner node the alphabets of the two subtrees are disjoint.
Intuitively, this means that a symbol occurs in at most one leaf node. Consistency is a suffi-
cient condition for δa (the length of the unique code word for a) to be defined. Although this
wellformedness property is not mentioned in algorithms textbooks [1,6,10], it is essential
and appears as an assumption in many of our lemmas. The definition follows:

consistent (Leaf w a) = True
consistent (InnerNode w t1 t2) = (consistent t1 ∧ consistent t2

∧ alphabet t1 ∩ alphabet t2 = /0).
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The depth of a symbol (which we denoted by δa in Section 3) is the length of the path
from the root to that symbol, or equivalently the length of the code word for the symbol:

depth (Leaf w b) a = 0
depth (InnerNode w t1 t2) a = (if a ∈ alphabet t1 then depth t1 a + 1

else if a ∈ alphabet t2 then depth t2 a + 1
else 0).

Symbols that do not occur in the tree or that occur at the root of a one-node tree have
depth 0. If a symbol occurs in several leaf nodes, the depth is arbitrarily defined in terms of
the leftmost node labeled with that symbol. The definition may seem very inefficient from
a functional programming point of view, but this does not matter, because unlike Huffman’s
algorithm, the depth function is merely a reasoning tool and is never actually executed.

The height of a tree is the length of the longest path from the root to a leaf node, or
equivalently the length of the longest code word:

height (Leaf w a) = 0
height (InnerNode w t1 t2) = max (height t1) (height t2) + 1.

The frequency of a symbol (which we denoted by wa in Section 3) is the sum of the
weights attached to the leaf nodes labeled with that symbol:

freq (Leaf w b) a = (if a = b then w else 0)
freq (InnerNode w t1 t2) a = freq t1 a + freq t2 a.

For consistent trees, the sum comprises at most one nonzero term. The frequency is then the
weight of the leaf node labeled with the symbol, or 0 if there is no such node.

Two trees are comparable if they have the same alphabet and symbol frequencies. This
is an important concept, because it allows us to state not only that the tree constructed by
Huffman’s algorithm is optimal but also that it has the expected alphabet and frequencies.

The weight function returns the weight of a tree:

weight (Leaf w a) = w
weight (InnerNode w t1 t2) = weight t1 + weight t2.

In the InnerNode case, we ignore the weight cached in the node and instead compute the
tree’s weight recursively. This makes reasoning simpler because we can then avoid speci-
fying cache correctness as an assumption in our lemmas. Equivalently, we can define the
weight as the sum of the symbol frequencies: weight t = ∑a∈alphabet t freq t a.

The cost (or weighted path length) of a consistent tree is the sum ∑a∈alphabet t freq t a×
depth t a (which we denoted by ∑a waδa in Section 3). It obeys the recursive law

cost (Leaf w a) = 0
cost (InnerNode w t1 t2) = weight t1 + cost t1 + weight t2 + cost t2.

A tree is optimum if and only if its cost is not greater than that of any comparable tree:

optimum t = (∀u. consistent u −→ alphabet t = alphabet u −→ freq t = freq u −→
cost t ≤ cost u).

Tree functions are readily generalized to forests; for example, the alphabet of a forest
is defined as the union of the alphabets of its trees. The forest generalizations have an ‘F’
attached to their name (for example, alphabetF). The definitions are given in Appendix A.
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7 Other Functions Needed for the Formal Proof

The textbook proof interchanges nodes in trees, replaces a two-leaf tree with weights w1 and
w2 by a single leaf of weight w1 +w2 and vice versa, and refers to the two symbols with the
lowest frequencies. In the formalization, these concepts are represented by four functions:
swapFourSyms, mergeSibling, splitLeaf, and minima.

The four-way symbol interchange function swapFourSyms takes four symbols a, b, c, d
with a 6= b and c 6= d, and exchanges them so that a and b occupy c and d’s positions. A
naive definition of this function would be swapSyms (swapSyms t a c) b d, where swapSyms
(defined in Appendix A) exchanges two symbols. This naive definition fails in the face of
aliasing: If a = d, but b 6= c, then swapFourSyms a b c d would leave a in b’s position.1 A
better definition is

swapFourSyms t a b c d = (if a = d then swapSyms t b c
else if b = c then swapSyms t a d
else swapSyms (swapSyms t a c) b d).

The following lemma about swapSyms captures the intuition that more frequent symbols
should be encoded using fewer bits than less frequent ones to minimize the cost:

Lemma 7.1 (Symbol Interchange Cost) If consistent t, a ∈ alphabet t, b ∈ alphabet t,
freq t a ≤ freq t b, and depth t a ≤ depth t b, then cost (swapSyms t a b) ≤ cost t.

Given a symbol a, the mergeSibling function transforms the tree

into

The frequency of a in the resulting tree is the sum of the original frequencies of a and b. The
function is defined by the equations

mergeSibling (Leaf wb b) a = Leaf wb b
mergeSibling (InnerNode w (Leaf wb b)

(Leaf wc c)) a =
( if a = b ∨ a = c then Leaf (wb + wc) a
else InnerNode w (Leaf wb b) (Leaf wc c))

mergeSibling (InnerNode w t1 t2) a = InnerNode w (mergeSibling t1 a)
(mergeSibling t2 a).

As in ML, the defining equations are applied sequentially [11]; that is, the third equation is
applicable only if the second does not match.

The sibling function returns the label of the node that is the (left or right) sibling of
the node labeled with the given symbol a in tree t. If a is not in t’s alphabet or it occurs
in a node with no sibling leaf, we simply return a. This gives us the nice property that if
t is consistent, then sibling t a 6= a if and only if a has a sibling. The definition, given in
Appendix A, distinguishes the same cases as mergeSibling.

Using the sibling function, we can state that merging two sibling leaves with weights wa
and wb decreases the cost by wa +wb:

1 Cormen et al. [6, p. 390] did not account for this scenario in their proof. Thomas Cormen indicated in a
personal communication that this will be corrected in the next edition of the book.
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Lemma 7.2 (Sibling Merge Cost) If consistent t and sibling t a 6= a, then cost (merge-
Sibling t a) + freq t a + freq t (sibling t a) = cost t.

The splitLeaf function undoes the merging performed by mergeSibling: Given two sym-
bols a, b and two frequencies wa, wb, it transforms

into

In the resulting tree, a has frequency wa and b has frequency wb. We normally invoke split-
Leaf with wa and wb such that freq t a = wa + wb. The definition follows:

splitLeaf (Leaf wc c) wa a wb b = (if c = a then InnerNode wc (Leaf wa a)
(Leaf wb b)

else Leaf wc c)
splitLeaf (InnerNode w t1 t2) wa a wb b = InnerNode w (splitLeaf t1 wa a wb b)

(splitLeaf t2 wa a wb b).

Splitting a leaf with weight wa + wb into two sibling leaves with weights wa and wb
increases the cost by wa +wb:

Lemma 7.3 (Leaf Split Cost) If consistent t, a ∈ alphabet t, and freq t a = wa + wb, then
cost (splitLeaf t wa a wb b) = cost t + wa + wb.

Finally, the minima predicate expresses that two symbols a, b have the lowest frequen-
cies in the tree t and that freq t a ≤ freq t b:

minima t a b = a ∈ alphabet t ∧ b ∈ alphabet t ∧ a 6= b ∧ freq t a ≤ freq t b
∧ (∀c ∈ alphabet t. c 6= a −→ c 6= b −→

freq t a ≤ freq t c ∧ freq t b ≤ freq t c).

8 The Key Lemmas and Theorems

It is easy to prove that the tree returned by Huffman’s algorithm preserves the alphabet,
consistency, and symbol frequencies of the original forest.

Theorem 8.1 (Huffman Alphabet) If ts 6= [], then alphabet (huffman ts) = alphabetF ts.

Theorem 8.2 (Huffman Consistency) If consistentF ts and ts 6= [], then consistent (huff-
man ts).

Theorem 8.3 (Huffman Frequencies) If ts 6= [], then freq (huffman ts) = freqF ts.
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The main challenge is to prove the optimality of the tree constructed by Huffman’s
algorithm. We need three lemmas before we can present the optimality theorem. The first
two lemmas correspond to lemmas 16.2 and 16.3 in Cormen et al.

First, if a and b are minima, and c and d are at the very bottom of the tree, then exchang-
ing a and b with c and d does not increase the tree’s cost. Graphically, we have

cost ≤ cost

This cost property is part of Knuth’s proof:

Let V be an internal node of maximum distance from the root. If w1 and w2 are not
the weights already attached to the children of V , we can interchange them with the
values that are already there; such an interchange does not increase the weighted
path length.

Lemma 16.2 in Cormen et al. expresses a similar property.

Lemma 8.4 (Four-Way Symbol Interchange Cost) If consistent t, minima t a b, c ∈
alphabet t, d ∈ alphabet t, depth t c = height t, depth t d = height t, and c 6= d, then
cost (swapFourSyms t a b c d) ≤ cost t.

Proof The proof is by case distinctions on a = c, a = d, b = c, and b = d. The cases are
easy to prove by expanding swapFourSyms and applying Lemma 7.1. ut

The tree splitLeaf t wa a wb b is optimum if t is optimum, under a few assumptions,
notably that a and b are minima of the new tree and that freq t a = wa + wb. Graphically:

optimum =⇒ optimum

This corresponds to the following fragment of Knuth’s proof:

Now it is easy to prove that the weighted path length of such a tree is minimized if
and only if the tree with

replaced by

has minimum path length for the weights w1 +w2, w3, . . . , wm.

We only need the “if” direction of Knuth’s equivalence. Lemma 16.3 in Cormen et al. ex-
presses essentially the same property.
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Lemma 8.5 (Leaf Split Optimality) If consistent t, optimum t, a∈alphabet t, b /∈alphabet t,
freq t a = wa + wb, ∀c ∈ alphabet t. wa ≤ freq t c ∧ wb ≤ freq t c, and wa ≤ wb, then
optimum (splitLeaf t wa a wb b).

Proof We assume that t’s cost is less than or equal to that of any other comparable tree v and
show that splitLeaf t wa a wb b has a cost less than or equal to that of any other comparable
tree u. For the nontrivial case where height t > 0, it is easy to prove that there must be two
symbols c and d occurring in sibling nodes at the very bottom of u. From u we construct the
tree swapFourSyms u a b c d in which the minima a and b are siblings:

The question mark is there to remind us that we know nothing specific about u’s structure.
Merging a and b gives a tree comparable with t, which we can use to instantiate v:2

cost (splitLeaf t a wa b wb)
= by Lemma 7.3

cost t + wa + wb
≤ by assumption

cost (

v︷ ︸︸ ︷
mergeSibling (swapFourSyms u a b c d) a) + wa + wb

= by Lemma 7.2
cost (swapFourSyms u a b c d)

≤ by Lemma 8.4
cost u. ut

A key property of Huffman’s algorithm is that once it has combined two lowest-weight
trees using uniteTrees, it does not visit these trees ever again. This suggests that splitting a
leaf node before applying the algorithm should give the same result as applying the algo-
rithm first and splitting the leaf node afterward. The diagram below illustrates the situation:

(1)

(2a) (2b)

2 In contrast, the proof in Cormen et al. is by contradiction: Essentially, they assume that there exists a
tree u with a lower cost than splitLeaf t a wa b wb and show that there exists a tree v with a lower cost than t,
contradicting the hypothesis that t is optimum. In place of Lemma 8.4, they invoke their lemma 16.2, which is
questionable since u is not necessarily optimum. Thomas Cormen commented that this step will be clarified
in the next edition of the book.
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(3a) (3b)

From the original forest (1), we can either run the algorithm (2a) and then split a (3a) or
split a (2b) and then run the algorithm (3b). Lemma 8.6 asserts that the trees (3a) and (3b)
are identical.

Lemma 8.6 (Leaf Split Commutativity) If consistentF ts, ts 6= [], and a ∈ alphabetF ts,
then splitLeaf (huffman ts) wa a wb b = huffman (splitLeaf F ts wa a wb b).

Proof The proof is by straightforward induction on the length of the forest ts. ut

An important consequence of this commutativity lemma is that applying Huffman’s
algorithm on a forest of the form

gives the same result as applying the algorithm on the “flat” forest

followed by splitting the leaf node a into two nodes a and b with frequencies wa, wb. The
lemma effectively provides a way to flatten the forest at each step of the algorithm. Its
invocation is implicit in the textbook proof.

This leads us to our main result.

Theorem 8.7 (Huffman Optimality) If consistentF ts, heightF ts = 0, sortedByWeight ts,
and ts 6= [], then optimum (huffman ts).

Proof The proof is by induction on the length of ts. The assumptions ensure that ts is of
the form

with wa ≤ wb ≤ wc ≤ wd ≤ ·· · ≤ wz. (The definition of sortedByWeight is given in Ap-
pendix A.) If ts consists of a single node, the node has cost 0 and is therefore optimum. If ts
has length 2 or more, the first step of the algorithm leaves us with the term

huffman
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In the diagram, we put the newly created tree at position 2 in the forest; in general, it could
be anywhere. By Lemma 8.6, the above tree equals

splitLeaf
(

huffman
)

wa a wb b.

To prove that this tree is optimum, it suffices by Lemma 8.5 to show that

huffman

is optimum, which follows from the induction hypothesis. ut

So what have we achieved? Assuming that our definitions really mean what we intend
them to mean, we established that our functional implementation of Huffman’s algorithm,
when invoked properly, constructs a binary tree that represents an optimal prefix code for
the specified alphabet and frequencies. Using Isabelle’s code generator [8], we can convert
the Isabelle code into Standard ML, OCaml, or Haskell and use it in a real application.

As a side note, Theorem 8.7 assumes that the forest ts passed to huffman consists ex-
clusively of leaf nodes. It is tempting to relax this restriction, by requiring instead that the
forest ts has the lowest cost among forests of the same size. However, the modified proposi-
tion does not hold. A counterexample is the optimum forest

for which the algorithm constructs the tree

of greater cost than

9 Custom Induction Rules

Higher-order logic makes it possible to define custom induction rules, which save us from
writing repetitive proof scripts and help Isabelle’s automatic proof tactics. We use them to
distinguish cases that the standard structural induction rules treat as one case, to collapse
cases that the standard rules needlessly distinguish, and to introduce additional assumptions
that help the simplifier.

Several of our proofs are by structural induction on consistent trees t and involve one
symbol a. These proofs typically distinguish the following cases.

BASE CASE: t = Leaf w b.
INDUCTION STEP: t = InnerNode w t1 t2.

SUBCASE 1: a belongs to t1 but not to t2.
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SUBCASE 2: a belongs to t2 but not to t1.
SUBCASE 3: a belongs to neither t1 nor t2.

Instead of performing the above case distinction manually each time, we encode it in an
induction rule:

Lemma 9.1 (Structural Induction Rule for Consistent Trees)
[[consistent t;∧

wb b a. P (Leaf wb b) a;∧
w t1 t2 a. [[consistent t1; consistent t2; alphabet t1 ∩ alphabet t2 = /0;

a ∈ alphabet t1; a /∈ alphabet t2; P t1 a; P t2 a]] =⇒
P (InnerNode w t1 t2) a;∧

w t1 t2 a. [[consistent t1; consistent t2; alphabet t1 ∩ alphabet t2 = /0;
a /∈ alphabet t1; a ∈ alphabet t2; P t1 a; P t2 a]] =⇒

P (InnerNode w t1 t2) a;∧
w t1 t2 a. [[consistent t1; consistent t2; alphabet t1 ∩ alphabet t2 = /0;

a /∈ alphabet t1; a /∈ alphabet t2; P t1 a; P t2 a]] =⇒
P (InnerNode w t1 t2) a]] =⇒

P t a.

Lemma 9.1 involves two of Isabelle’s metalogical operators: universal quantification,
written

∧
x1 . . . xn. ψ (“for all x1, . . . ,xn we have ψ”), and implication, written [[ϕ1; . . . ; ϕn]]

=⇒ ψ (“if ϕ1 and . . . and ϕn, then ψ”). The lemma can be proved by performing a standard
structural induction on t and proceeding by cases—a straightforward but long-winded pro-
cess. A nicer approach relies on the recently introduced induct scheme tactic, which reduces
the putative induction rule to simpler proof obligations. Internally, it reuses the machinery
that constructs the default induction rules. The resulting proof obligations concern (a) case
completeness, (b) invariant preservation (in our case, tree consistency), and (c) wellfounded-
ness. For Lemma 9.1, the obligations (a) and (b) can be discharged using Isabelle’s simpli-
fier and classical reasoner, whereas (c) requires a single invocation of lexicographic order,
a tactic that was originally designed to prove termination of recursive functions [5,11].

The other custom rule is for mergeSibling and sibling, which are defined using sequential
pattern matching. The default rules are almost identical and distinguish four cases:

BASE CASE: t = Leaf w b.
INDUCTION STEP 1: t = InnerNode w (Leaf wb b) (Leaf wc c).
INDUCTION STEP 2: t = InnerNode w (InnerNode w1 t11 t12) t2.
INDUCTION STEP 3: t = InnerNode w t1 (InnerNode w2 t21 t22).

This leaves much to be desired. First, the last two cases overlap and can normally be handled
the same way, so they should be combined. Second, the nested InnerNode constructors in
the last two cases reduce readability. Third, under the assumption that t is consistent, we
would like to perform the same case distinction on a as we did in Lemma 9.1 for consistent
trees, with the same benefits for automation. These observations lead us to develop a cus-
tom induction rule that works for both mergeSibling and sibling and that distinguishes the
following cases:

BASE CASE: t = Leaf w b.
INDUCTION STEP 1: t = InnerNode w (Leaf wb b) (Leaf wc c) with b 6= c.
INDUCTION STEP 2: t = InnerNode w t1 t2 and either t1 or t2 has nonzero height.
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SUBCASE 1: a belongs to t1 but not to t2.
SUBCASE 2: a belongs to t2 but not to t1.
SUBCASE 3: a belongs to neither t1 nor t2.

The formal statement of the rule, which we omit, is similar to Lemma 9.1, except that we
now have two induction steps instead of one. Using the custom induction rule, Lemma 7.2
and several others could be proved entirely by Isabelle’s auto tactic.

10 Related Work

Laurent Théry’s Coq formalization of Huffman’s algorithm [14,15] is an obvious yardstick
for our work. It has a somewhat wider scope, proving among others the isomorphism be-
tween prefix codes and full binary trees. With 291 theorems, it is also much larger.

Théry identified the following difficulties in formalizing the textbook proof:

1. The leaf interchange process that brings the two minimal symbols together is tedious to
formalize.

2. The sibling merging process requires introducing a new symbol for the merged node,
which complicates the formalization.

3. The algorithm constructs the tree in a bottom-up fashion. While top-down procedures
can usually be proved by structural induction, bottom-up procedures often require more
sophisticated induction principles and larger invariants.

4. The informal proof relies on the notion of depth of a node. Defining this notion formally
is problematic, because the depth can only be seen as a function if the tree is composed
of distinct nodes.

To circumvent these difficulties, Théry introduced the ingenious concept of cover. A
forest ts is a cover of a tree t if t can be built from ts by adding inner nodes on top of the
trees in ts. The term “cover” is easier to understand if the binary trees are drawn with the
root at the bottom of the page, like natural trees. Huffman’s algorithm is a refinement of the
cover concept. The main proof consists in showing that the cost of huffman ts is less than or
equal to that of any other tree for which ts is a cover. It relies on a few auxiliary definitions,
notably an “ordered cover” concept that facilitates structural induction and a four-argument
depth predicate. Permutations also play a central role.

Incidentally, our experience suggests that the potential problems identified by Théry can
be overcome more directly without too much work, leading to a simpler proof:

1. Formalizing the leaf interchange did not prove overly tedious. Among our 95 proposi-
tions, 24 concern swapSyms and swapFourSyms.

2. The generation of a new symbol for the resulting node when merging two sibling nodes
in mergeSibling was trivially solved by reusing one of the two merged symbols.

3. The bottom-up nature of the tree construction process was addressed by using the length
of the forest as the induction measure and by merging the two minimal symbols, as in
Knuth’s proof.

4. By restricting our attention to consistent trees, we were able to define the depth function
simply and meaningfully.
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11 Conclusion

The main contribution of this paper has been to demonstrate that the textbook proof of
Huffman’s algorithm can be elegantly formalized using a state-of-the-art theorem prover
such as Isabelle/HOL. In the process, we uncovered a few minor snags in the proof given in
Cormen et al. [6].

We also found that custom induction rules, in combination with suitable simplification
rules, greatly help the automatic proof tactics, sometimes reducing 30-line proof scripts
to one-liners. We applied this approach for handling both the ubiquitous “datatype + well-
formedness predicate” combination (α tree + consistent) and functions defined by sequential
pattern matching (mergeSibling and sibling). Our experience suggests that custom induction
rules, which are uncommon in formalizations, are highly valuable and versatile. Moreover,
Isabelle’s induct scheme and lexicographic order tactics make these easy to prove.

Formalizing the proof of Huffman’s algorithm also led to a deeper understanding of
this classic algorithm. Many of the lemmas, notably Lemma 8.6, have not been found in
the literature and express fundamental properties of the algorithm. The proof uncovered
additional insights. In particular, each step of the algorithm appears to preserve the invariant
that the nodes in a forest are ordered by weight from left to right, bottom to top, as in the
example below:

It is not hard to prove formally that a tree exhibiting this property is optimum. On the other
hand, proving that the algorithm preserves this invariant seems difficult—more difficult than
formalizing the textbook proof—and remains a suggestion for future work.

A few other directions for future work suggest themselves. First, we could formalize
some of our hypotheses, notably our restriction to full and consistent binary trees. The cur-
rent formalization says nothing about the algorithm’s application for data compression, so
a natural next step would be to extend the proof’s scope to cover encode/decode functions
and show that full binary trees are isomorphic to prefix codes.
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A Additional Auxiliary Functions

alphabetF [] = /0 alphabetF (t · ts) = alphabet t ∪ alphabetF ts

consistentF [] = True consistentF (t · ts) = (consistent t ∧ consistentF ts
∧ alphabet t ∩ alphabetF ts = /0)

heightF [] = 0 heightF (t · ts) = max (height t) (heightF ts)

freqF [] a = 0 freqF (t · ts) a = freq t a + freqF ts a

splitLeaf F [] wa a wb b = [] splitLeaf F (t · ts) wa a wb b = splitLeaf t wa a wb b · splitLeaf F ts wa a wb b

swapLeaves (Leaf wc c) wa a wb b = (if c = a then Leaf wb b
else if c = b then Leaf wa a
else Leaf wc c)

swapLeaves (InnerNode w t1 t2) wa a wb b = InnerNode w (swapLeaves t1 wa a wb b)
(swapLeaves t2 wa a wb b)

swapSyms t a b = swapLeaves t (freq t a) a (freq t b) b

sibling (Leaf wb b) a = a
sibling (InnerNode w (Leaf wb b) (Leaf wc c)) a = (if a = b then c else if a = c then b else a)

sibling (InnerNode w t1 t2) a = (if a∈alphabet t1 then sibling t1 a
else if a∈alphabet t2 then sibling t2 a
else a)

sortedByWeight [] = True
sortedByWeight [t] = True

sortedByWeight (t1 · t2 · ts) = weight t1 ≤ weight t2 ∧ sortedByWeight (t2 · ts)
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