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Abstract. Isabelle/HOL is a general-purpose proof assistant based on higher-
order logic. Its main strengths are its simple-yet-expressive logic and its proof au-
tomation. Security researchers make up a significant fraction of Isabelle’s users.
In the past few years, many exciting developments have taken place, connecting
programming languages, operating system kernels, and security.

1 Isabelle

Isabelle [26, 27] is a generic theorem prover developed since the 1980s under the lead-
ership of Lawrence Paulson (University of Cambridge), Tobias Nipkow (Technische
Universität München), and Makarius Wenzel. Its built-in metalogic is a fragment of
higher-order logic. The HOL object logic is a more elaborate version of higher-order
logic, complete with the familiar connectives and quantifiers. Isabelle/HOL is the most
developed instance of Isabelle. HOL is not quite as powerful as set theory or type theory
(e.g., Coq’s calculus of inductive constructions), but it can comfortably accommodate
most applications, whether they are oriented toward mathematics or computer science.

Isabelle adheres to the tradition initiated in the 1970s by the LCF system: All infer-
ences are derived by a small trusted kernel; types and functions are defined rather than
axiomatized to guard against inconsistencies. High-level specification mechanisms let
users define important classes of types and functions safely. When the user introduces
a new (co)datatype or (co)recursive function, the system internally synthesizes an elab-
orate construction, from which it derives the characteristic (co)datatype properties and
(co)recursive specifications as theorems.

Proof automation is another cornerstone of the Isabelle approach. The system pro-
vides proof methods based on term rewriting, tableaux, and arithmetic decision proce-
dures. In addition, the Sledgehammer [32] tool integrates third-party automatic theorem
provers, helping to discover more difficult proofs automatically. The counterexample
generators Nitpick [7] and Quickcheck [9] complete the picture. They help identify
invalid conjectures early, before the user invests hours in a doomed proof attempt.

2 Security in Isabelle

Several groups of researchers have formalized security-related results in Isabelle/HOL.
The following partial survey attempts to give an overview of that work.

Already in the 1990s, Lawrence Paulson [31] verified a number of cryptographic
protocols in Isabelle, notably (shared-key) Otway–Rees and (public-key) Needham–
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Schroeder. He modeled each protocol as an inductively defined set of traces. Paulson’s
inductive approach has been highly influential, and despite the emergence of automatic
tools such as ProVerif, it remains popular thanks to its flexibility and expressiveness [5].

David Basin and his team [4] developed the ProtoVeriPhy framework in Isabelle,
for analyzing physical protocols. They verified protocols such as authenticated ranging,
ultrasound distance bounding, delayed key disclosure, and secure time synchroniza-
tion. They also proved the vulnerability of the Brands–Chaum protocol, including in a
wrongly fixed version, and proved a revised proposal correct [10].

Gerwin Klein and his team proved functional correctness of the seL4 microkernel,
consisting of 8830 lines of C code [20]. Equipped with an abstract, correct specifi-
cation of seL4, they started proving security properties, including integrity [37] and
information-flow enforcement [25].

In a separate but related line of work, Burkhart Wolff and his collaborators con-
tributed the formalization of realistic security frameworks relevant for operating system
verification, covering access control [8] and intransitive noninterference [40].

Heiko Mantel and his team developed several Isabelle formalizations related to
information-flow security. The I-MAKS framework and tool is a mechanization of Man-
tel’s Modular Assembly Kit for Security (MAKS), designed for the specification and
verification of event systems (a form of I/O automata) with security requirements. Man-
tel’s team also developed formal proofs for language-based security in the presence of
concurrency: a rely–guarantee paradigm [15], security type systems for noninterfer-
ence [14], and declassification [13].

Gregor Snelting and his team are developing JOANA [38], a mature software secu-
rity analysis framework for Java, covering both source code and bytecode. Its features
are based on complex program analysis techniques, whose correctness is difficult to
comprehend. The team uses Isabelle to verify different aspects of JOANA [41], based
on the formal semantics of a large fragment of concurrent Java [22]. Snelting’s team
has also looked into language-based security, contributing, in parallel with Barthe and
Nieto’s [3] and Beringer and Hofmann’s [6] works, the first Isabelle formalizations of
Volpano–Smith-style security type systems [39].

Tobias Nipkow, Andrei Popescu, and their colleagues in Munich and Saarbrücken
formalized possibilistic and probabilistic noninterference for a multithreaded while lan-
guage [34, 35]. They unified various security concepts and type systems from the liter-
ature and simplified their proofs of correctness [28]. They also formalized HyperCTL∗,
a temporal logic for expressing security properties [36].

Another major development by the Munich team is CoCon, a conference manage-
ment system with document confidentiality guarantees [19]. The system’s kernel is writ-
ten and certified in Isabelle and extracted as functional code. The dozen of submissions
to the Isabelle 2014 workshop were managed using CoCon, and the TABLEAUX 2015
conference is expected to use it as well. Other events are welcome to use it.1

Further recent security formalizations in Isabelle include noninterference for pro-
cess algebras [30], cryptography [21], and network security [12].

Finally, Isabelle is a main verification tool of Reliably Secure Software Systems
(RS3) [24], a priority program of the Deutsche Forschungsgemeinschaft, coordinated

1 http://www21.in.tum.de/~popescua/rs3/GNE.html

http://www21.in.tum.de/~popescua/rs3/GNE.html
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by Heiko Mantel. RS3 encompasses twelve main projects and six associated projects,
all focused on different aspects of information-flow security. Within RS3, Isabelle is
used for verifying actor implementations of multi-agent systems (Poetzsch-Heffter et
al. [33]), workflow management systems (Hutter et al. [17] and Nipkow et al. [29]), and
security types (Mantel et al. [23] and Nipkow et al. [29]).

3 Security in Other Proof Assistants

Isabelle is by no means the only proof assistant employed in security verification. Im-
pressive recent verification achievements using other systems include an aircraft micro-
processor [16] (in ACL2), a hardware architecture with information-flow primitives [1]
(in Coq), a separation kernel [11] (in HOL4), a browser kernel [18] (in Coq), and a
quasi-automatic tool for reasoning about cryptographic protocols [2] (based on Coq).
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