
More SPASS with Isabelle
Superposition with Hard Sorts and Configurable Simplification

Jasmin Christian Blanchette1, Andrei Popescu1,
Daniel Wand2, and Christoph Weidenbach2

1 Fakultät für Informatik, Technische Universität München, Germany
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. Sledgehammer for Isabelle/HOL integrates automatic theorem provers
to discharge interactive proof obligations. This paper considers a tighter inte-
gration of the superposition prover SPASS to increase Sledgehammer’s success
rate. The main enhancements are native support for hard sorts (simple types) in
SPASS, simplification that honors the orientation of Isabelle simp rules, and a pair
of clause-selection strategies targeted at large lemma libraries. The usefulness of
this integration is confirmed by an evaluation on a vast benchmark suite and by a
case study featuring a formalization of language-based security.

1 Introduction

The interactive theorem proving community has traditionally put more emphasis on
trustworthiness, expressiveness, and flexibility than on raw deductive power. Automa-
tion in proof assistants typically takes the form of general-purpose proof methods or
tactics, complemented by decision procedures for specific domains. Recent large-scale
efforts such as the proofs of the four-color theorem [16], of a C compiler [23], and of a
microkernel [20] have highlighted the need for more automation [24].

There have been many attempts at harnessing decades of research in automated rea-
soning by integrating automatic theorem provers in proof assistants. The most success-
ful integration is undoubtedly Sledgehammer for Isabelle/HOL (Sects. 2.1 and 2.2). The
tool invokes several first-order automatic provers in parallel, both superposition-based
provers and SMT solvers [5], and reconstructs their proofs in Isabelle. In an evaluation
on a representative corpus of older formalizations, Sledgehammer discharged 43% of
the goals that could not be solved trivially using an existing Isabelle proof method [5].

Sledgehammer’s usefulness is regularly confirmed by users; Guttmann et al. [17]
relied almost exclusively on it to derive over 1000 propositions relating to relational
and algebraic methods for modeling computing systems. Yet, there are many indica-
tions that more can be done. Integrated verification tool chains such as VCC/Boogie/
Z3 [12] claim much higher success rates, typically well above 90%. Isabelle goals are
certainly more diverse than verification conditions for a fixed programming language,
which makes fine-tuning less practicable; however, typical Isabelle goals are not neces-
sarily more difficult than typical verification conditions. Another indicator that Sledge-
hammer can be significantly improved is that it solves only about 80% of the goals that
standard proof methods (such as simp, auto, and blast) solve trivially [5]. This lackluster



performance points to weaknesses both in Sledgehammer’s translation of higher-order
constructs and in the automatic provers themselves.

What is easy in a proof assistant can be surprisingly difficult for first-order auto-
matic theorem provers. For example, Isabelle’s simplifier can easily prove goals of the
form rev [x1, . . . , xn] = [xn, . . . , x1] (where rev is list reversal) by applying equations as
oriented rewrite rules, or simp rules. The presence of hundreds of registered simp rules
hardly slows it down. In contrast, superposition provers such as E [38], SPASS [44],
and Vampire [34] perform an unconstrained search involving the supplied background
theory. They can use equations as rewrite rules but must often reorient them to obey a
specific term ordering. In exchange, these provers are complete for classical first-order
logic: Given enough resources, they eventually find a (first-order) proof if one exists.

Much work went into making Sledgehammer’s translation from higher-order logic
as efficient as possible [6,27]. However fruitful this research may have been, it appears
to have reached a plateau. To achieve higher success rates, a new approach is called
for: Implement the features that make proof search in Isabelle successful directly in an
automatic prover. By combining the best of both worlds, we target problems that cannot
be solved by either tool on its own.

Our vehicle is SPASS (Sect. 2.3), a widely used prover based on a superposition
calculus (a generalization of resolution). It is among the best performing automatic
provers, and one of the few whose development is primarily driven by applications,
including mission-critical computations in industry. Its source code is freely available
and well structured enough to form a suitable basis for further development. In the
automated reasoning community, SPASS is well known for its soft sorts, which can
comfortably accommodate many-sorted, order-sorted, and membership logics, its inte-
grated splitting rule, employing competitive decision procedures for various decidable
first-order fragments, and its sophisticated simplification machinery.

This paper describes the first part of our work program. It focuses on three aspects.

• Hard sorts (Sect. 3): Soft sorts are overly general for most applications. By support-
ing a more restrictive many-sorted logic in SPASS and combining it with monomor-
phization, we get a sound and highly efficient representation of HOL types, without
the spurious unreconstructible proofs that have long plagued Sledgehammer users.

• Configurable simplification (Sect. 4): Superposition provers reorient the equations
in the problem to make the right-hand sides smaller than the left-hand sides with re-
spect to a term ordering. Advisory simplification adjusts the ordering to preserve the
orientation of simp rules as much as possible; mandatory simplification forcefully
achieves rewriting against the term ordering if necessary.

• Clause selection for large theories (Sect. 5): Sledgehammer problems include hun-
dreds of lemmas provided as axioms, sorted by likely relevance. It makes sense for
SPASS to focus on the most likely relevant lemmas, rather than hopelessly try to
saturate the entire background theory.

A case study demonstrates the SPASS integration on a formalization pertaining to
language-based security (Sect. 6), an area that calls for strong automation in combina-
tion with the convenience of a modern proof assistant. The new features are evaluated
both in isolation and against other popular automatic theorem provers (Sect. 7).



2 Background

2.1 Isabelle/HOL

Isabelle/HOL [30] is a proof assistant based on classical higher-order logic (HOL) ex-
tended with rank-1 polymorphism and axiomatic type classes. The term language con-
sists of simply-typed λ-terms augmented with constants (of scalar or function types)
and polymorphic types. Function application expects no parentheses around the argu-
ments (e.g., f x y); familiar operators are written in infix notation. Functions may be
partially applied (curried), and variables may range over functions. Types can option-
ally be attached to a term using an annotation t : σ to guide type inference.

The dominant general-purpose proof method is the simplifier, which applies equa-
tions as oriented rewrite rules to rewrite the goal. It performs conditional, contextual
rewriting with hooks for customizations based on the vast library of registered simp
rules. At the user level, the simplifier is upstaged by auto, a method that interleaves
simplification with proof search. Other commonly used methods are the tableau prover
(blast) and the arithmetic decision procedures (linarith and presburger).

2.2 Sledgehammer

Sledgehammer [31] harnesses the power of superposition provers and SMT solvers.
Given a conjecture, it heuristically selects a few hundred facts (lemmas, definitions, or
axioms) from Isabelle’s libraries [28], translates them to first-order logic along with the
conjecture, and delegates the proof search to external provers—by default, E [38], Vam-
pire [34], Z3 [29], and of course SPASS [44]. Because automated deduction involves a
large share of heuristic search, the combination of provers is much more effective than
any single one of them. Proof reconstruction relies on the built-in resolution prover
metis [19, 32] and the Z3-based smt proof method [11].

Given that automatic provers are very sensitive to the encoding of problems, the
translation from higher-order logic to unsorted first-order logic used for E, SPASS, and
Vampire is a crucial aspect of Sledgehammer. It involves two steps [27]:

1. Eliminate the higher-order features of the problem. Curried functions are passed
varying numbers of arguments using a deeply embedded application operator, and
λ-abstractions are rewritten to SK combinators or supercombinators (λ-lifting).

2. Encode polymorphic types and type classes. Type information can be encoded in a
number of ways. Traditionally, it has been supplied as explicit type arguments to the
function and predicate symbols corresponding to HOL constants. In conjunction
with Horn clauses representing the type class hierarchy, this suffices to enforce
correct type class reasoning and overload resolution, but not to prevent ill-typed
variable instantiations. Unsound proofs are discarded at reconstruction time.

Example 1. In the recursive specification of map on lists, the variable f : α → β is
higher-order both in virtue of its function type and because it occurs partially applied:

map f Nil = Nil
map f (Cons x xs) = Cons ( f x) (map f xs)



Step 1 translates the second equation to

map(F, cons(X, Xs)) = cons(app(F, X), map(F, Xs))

where F : fun(α, β) is a deeply embedded function (or “array”) and app is the embedded
application operator (or “array read”).1 Step 2 introduces type arguments encoded as
terms, with term variables A,B for α, β:

map(A, B, F, cons(A, X, Xs)) = cons(B, app(A, B, F, X), map(A, B, F, Xs))

2.3 SPASS

SPASS (= Spaß = “fun” in German) is an implementation of the superposition calculus
with various refinements, including unique support for soft (monadic) sorts and splitting
[15, 43, 44]. It is a semi-decision procedure for classical first-order logic and a decision
procedure for various first-order logic fragments.

The input is a list of axioms and a conjecture expressed either in the TPTP FOF
syntax [40] or in a custom syntax called DFG. SPASS outputs either a proof (a deriva-
tion of the empty, contradictory clause from the axioms and the negated conjecture) or
a saturation (an exhaustive list of all normalized clauses that can be derived); it may
also diverge for unprovable problems with no finite saturation.

Well-founded term orderings are crucial to the success of the superposition calculus.
For example, from the pair of clauses p(a) and ¬p(X) ∨ p(f(X)), resolution will derive
infinitely many facts of the form p(f i(a)), whereas for superposition p(f(X)) is maximal
and no inferences can be performed. Nonetheless, superposition-based reasoning is very
inefficient when combined with order-sorted signatures, because completeness requires
superposition into variables, which dramatically increases the search space. Soft sorts
were designed to remedy this problem: When they are enabled, SPASS views every
monadic predicate as a sort and applies optimized inference and simplification rules
[15]. Monadic predicates can be used to emulate a wide range of type systems.

3 Hard Sorts

After eliminating the higher-order features of a problem, Sledgehammer is left with
first-order formulas in which Isabelle’s polymorphism and axiomatic type classes still
occupy a prominent place. The type argument scheme presented in Section 2.2 is un-
sound, and the traditional sound encodings of polymorphic types introduce too much
clutter to be useful [6, 10, 27]. This state of affairs is unsatisfactory. Even with proof
reconstruction, there are major drawbacks to unsound type encodings.

First, finite exhaustion rules of the form x = c1∨·· ·∨ x = cn or (x = c1 =⇒ P) =⇒
·· · =⇒ (x = cn =⇒ P) =⇒ P must be left out because they force an upper bound on
the cardinality of the universe, rapidly leading to unsound cardinality reasoning; for
example, automatic provers can easily derive a contradiction from (u : unit) = () and
(0 : nat) 6= Suc n if type information is simply omitted. The inability to encode such
rules prevents the discovery of proofs by case analysis on finite types.

1 Following a common convention in the automated reasoning and logic programming com-
munities, we start first-order variable names with an upper-case letter, keeping lower-case for
function and predicate symbols. Nullary functions (constants) are written without parentheses.



Second, spurious proofs are distracting and sometimes conceal more difficult sound
proofs. Users eventually learn to recognize facts that lead to unsound reasoning and
mark them with a special attribute to remove them from the scope of Sledgehammer’s
relevance filter, but this remains a stumbling block for novices.

Third, it would be desirable to let SPASS itself perform relevance filtering, or even
use a sophisticated system based on machine learning, where successful proofs guide
subsequent ones. However, such approaches tend to quickly detect and exploit contra-
dictions in the large translated axiom set if type information is omitted.

How can we provide SPASS with the necessary type information in a sound, com-
plete, and efficient manner? The original plan was to exploit SPASS’s soft sorts, by
monomorphizing the problem (i.e., heuristically instantiating the type variables with
ground types) and inserting monadic predicates, or guards, pσ(X) to ensure that a given
variable X has type σ. Following this scheme, the nat → int instance of the second
equation in Example 1 would be translated to the unsorted formula

p fun(nat, int)(F) ∧ pnat(X) ∧ p list(nat)(Xs)−→
mapnat, int(F, consnat(X, Xs)) = cons int(appnat, int(F, X), mapnat, int(F, Xs))

where subscripts distinguish instances of polymorphic symbols. The guards are dis-
charged by deeply embedded typing rules for the function symbols occurring in the
problem. SPASS views each pσ predicate as a sort.

Monomorphization is necessarily incomplete [9, §2] and often dismissed because
it quickly leads to an explosion in the number of formulas. Nonetheless, with suitable
bounds on the number of monomorphic instances generated, our experience is that it
vastly outperforms complete encodings of polymorphism [6]. It also relieves SPASS of
having to reason about type classes—only the monomorphizer needs to consider them.

The outcome of experiments with SPASS quickly dashed our hopes: Sure enough,
soft sorts were helping SPASS, but the resulting encoding was still no match for the
unsound scheme based on type arguments. Explicit typing requires a particular form
of contextual rewriting to simulate typed rewriting efficiently. The needed mechanisms
are not available in any of today’s first-order theorem provers, not even in SPASS’s
soft typing machinery. For example, consider a constant a of sort σ and an uncon-
ditional equation f(X) = X where X : σ. Sorted rewriting transforms f(a) into a in
one step. In contrast, the soft typing version of the example is a conditional equation
pσ(X)−→ f(X) = X and the typing axiom pσ(a). Rewriting f(a) requires showing pσ(a)
to discharge the condition in the instance pσ(a)−→ f(a) = a.

We came up with a new plan: Provide hard sorts directly in SPASS, orthogonally to
soft sorts. Hard sorts can be checked directly to detect type mismatches early and avoid
ill-sorted inferences. We focused on monomorphic sorts, which require no matching or
unification. The resulting many-sorted first-order logic corresponds to that offered by
the TPTP TFF0 format [42]. Polymorphism is eliminated by monomorphization.2

2 For future work, we want to extend the hard sorts to ML-style polymorphism as provided by
Alt-Ergo [8] and TPTP TFF1 [7]. Besides the expected performance benefits [14], this is a
necessary step toward mirroring Isabelle’s hierarchical theory structure on the SPASS side:
Once theories are known to SPASS, they can be preprocessed (e.g., finitely saturated) and
reused, which would greatly speed up subsequent proof searches.



Although superposition with hard sorts is well understood, adding sorts to a highly
optimized theorem prover is a tedious task. Predicate and function symbols must be
declared with sort signatures. Variables must carry sorts, and unification must respect
them. The term index that underlies most inference rules must take sort constraints into
consideration; the remaining rules must be adapted individually. There are many other
technical aspects related to variable renaming, skolemization, and of course parsing
and printing of formulas. We made all these changes and found that hard sorts are much
more efficient than their soft cousins, and even than the traditional unsound scheme,
which we so desperately wanted to abolish.

In a fortuitous turn of events, a group of researchers including the first author re-
cently discovered a lightweight yet sound guard-based encoding as well as many vari-
ants [6]. These are now implemented in Sledgehammer. They work well in practice but
fall short of outperforming hard sorts. Moreover, hard sorts are more suitable for appli-
cations that require not only soundness of the overall result but also type-correctness of
the individual inferences, such as step-by-step proof replay [32].

4 Configurable Simplification

The superposition calculus is parameterized by a well-founded total ordering on ground
terms. Like most other provers, SPASS employs the Knuth–Bendix ordering [22], which
itself is determined by a weight function w from symbols to N and a total precedence
order ≺ on function symbols. Weights are lifted to terms by taking the sum of the
weights of the symbols that occur in it, counting duplicates.

Let s = f(s1, . . . , sm) and t = g(t1, . . . , tn) be two terms. The (basic) Knuth–Bendix
ordering (KBO) induced by (w,≺) is the relation≺ such that s≺ t if and only if for any
variable occurring in s it has at least as many occurrences in t and a, b, or c is satisfied:

a. w(s) < w(t);
b. w(s) = w(t) and f≺ g;
c. w(s) = w(t), f = g, and there exists i such that s1 = t1, . . . , si−1 = ti−1, and si ≺ ti.

Assuming w and ≺meet basic requirements, the corresponding KBO is a well-founded
total order on ground terms that embeds the subterm relation and is stable under substi-
tution, as required by superposition. The main proviso for the application of an equation
l = r to simplify a clause is that l must be larger than r with respect to the given KBO.

By default, SPASS simply assigns a weight of 1 to every symbol and heuristically
selects a precedence order. Then it reviews each equation l = r in the light of the in-
duced KBO to determine whether l = r, r = l, or neither of them can be applied as a
left-to-right rewrite rule to simplify terms. Since the left-hand side of an Isabelle defini-
tion tends to be smaller than the right-hand side, SPASS will often reorient definitions,
making it much more difficult to derive long chains of equational reasoning.

Intuitively, a better strategy would be to select a weight function and a precedence
order that maximize the number of definitions and simp rules that SPASS can use for
simplification with their original orientation. For example, to keep the equation

shift(cons(X, Xs)) = append(Xs, cons(X, nil))

oriented, SPASS could take w(shift)≥ 3 (or even w(shift) = 2 with append≺ shift) while



setting w(nil) = w(cons) = w(append) = 1; the occurrences of X and Xs on either side
cancel each other out. The weight function normally plays a greater role than the prece-
dence order, but for some equations precedence is needed to break a tie—for example:

append(cons(X, Xs), Ys) = cons(X, append(Xs, Ys))

Our approach for computing a suitable weight function w is to build a dependency
graph, in which edges f← g indicate that f is simpler than g. The procedure first consid-
ers definitional equations of the form f(s1, . . . , sm) = t, including simple definitions and
equational specifications of recursive functions, and adds edges f← g for each symbol g
that occurs in s1, . . . , sm, or t, omitting any edge that would complete a cycle (which
may happen if f is recursive through g). In a second step, simp rules are considered in the
same way to further enrich the graph. The cycle-detection mechanism is robust enough
to cope with nondefinitional lemmas such as rev(rev(Xs)) = Xs.

Once the graph is built, the procedure assigns weight 2d+1 to symbols with depth d
and uses a topological order for symbol precedence. For example, given the usual re-
cursive definitions of append (in terms of nil and cons) and rev (in terms of append, nil,
and cons), it computes w(nil) = w(cons) = 1, w(append) = 2, w(rev) = 4, and either
nil≺ cons≺ append≺ rev or cons≺ nil≺ append≺ rev for the precedence. With these
choices of w and ≺, SPASS proves rev [x1, . . . , xn] = [xn, . . . , x1] in no time even for
large values of n (e.g., 50) and in the presence of hundreds of axioms, whereas the other
automatic provers time out.

Regrettably, there are many equations that cannot be oriented in the desired way
with this approach. KBO cannot orient an equation such as

map(F, cons(X, Xs)) = cons(app(F, X), map(F, Xs))

in a left-to-right fashion because of the two occurrences of F on the right-hand side. It
will also fail with

rev(cons(X, Xs)) = append(rev(Xs), cons(X, nil))

because the occurrences of rev and cons on the left-hand side are canceled out by those
on the right-hand side; no matter how heavy we make these, the right-hand side will
weigh even more due to append’s and nil’s contributions.

An especially thorny yet crucial example is the S combinator, defined in HOL as
λx y z. x z (y z). It manifests itself in most problems generated by Sledgehammer to
encode λ-abstractions. In first-order logic, it is specified by the axiom

app(app(app(s, X), Y), Z) = app(app(X, Z), app(Y, Z))

For simplification, the left-to-right orientation is clearly superior, because it eliminates
the combinator whenever the third argument is supplied, emulating β-reduction. Unfor-
tunately, the duplication of Z on the right-hand side makes this orientation incompatible
with KBO; in fact, either orientation is incompatible with the subterm condition and
substitution stability requirements on admissible term orderings.

All is not lost for equations that cannot be ordered in the natural way. It is possi-
ble to extend superposition with controlled simplification against the term ordering. To



achieve this, we extended SPASS’s input syntax with annotations for both advisory sim-
plifications, which only affect the term ordering, and mandatory simplifications, which
force rewriting against the ordering if necessary.

To avoid infinite looping, the mandatory simplification rules must terminate. Isa-
belle ensures that simple definitions have acyclic dependencies and recursive function
specifications are well-founded, so these can safely be made mandatory. Artifacts of the
translation to first-order logic, such as the SK combinators, can also be treated in this
way. We could even trust the Isabelle user and make all simp rules mandatory, but it
is safer to keep the advisory status for these. However, even assuming termination of
mandatory simplifications, our implementation is generally incomplete; to ensure com-
pleteness, we would need to treat such simplifications as a separate inference rule of the
superposition calculus, rather than as a postprocessing step.

Of course, excessive rewriting, especially of the mandatory kind, can give rise to
large terms that hamper abstract reasoning. We encountered a striking example of this
in the innocuous-looking HOL definitions Bit0 k = k+ k and Bit1 k = 1+ k+ k, which
together with Pls and Min (i.e., 0 and −1) encode signed numerals—for example, ‘4’ is
surface syntax for Bit0(Bit0(Bit1(Pls))). Rewriting huge numerals to sums of 1s is ob-
viously detrimental to SPASS’s performance, so we disabled mandatory simplification
for these two definitions.

5 Clause Selection for Large Theories

Superposition provers work by exhaustively deriving all possible (normalized) clauses
from the supplied axioms and the negated conjecture, aiming at deriving the empty
clause. New clauses are produced by applying inference rules on already derived pairs
of clauses. The order in which clauses are selected to generate further inferences is
crucial to a prover’s performance and completeness.

At the heart of SPASS is a set of usable (passive) clauses U and a set of worked-off
(active) clauses W [43]. The set U is initialized with the axioms and negated conjecture,
whereas W starts empty. The prover iteratively performs the following steps:

1. Heuristically select a clause C from U.

2. Perform all possible inferences between C and each member of W ∪ {C} and insert
the resulting clauses into U.

3. Simplify U and W using W ∪ {C} and move C to W .

A popular variant, the set of support (SOS) strategy [45], keeps the search more
goal-oriented by initially moving the axioms into the worked-off set rather than into the
usable set; only the negated conjecture is considered usable. This disables inferences
between axioms, allowing only inferences that directly or indirectly involve the negated
conjecture. SOS is complete for resolution but incomplete for superposition. It often
terminates very fast, with either a proof or an incomplete saturation. A study found it
advantageous for Sledgehammer problems [10, §3].

The heuristic that chooses a usable clause in step 1 is called the clause-selection
strategy. SPASS’s default strategy alternately chooses light clauses (to move toward the



empty clause) and shallow clauses (to broaden the search) in a fair way. The weight of
a clause is the sum of the weights of its terms (cf. Sect. 4); the depth is the height of its
derivation tree. However, this strategy scales poorly with the number of facts provided
by Sledgehammer; beyond about 150 facts (before monomorphization), additional facts
harm more than they help. To help SPASS cope better with large theories, we experi-
mented with two custom strategies.

The goal-based strategy first chooses the negated conjecture and each axiom in
turn from the usable set; this way, single-inference proofs are found early if they exist
(i.e., if the conjecture is implied by an axiom). From then on, only clauses employing
allowed symbols may be selected. Initially, the set of allowed symbols consists of those
appearing in the conjecture. If no appropriate clause is available, the strategy looks
for inferences that produce such a clause; failing that, the lightest clause is chosen, its
symbols are added to the allowed symbols, and the maximal depth is incremented.

The ranks-based strategy requires each clause to carry a rank indicating its likely
relevance. Like the goal-based strategy, it first selects the negated conjecture and the ax-
ioms. From then on, it always chooses the clause that minimizes the product weight ×
depth × rank. The rank of a derived clause is the minimum of the ranks of its parents.
Conveniently, the facts returned by Sledgehammer’s relevance filter are ordered by syn-
tactic closeness to the goal to prove, a rough measure of relevance. The formula for
assigning ranks interpolates linearly between .25 (for the first fact) and 1 (for the last
fact). We have yet to experiment with other coefficients and interpolation methods.

Having several strategies to choose from may seem a luxury, but in conjunction
with a simple optimization, time slicing, it helps find more proofs, especially if the
strategies complement each other well. Automatic provers rarely find proofs after hav-
ing run unsuccessfully for a few seconds, so it usually pays off to schedule a sequence
of strategies, each with a fraction (or slice) of the total time limit. This idea can be
extended to other aspects of the translation and proof search: the number of facts, type
encodings, and λ-abstraction translation schemes, as well as various prover options.

Sledgehammer implements time slicing for any automatic prover, so that it is run
with its own optimized schedule. We used a greedy algorithm to compute a schedule
for SPASS based on a standard benchmark suite (Judgment Day [10]). The schedule
incorporates both the goal- and the rank-based strategies, sometimes together with SOS.

6 Case Study: Formalization of Language-Based Security

As part of a global trend toward formalized computer science, the interactive theorem
proving community has in recent years become interested in formalizing aspects of
language-based security [37]. The pen-and-paper proofs of security results (typically,
the soundness of a security type system) tend to be rather involved, requiring case anal-
yses on the operational semantics rules and tedious bisimilarity reasoning. Formaliza-
tions of these results remain rare heroic efforts.

To assist such efforts, we are developing a framework to reason uniformly about a
variety of security type systems and syntax-directed quantitative analyses. The central
notion is that of compositional bisimilarity relations, which yield sound type systems
that enforce security properties. The bulk of the development establishes composition-



ality of language constructs (e.g., sequential and parallel composition, ‘while’) with
respect to bisimilarity relations (e.g., strong, weak, 01-bisimilarity) [33].

We rely heavily on Sledgehammer to automate the tedious details. Besides easing
the proof development, automation helps keep the formal proofs in close correspon-
dence with the original pen-and-paper proof. To illustrate this point, we review a typical
proof of compositionality: sequential composition (;) with respect to strong bisimilarity
(≈). The goal is c1 ≈ d1 ∧ c2 ≈ d2 =⇒ c1;c2 ≈ d1;d2. The proof involves three steps:

1. Define a relation R that witnesses bisimilarity of c1;c2 and d1;d2.
2. Show that R is a bisimulation.
3. Conclude that R⊆≈ by the definition of ≈ as greatest bisimulation.

Step 1 is the creative part of the argument. Here, the witness is unusually straight-
forward: R = {(c,d). ∃c1 c2 d1 d2. c = c1;c2 ∧ d = d1;d2 ∧ c1 ≈ d1 ∧ c2 ≈ d2}. Steps
2 and 3 are left to the reader in textbook presentations and constitute good candidates for
full automation. Unfortunately, the goal is beyond the reach of Isabelle’s proof methods,
and the translated first-order goals are too difficult for the automatic provers.

For step 2, we must show that if (c,d) ∈ R and s and t are states indistinguishable to
the attacker, written s∼ t, then any step taken by c in state s is matched by a step taken
by d in state t such that the continuations are again in R and the resulting states are again
indistinguishable. Assume c = c1;c2 and (c, s)→ (c′, s′) represents a step taken by c in
state s with continuation c′ and resulting state s′.

2.1. By rule inversion for the semantics of sequential composition, either
a. c′ has the form c′1;c′2 and (c1, s)→ (c′1, s

′); or
b. (c1, s)→ s′ (i.e., c1 takes in s a terminating step to s′) and c′ = c2.

2.2. Assume case a. From c1 ≈ d1 we obtain d′1 and t′ such that (d1, t)→ (d′1, t
′),

c′1 ≈ d′1, and s′ ∼ t′. (Case b is analogous, with c2 ≈ d2 instead of c1 ≈ d1.)

2.3. By one of the intro rules for the semantics of sequential composition, namely,
(c1, s)→ (c′1, s

′) =⇒ (c1;c2, s)→ (c′1;c2, s′), we obtain (d1;d2, t)→ (d′1;d2, t′).
Hence, the desired matching step for d = d1;d2 is (d, t)→ (d′1;d2, t′).

Until recently, we would discharge 2.2 and 2.3 by invoking the simplifier enriched
with the intro rules for the language construct (here, sequential composition) followed
by Sledgehammer. The SPASS integration now allows us to discharge 2.2 and 2.3 with-
out the need to customize and invoke the simplifier. In addition, if we are ready to wait
a full minute, SPASS can discharge the entire step 2 in a single invocation, replacing
the old cliché “left to the reader” with the more satisfying “left to the machine.”

SPASS also eases reasoning about execution traces, modeled as lazy lists. Isabelle’s
library of lazy list lemmas is nowhere as comprehensive as that of finite lists. Reasoning
about lazy lists can often exploit equations relating finite and lazy list operations via
coercions. For example, under the assumption that the lazy lists xs and ys are finite, the
following equations push the list_of coercion inside terms:

list_of (LCons x xs) = Cons x (list_of xs)
list_of (lappend xs ys) = append (list_of xs) (list_of ys)

The proper orientation of such equations helps discharge many goals for which we
previously needed to engage at a tiresome level of detail.



7 Evaluation

This section attempts to quantify the enhancements described in Sections 3 to 5, both by
evaluating each new feature in isolation and by letting the new SPASS compete against
other automatic provers.3 Our benchmarks are partitioned into three sets:

• Judgment Day (JD, 1268 goals) consists of seven theories from the Isabelle distri-
bution and the Archive of Formal Proofs [21] that served as the main benchmark
suite for Sledgehammer over the last two years [5, 6, 10, 31]. It covers areas as di-
verse as the fundamental theorem of algebra, the completeness of a Hoare logic,
and the type soundness of a Java subset.

• Arithmetic Extension of Judgment Day (AX, 616 goals) consists of three Isabelle
theories involving both linear and nonlinear arithmetic that were used in evaluations
of SMT solvers and type encodings [5, 6].

• Language-Based Security (LS, 1042 goals) consists of five Isabelle theories belong-
ing to the development described in Section 6.

Running Sledgehammer on a theory means launching it on the first subgoal at each
position where a proof command appears in the theory’s script.

To test the new SPASS features, we defined a base configuration and test vari-
ants of the configuration where one feature is disabled or replaced by another. Hard
sorts, advisory and mandatory simplification, and goal-based clause selection are all
part of the base configuration. The generated problems include up to 500 facts (700
after monomorphization). For each problem, SPASS is given 60 seconds of one thread
on 64-bit Linux systems equipped with two Quad-Core Intel Xeon processors running
at 2.4 GHz. We are interested in proof search alone, excluding proof reconstruction.

When analyzing enhancements to automatic provers, it is important to remember
what difference a modest-looking gain of a few percentage points can make to users.
The benchmarks were chosen to be representative of typical Isabelle goals and include
many that are either too easy or too hard to effectively evaluate automatic provers.
Indeed, some of the most essential tools in Isabelle, such the arithmetic decision pro-
cedures, score well below 10% when applied indiscriminately to the entire Judgment
Day suite. Furthermore, SPASS has been fine-tuned over nearly two decades; it would
be naive to expect enormous gains from isolated enhancements.

With this caveat in mind, let us review Figure 1. It considers six representations
of types: three polymorphic and three monomorphic. Guards and tags are two tradi-
tional encodings. “Type arguments” was until recently the default in Sledgehammer;
its actual success rate after reconstruction is lower than indicated, because some of the
proofs found with it are unsound. “Light guards” is the new lightweight guard-based
encoding. Many other encodings are implemented; in terms of performance, they are
sandwiched between polymorphic guards and monomorphic light guards [6]. The re-
sults are fairly consistent across benchmark sets and confirm that hard sorts are superior
to any encoding. The better translation schemes are also noticeably faster: Proofs with
hard sorts require 3.0 seconds on average, compared with 5.0 for monomorphic guards.

3 The test data set is available at http://www21.in.tum.de/~blanchet/itp2012-data.tgz .



* unsound JD AX LS All

Guards 28.7 17.9 29.7 25.6
Tags 37.3 23.8 39.1 33.5
Type args.* 46.9 30.8 51.6 42.6

(a) Polymorphic

JD AX LS All

Guards 40.7 29.8 46.1 37.9
Light guards 50.5 33.5 50.0 45.6
Hard sorts 52.0 34.1 50.8 46.7

(b) Monomorphic

Figure 1. Success rates (%) for the main type encodings

JD AX LS All

Advisory +2.7 −2.9 +0.4 +0.9
Mandatory +3.2 −1.4 +1.5 +1.8
Both +3.8 −1.9 +1.9 +2.2

(a) Simplification

JD AX LS All

SOS +9.9 −10.4 −4.2 +1.1
Goal-based +15.3 +2.0 −1.5 +6.5
Rank-based +17.6 +6.9 +9.2 +12.6

(b) Clause selection

Figure 2. Improvements (%) over the default setup for each proof heuristic

Figure 2(a) presents the impact of advisory and mandatory simplification as a per-
centage improvement over a configuration with both features disabled. The overall gain
is 2.2% (i.e., SPASS solves 102.2 goals with both mechanisms enabled whenever it
would solve 100 goals without them). Figure 2(b) compares three clause selection
strategies with SPASS’s default strategy. Our custom goal- and rank-based strategies
are considerably more successful than the traditional SOS approach.

Figure 3 shows how the main clause-selection strategies scale when passed more
facts, compared with the default setting. Both custom strategies degrade much less
sharply than the default. The goal-based strategy scales the best, with a peak at 800
facts compared with 150 for the default strategy and 400 for the rank-based strategy.
There is potential for improvement: With rank annotations, it should be possible to
design a strategy that actually improves with the number of facts. As a thought experi-
ment, a variant of the goal-based strategy that simply ignores all facts beyond the 800th
would flatly outclass every strategy on Figure 3 when given, say, 900 or 1000 facts.

Finally, we measure the new version of SPASS against the latest versions of E (1.4),
SPASS (3.7), Vampire (1.8 rev. 1435), and Z3 (3.2). Vampire and Z3 support hard sorts,
and Z3 implements arithmetic decision procedures. This evaluation was conducted on
the same hardware as the original Judgment Day study: 32-bit Linux systems with a
Dual-Core Intel Xeon processor running at 3.06 GHz. The time limit is 60 seconds for
proof search, potentially followed by minimization and reconstruction.

Figure 4(a) gives the success rate for each prover on each benchmark set. Overall,
SPASS now solves 13% more goals than before, or 6.1 percentage points; this is enough
to make it the single most useful automatic prover. About 45% of the goals from the
chosen Isabelle theories are “trivial” in the sense that they can be solved directly by
standard proof methods invoked with no arguments. If we ignore these and focus on the
more interesting 1625 nontrivial goals, SPASS’s improvements are even more signifi-
cant: It solves 21% more goals than before (corresponding to 6.5 percentage points) and
10% more than the closest competitor (3.3 percentage points), as shown in Figure 4(b).



0 200 400 600 800 1000

35

40

45

Number of facts

Su
cc

es
s

ra
te

(%
)

Rank-based
Goal-based
Default

Figure 3. Scalability of each clause-selection strategy

JD AX LS All

New SPASS 56.2 38.3 60.4 53.9
Z3 53.5 40.4 57.6 52.2
Vampire 54.2 35.2 57.9 51.5
E 53.0 39.0 56.1 51.2
Old SPASS 50.0 31.8 54.6 47.8

Together 63.6 51.3 67.8 62.5

(a) All goals

JD AX LS All

New SPASS 41.4 23.7 41.3 37.4
Z3 38.6 21.3 36.7 34.1
Vampire 38.7 19.9 37.4 34.0
E 37.0 22.4 38.2 34.0
Old SPASS 34.2 19.7 34.2 30.9

Together 49.3 32.6 46.6 44.7

(b) Nontrivial goals

Figure 4. Success rates (%) with proof reconstruction for selected provers

Two years ago, the combination of (older versions of) E, SPASS, and Vampire run-
ning in parallel for 120 seconds solved 48% of Judgment Day [10]. Largely thanks to
the developments presented in this paper, SPASS alone now solves 56% of the bench-
mark suite in half of the time, on the very same hardware.

8 Related Work

The most notable integrations of automatic provers in proof assistants, either as oracles
or with proof reconstruction, are probably Otter in ACL2 [25]; Bliksem and veriT in
Coq [2, 4]; Gandalf in HOL98 [18]; Z3 in HOL4 [11]; CVC Lite in HOL Light [26];
Vampire in Mizar [35]; Bliksem, EQP, LEO, Otter, PROTEIN, SPASS, TPS, and Wald-
meister in ΩMEGA [39]; and Yices in PVS [36]. Of these, only LEO and Yices appear
to have been significantly tailored to their host system. For program verification, Z3 in
Boogie [3] and Alt-Ergo in Why3 [8] are examples of integrated proof environments.

Much of the developments currently taking place in first-order automatic theorem
provers focus on solving particular classes of problems. This includes, for example, the
automatic generation of inductive invariants for some theory or the efficient decision of
large ontologies belonging to some decidable first-order fragment. From this point of
view, our work on tailoring SPASS toward a better combination with Isabelle is the first
dedicated contribution of its kind.



9 Conclusion

This paper described a tight, dedicated integration of Isabelle and SPASS. The heart
of the approach is to communicate in a rich format that augments classical first-order
logic with annotations for sorts, simplification rules, and fact relevance, and to let that
information guide the proof search. The new version of SPASS outperforms E, Vampire,
and Z3 on our extensive benchmark suites, and it is already helping us fill in the tedious
details in language-based security proofs.

There is much room for future work, notably to support polymorphism and to extend
the configurable simplification mechanisms to inductive and coinductive predicates and
their intro and elim rules. It would also be desirable to polish and exploit SPASS’s hier-
archical support for linear and nonlinear arithmetic [1,13] and accommodate additional
theories, such as algebraic datatypes, that are ubiquitous in formal proof developments.
Finally, a promising avenue of work that could help derive deeper proofs within the
short time allotted by Sledgehammer would be to have SPASS cache inferences across
invocations, instead of re-deriving the same consequences from the same background
theories over and over again.

We hope this research will serve as a blueprint for others to tailor their provers
for proof assistants. Interactive theorem proving provides at least as many challenges
as the annual competitions that are so popular in the automated reasoning community.
Granted, there are no trophies or prizes attached to these challenges (a notable exception
being the ISA category at CASC-23 [41]), but the satisfaction of assisting formalization
efforts should be its own reward.

Acknowledgment. We thank Tobias Nipkow for making this collaboration possible
and discussing the draft of this paper. We are also grateful to Lukas Bulwahn, Laura
Faust, Lawrence Paulson, Mark Summerfield, and the anonymous reviewers for sug-
gesting textual improvements. This research was supported by the project Security
Type Systems and Deduction (grants Ni 491/13-1 and We 4473/1-1) as part of the pro-
gram Reliably Secure Software Systems (RS3, Priority Program 1496) of the Deutsche
Forschungsgemeinschaft (DFG). The first author was supported by the DFG project
Quis Custodiet (grant Ni 491/11-2).

References

1. Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic SUP(LA).
In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 84–99. Springer
(2009)

2. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular integration
of SAT/SMT solvers to Coq through proof witnesses. In: Jouannaud, J.P., Shao, Z. (eds.)
CPP 2011. LNCS, vol. 7086, pp. 135–150. Springer (2011)

3. Barnett, M., Chang, B.E., Deline, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular reusable
verifier for object-oriented programs. In: FMCO 2005. LNCS, vol. 4111, pp. 364–387.
Springer (2006)

4. Bezem, M., Hendriks, D., de Nivelle, H.: Automatic proof construction in type theory using
resolution. J. Autom. Reas. 29(3-4), 253–275 (2002)



5. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT solvers.
In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE-23. LNAI, vol. 6803, pp. 207–221.
Springer (2011)

6. Blanchette, J.C., Böhme, S., Smallbone, N.: Monotonicity or how to encode polymorphic
types safely and efficiently. http://www21.in.tum.de/~blanchet/mono-trans.pdf

7. Blanchette, J.C., Paskevich, A.: TFF1: The TPTP typed first-order form with rank-1 poly-
morphism. http://www21.in.tum.de/~blanchet/tff1spec.pdf

8. Bobot, F., Conchon, S., Contejean, E., Lescuyer, S.: Implementing polymorphism in SMT
solvers. In: Barrett, C., de Moura, L. (eds.) SMT ’08. pp. 1–5. ICPS, ACM (2008)

9. Bobot, F., Paskevich, A.: Expressing polymorphic types in a many-sorted language. In:
Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNAI, vol. 6989, pp. 87–102.
Springer (2011)

10. Böhme, S., Nipkow, T.: Sledgehammer: Judgement Day. In: Giesl, J., Hähnle, R. (eds.)
IJCAR 2010. LNAI, vol. 6173, pp. 107–121. Springer (2010)

11. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann, M., Paul-
son, L. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer (2010)

12. Cohen, E., Dahlweid, M., Hillebrand, M.A., Leinenbach, D., Moskal, M., Santen, T., Schulte,
W., Tobies, S.: VCC: A practical system for verifying concurrent C. In: Berghofer, S., Nip-
kow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 23–42. Springer
(2009)

13. Eggers, A., Kruglov, E., Kupferschmid, S., Scheibler, K., Teige, T., Weidenbach, C.: Su-
perposition modulo non-linear arithmetic. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.)
FroCoS 2011. LNCS, vol. 6989, pp. 119–134. Springer (2011)

14. Filliâtre, J.C.: Private communication (March 2012)
15. Ganzinger, H., Meyer, C., Weidenbach, C.: Soft typing for ordered resolution. In: McCune,

W. (ed.) CADE-14. LNCS, vol. 1249, pp. 321–335. Springer (1997)
16. Gonthier, G.: Formal proof—The four-color theorem. N. AMS 55(11), 1382–1393 (2008)
17. Guttmann, W., Struth, G., Weber, T.: Automating algebraic methods in Isabelle. In: Qin, S.,

Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 617–632. Springer (2011)
18. Hurd, J.: Integrating Gandalf and HOL. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin,

C., Théry, L. (eds.) TPHOLs ’99. LNCS, vol. 1690, pp. 311–321 (1999)
19. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: Archer, M.,

Di Vito, B., Muñoz, C. (eds.) Design and Application of Strategies/Tactics in Higher Order
Logics. pp. 56–68. No. CP-2003-212448 in NASA Technical Reports (2003)

20. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: Formal
verification of an operating-system kernel. C. ACM 53(6), 107–115 (2010)

21. Klein, G., Nipkow, T., Paulson, L. (eds.): The Archive of Formal Proofs. http://afp.sf.
net/

22. Knuth, D.E., Bendix, P.: Simple word problems in universal algebras. In: Leech, J. (ed.)
Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press (1970)

23. Leroy, X.: A formally verified compiler back-end. J. Autom. Reas. 43(4), 363–446 (2009)
24. Leroy, X.: Private communication (October 2011)
25. McCune, W., Shumsky, O.: System description: IVY. In: McAllester, D. (ed.) CADE-17.

LNAI, vol. 1831, pp. 401–405. Springer (2000)
26. McLaughlin, S., Barrett, C., Ge, Y.: Cooperating theorem provers: A case study combining

HOL-Light and CVC Lite. ENTCS 144(2), 43–51 (2006)
27. Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Autom.

Reas. 40(1), 35–60 (2008)
28. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution

problems. J. Applied Logic 7(1), 41–57 (2009)



29. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer (2008)

30. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order
Logic, LNCS, vol. 2283. Springer (2002)

31. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical
link between automatic and interactive theorem provers. In: Sutcliffe, G., Ternovska, E.,
Schulz, S. (eds.) IWIL-2010 (2010)

32. Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive theorem
proving. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 232–245.
Springer (2007)

33. Popescu, A., Hölzl, J., Nipkow, T.: Proving possibilistic, probabilistic noninterference. Sub-
mitted. http://www21.in.tum.de/~popescua/pos.pdf

34. Riazanov, A., Voronkov, A.: The design and implementation of Vampire. AI Comm. 15(2-3),
91–110 (2002)

35. Rudnicki, P., Urban, J.: Escape to ATP for Mizar. In: Fontaine, P., Stump, A. (eds.) PxTP-
2011 (2011)

36. Rushby, J.M.: Tutorial: Automated formal methods with PVS, SAL, and Yices. In: Hung,
D.V., Pandya, P. (eds.) SEFM 2006. p. 262. IEEE (2006)

37. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel. Areas
Comm. 21(1), 5–19 (2003)

38. Schulz, S.: System description: E 0.81. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004.
LNAI, vol. 3097, pp. 223–228. Springer (2004)

39. Siekmann, J., Benzmüller, C., Fiedler, A., Meier, A., Normann, I., Pollet, M.: Proof develop-
ment with ΩMEGA: The irrationality of

√
2. In: Kamareddine, F. (ed.) Thirty Five Years of

Automating Mathematics. Applied Logic, vol. 28, pp. 271–314. Springer (2003)
40. Sutcliffe, G.: The TPTP problem library and associated infrastructure—The FOF and CNF

parts, v3.5.0. J. Autom. Reas. 43(4), 337–362 (2009)
41. Sutcliffe, G.: The CADE-23 automated theorem proving system competition—CASC-23. AI

Comm. 25(1), 49–63 (2012)
42. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-order form

with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18. LNCS, vol. 7180, pp. 406–
419. Springer (2012)

43. Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov,
A. (eds.) Handbook of Automated Reasoning, vol. II, pp. 1965–2013. Elsevier (2001)

44. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS ver-
sion 3.5. In: Schmidt, R.A. (ed.) CADE-22. LNAI, vol. 5663, pp. 140–145. Springer (2009)

45. Wos, L., Robinson, G.A., Carson, D.F.: Efficiency and completeness of the set of support
strategy in theorem proving. J. ACM 12(4), 536–541 (1965)


