
FACS 2007

An Open System Operational Semantics for
an Object-Oriented and Component-Based

Language

Jasmin Christian Blanchette and Olaf Owe 1

Department of Informatics
University of Oslo

Oslo, Norway
{jasmincb,olaf}@ifi.uio.no

Abstract

Object orientation and component-based development have both proven useful for the elaboration of open
distributed systems. These paradigms are offered by the Creol language. Creol objects are concurrent,
each with its own virtual processor and internal process control, and communicate using asynchronous
(non-blocking) method calls. This provides the efficiency of message passing systems, while keeping the
structuring benefits of methods and object-oriented programming. Conditional processor release points
provide a high-level synchronization mechanism based on passive waiting that allows us to combine active
and reactive behavior. A Creol component can be a single (concurrent) object or a collection of objects,
together with a number of interfaces, and cointerfaces, defining the provided and required interaction and
semantic behavior. Creol’s semantics is defined formally using operational semantics and Hoare logic. An
operational semantics lets us simulate an entire system, where all components are known in advance; in
contrast, Hoare logic, together with class invariants and communication histories, lets us reason locally
about a method body, without needing access to the implementations of the other classes. To bridge the
gap between these two semantics, we introduce a history-based operational semantics for open systems.
This new semantics can be used as an intermediate step for proving that Creol’s Hoare logic is sound and
complete with respect to the language’s operational semantics. The approach can easily be adapted to other
component-based languages where communication is done by message passing or by method interaction.

Keywords: Operational semantics, open distributed systems, communication histories, object orientation.

1 Introduction

Component-based system design directly supports the role of autonomous objects
in distributed architectures. This useful paradigm can be combined with the
structuring mechanisms of object orientation, as done within the Creol framework
[11,12,13,14,15]. Creol objects are concurrent, each with its own virtual processor
and internal process control, and communicate using asynchronous (non-blocking)
method calls. This provides the efficiency of message passing systems, while keeping
the structuring benefits of methods and object-oriented programming, notably late

1 This work is in the context of the EU project IST-33826 CREDO (http://credo.cwi.nl/).

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

http://credo.cwi.nl/


Blanchette and Owe

binding and inheritance. A Creol object, together with its interfaces, constitutes
an autonomous unit that can act and react in a distributed setting. More complex
components are formed by combining several concurrent objects together and defin-
ing interfaces that describe and control the component’s visible behavior. Creol’s
notion of cointerface allows the specification of required and provided interfaces.

The goal of Creol is to develop a formal framework for reasoning about dynamic
and reflective modifications in open distributed systems, where objects may be dis-
persed geographically, ensuring reliability and correctness of the overall system.
The Creol language is high-level, imperative, and object-oriented. The language’s
semantics is defined formally using a small-step operational semantics expressed in
rewriting logic [12]. This semantics forms the core of the Creol interpreter, which is
written in Maude [7]. Using Maude’s extensible rewrite strategies, its search capa-
bilities, and its model checker, we can test Creol programs in various ways [13,14].

The Creol interpreter allows us to simulate a closed distributed system, where
all the initial components are known in advance. On the other hand, it does not let
us execute a component without providing and implementing an environment with
which it can interact. At the reasoning level, this limitation is addressed by the
Hoare logic developed by Dovland et al. [11]. The Hoare logic allows us to prove
that an invariant holds for a given class. A system-wide invariant can be constructed
from the class invariants using a compositional rule. The invariants may refer to a
mythical communication history that records the object creations and method calls
that have taken place in the system [8].

In this paper, we introduce an “open system” operational semantics that incor-
porates the class invariants and the communication history that characterize Creol’s
Hoare logic. One benefit of this approach is that it moves these techniques from
the syntax-driven world of Hoare logic to the more fundamental semantics level.
We then have the full power of mathematics and of formal tools like Maude at our
disposal to analyze individual Creol classes.

Once we have an open system operational semantics, we can use it as a stepping
stone towards the development of a Hoare logic. For Creol, where a Hoare logic
already exists, it could be used to prove that the Hoare logic is sound and complete
with respect to Creol’s reference interpreter. The proof would proceed in two steps:
(1) Prove that the closed system semantics and the open system semantics are
equivalent, modulo the way they represent the environment. (2) Prove that the
Hoare logic is sound and complete with respect to the open system semantics.

We focus on the class aspect of the Creol language, and limit ourselves to the
basic communication and synchronization model of Creol, omitting the notions of
interface, inheritance, self-reentrance, and dynamic update, as well as typing and
specification. The approach can then easily be adapted to other languages where
communication is done by message passing or by method interaction. We assume
throughout that Creol programs are syntactically correct and well-typed.

The rest of this paper is organized as follows: Section 2 reviews the syntax of the
main Creol statements. Section 3 presents a closed system operational semantics
for the core language. Section 4 introduces the open system semantics and connects
it to the closed semantics and to Hoare logic. Section 5 considers related work.
Finally, Section 6 summarizes the paper.

2



Blanchette and Owe

2 The Creol Language

Creol is a strongly-typed object-oriented language that supports interfaces, inher-
itance, and polymorphism. Classes are the fundamental structuring unit, and all
interaction between objects occurs through method calls. Each object executes on
its own virtual processor, leading to increased parallelism in a distributed system.
Classes are equipped with class parameters, as in Simula.

Objects are uniquely identified and communicate using asynchronous method
calls. When an object A calls a method m of an object B, it first sends an invocation
message to B along with arguments. Method m executes on B’s processor and
sends a reply to A once it has finished executing, with return values. Object A may
continue executing while waiting for B’s reply. Object identities may be passed
around, and thanks to Creol’s interface concept, method calls are type-safe [15]. In
an object-oriented system, asynchronous method calls arguably offer a more natural
interaction model than shared variables and message passing, while avoiding the
delays associated with synchronous method calls [12].

The other main distinguishing feature of Creol is its reliance on explicit processor
release points. Since there is only one processor per object, at most one method m

may execute at a given time for a given object; any other method invocations must
wait until m finishes or releases the processor using the await statement. This
ensures that while a method is active, no other processes can access the object’s
attributes, leading to a programming and reasoning style reminiscent of monitors [5].

The syntax of the Creol statements relies on a few basic syntactic entities. The
set Ident, with typical elements c, l, m, x, y, consists of alphanumeric tokens that
start with a letter, excluding keywords. The set BExp, with typical element B,
consists of Boolean expressions such as i≥ n. The set Exp, with typical element e,
consists of expressions of any type, including Boolean expressions, arithmetic ex-
pressions, and object references. The keyword self refers to the current object, and
the implicit parameter caller identifies the caller of a method, allowing type-safe
call-backs. The set Guard, with typical element g, includes BExp and otherwise
contains the reply guard l?, the release guard wait, and the conjunction g1 & g2.

The set Stmt of statements, with typical element S, contains these constructs:

x := e assignment
x := new c(e1, . . . , en) object creation
l !x.m(e1, . . . , en) asynchronous invocation
l?(y1, . . . , yp) asynchronous reply
await g conditional wait
if B then S1 else S2 fi conditional statement
return e1, . . . , en return statement
S1; S2 sequential composition

The object creation statement creates a new instance of class c. The expressions
e1, . . . , en are assigned to class parameters. If the class has a parameterless run
method, this method executes immediately.

Asynchronous method calls consist of an invocation and a reply. The invocation
can be seen as a message from the caller to the called method, with arguments

3



Blanchette and Owe

corresponding to the method’s input parameters. The reply is a message from the
called method, containing the return values. The label l uniquely identifies the
method call. For convenience, Creol also provides the classic synchronous (block-
ing) method call x.m(e1, . . . , en; y1, . . . , yp) as an abbreviation for t !x.m(e1, . . . , en);
t?(y1, . . . , yp), where t is a fresh label name. Here each ei acts as an actual input
parameter to the method, and each yj acts as an actual output parameter.

The statement await g releases the processor if the guard g evaluates to false
and reacquires it at some later time when g is true. The guard l? evaluates to true
if and only if a reply for the asynchronous call identified by l has arrived. The wait
guard evaluates to false the first time it is encountered, resulting in a processor
release, and evaluates to true from then on.

The conditional statement, the return statement, sequential composition, and
assignment behave essentially like their Java equivalents.

Example 2.1 The following code initiates two asynchronous calls, releases the pro-
cessor while waiting for the replies, and retrieves the return values:

var result1 : int, result2 : int;
l1 !server .request(); l2 !server .request();
await l1? & l2?;
l1?(result1 ); l2?(result2 )

Without the await statement, the program would block on the reply statements
l1?(result1 ) and l2?(result2 ) until the method invocations have terminated.

3 An Operational Semantics for Creol

The operational semantics of Creol is defined using rewriting logic (RL) [12], which
can be seen as a generalization of structural operational semantics [17]. A rewrite
theory is a triple R = (Σ, E, R), where the signature Σ defines the function symbols
of the language, E defines equations between terms, and R is a set of rewrite rules.
When modeling computational systems, we represent a state configuration by a
multiset of terms of given types. These types are specified algebraically in the
equational logic (Σ, E), the functional sublanguage of RL.

The dynamic behavior of a system is expressed by rewrite rules, which describe
how a part of a configuration can evolve in one transition step. A rule p −→ q

[
if c

]
allows an instance of the pattern p to evolve into the corresponding instance of
the pattern q if the (optional) side condition c is met. Rewrite rules are applied
modulo E to complete terms or to subterms. Rules can be applied simultaneously
on non-overlapping subterms; as a result, RL is implicitly concurrent.

The operational semantics for Creol consists of 11 rewrite rules that model con-
current execution, object creation, and inter-object communication. It also relies
on equations to perform auxiliary tasks. The rewrite rules have the form

subconfiguration1 −→ subconfiguration2

[
if condition

]
where subconfiguration1 is a subset of the current configuration. In our setting, a
configuration is a multiset of Creol objects, Creol classes, and messages reflecting
either method invocations or replies. Typically, each subconfiguration consists of a

4



Blanchette and Owe

single object, and possibly a message, reflecting that Creol objects are autonomous.
In a system configuration, Creol objects are represented by terms of the form〈

o : c
∣∣ Pr: S, LVar: β, Att: α, PrQ: P, MsgQ: Q, LabCnt: k

〉
,

where o ∈ OId is a unique object identity, c is the object’s class, S is the active
process’s code, β ∈ State is the active process’s local variables, α ∈ State is the
current state of the object’s attributes, P ∈ P(State×Stmt) is a queue of suspended
processes, Q ∈ P(Msg) is the incoming message queue, and k ∈ N is a counter used
to generate unique label values for asynchronous calls.

The set State, with typical elements σ, α, β, consists of mappings from variables
to values. For example, [x 7→ 1][y 7→ 2] denotes the state in which x = 1 and y = 2.
The concatenation αβ of two states α and β gives precedence to β for variables
defined by both. The function {ē}σ returns the value of an expression list ē in a
state σ. The notation x̄ stands for the comma-separated list x1, . . . , xn. The empty
list is written ε. The set Value, with typical elements v, w, includes the Boolean
constants true and false, numeric constants, and object identities.

Creol classes are represented by terms of the form〈
c : Class

∣∣ Param: x̄, Att: α, Mtd: M, ObjCnt: n
〉
,

where c is the class name, x̄ is the list of class parameters, α is the list of class
attributes with initial values, M ∈ P(Mtd) is a set of methods, and n ∈ N is a
counter used to generate unique object identities.

Creol objects interact by exchanging messages. Invocation messages have the
form Invoke(o, k, m, v̄), where o is the calling object, k is the sequence number (label
value) associated with the method call, m is the called method, and v̄ is a list of
input arguments to m. Reply messages have the form Reply(k, v̄), where k is the
sequence number for the method call and v̄ is a list of return values. When messages
are passed around, the receiver object o′ is specified by appending to o′.

Rewrite Rule R1 (Assignment)〈
o : c

∣∣ Pr: x := e; S, LVar: β, Att: α
〉

−→
if x ∈ β then

〈
o : c

∣∣ Pr: S, LVar: β[x 7→ {e}αβ ], Att: α
〉

else
〈
o : c

∣∣ Pr: S, LVar: β, Att: α[x 7→ {e}αβ ]
〉

fi

The assignment statement evaluates the expression e in the compound state αβ and
stores that value in x. If x is a local variable, we update the local state β; otherwise,
we update the object state α. In the style of Full Maude [7], the fields that are not
used by a rule are omitted in the rule.

Rewrite Rule R2 (If Statement)〈
o : c

∣∣ Pr: if B then S1 else S2 fi; S, LVar: β, Att: α
〉

−→
if {B}αβ then

〈
o : c

∣∣ Pr: S1; S, LVar: β, Att: α
〉

else
〈
o : c

∣∣ Pr: S2; S, LVar: β, Att: α
〉

fi

If B evaluates to true, the Creol if statement expands to its then branch; otherwise,
it expands to its else branch. Notice that the first if construct in the rule above is
a Creol statement, while the second if is a conditional expression in RL.

5



Blanchette and Owe

Rewrite Rule R3 (Guard Crossing)〈
o : c

∣∣ Pr: await g; S, LVar: β, Att: α, MsgQ: Q
〉

−→〈
o : c

∣∣ Pr: S, LVar: β, Att: α, MsgQ: Q
〉

if enabled(g, αβ, Q)

An await statement whose guard evaluates to true is simply skipped. The enabled
predicate is defined recursively using equations:

enabled(B, σ,Q) , {B}σ
enabled(wait, σ, Q) , false
enabled(l?, σ, ∅) , false
enabled(l?, σ, Q ∪ {Invoke(. . .)}) , enabled(l?, σ, Q)
enabled(l?, σ, Q ∪ {Reply(k, v̄)}) , k = {l}σ ∨ enabled(l?, σ, Q)
enabled(g1 & g2, σ, Q) , enabled(g1, σ, Q) ∧ enabled(g2, σ, Q)

Rewrite Rule R4 (Process Suspension)〈
o : c

∣∣ Pr: await g; S, LVar: β, Att: α, PrQ: P, MsgQ: Q
〉

−→〈
o : c

∣∣ Pr: ε, LVar: ∅, Att: α, PrQ: P∪{〈await clearWait(g);S, β〉}, MsgQ: Q
〉

if ¬enabled(g, αβ, Q)

If the next statement to execute is an await statement whose guard is not enabled,
the active process is put on the process queue, together with its local variables. The
clearWait auxiliary function replaces any occurrence of wait in the guard with true,
so that a process that was suspended because of wait may become active again.

Rewrite Rule R5 (Process Activation)〈
o : c

∣∣ Pr: ε, LVar: β, Att: α, PrQ: {〈S′, β′〉} ∪ P, MsgQ: Q
〉

−→〈
o : c

∣∣ Pr: S′, LVar: β′, Att: α, PrQ: P, MsgQ: Q
〉

if ready(S′, αβ′, Q)

After a process has been suspended, other processes that are ready may be activated.
A reply statement is ready only if the reply message has arrived, and an await state-
ment only if the guard is enabled, while other statements are always ready. The list
S1; . . . ;Sn is ready whenever S1 is ready. Maude’s facilities for associative, commu-
tative, and identity (ACI) matching allow {〈S′, β′〉} to match any process in PrQ.

Rewrite Rule R6 (Object Creation)〈
o : c

∣∣ Pr: y := new c′(ē); S, LVar: β, Att: α
〉〈

c′ : Class
∣∣ Param: x̄, Att: α′, ObjCnt: n

〉
−→〈
o : c

∣∣ Pr: y := c′#n; S, LVar: β, Att: α
〉〈

c′ : Class
∣∣ Param: x̄, Att: α′, ObjCnt: n + 1

〉〈
c′#n : c′

∣∣ Pr: self .run(), LVar: ∅, Att: α′[x̄ 7→ {ē}αβ ][self 7→ c′#n],
PrQ: ∅, MsgQ: ∅, LabCnt: 0

〉
A new statement creates an instance of a given class. The new object’s identity
is c′#n, where c′ is the class name and n a sequence number that identifies this
object among c′ instances. The new object is set up with the class parameters

6



Blanchette and Owe

and attributes of class c′. The Pr field is initialized with a synchronous call to run
to launch the object’s active behavior. In the parent object, creating an object is
viewed as an assignment of c′#n to a variable. In the instantiated class, the object
counter is incremented to ensure that object identities remain unique.

Rewrite Rule R7 (Asynchronous Invocation)〈
o : c

∣∣ Pr: l !x.m(ē); S, LVar: β, Att: α, LabCnt: k
〉

−→〈
o : c

∣∣ Pr: S, LVar: β[l 7→ k], Att: α, LabCnt: k + 1
〉

Invoke(o, k, m, {ē}αβ) to {x}αβ

Asynchronous method calls lead to the creation of an invocation message that is
sent to the called object. Each method call originated by a given object is identified
by a unique sequence number k. This number is assigned to the local variable l,
which corresponds to the label l. A call is uniquely identified by the pair (o, k).

Rewrite Rule R8 (Transport of Message)〈
o : c

∣∣ MsgQ: Q
〉

µ to o
−→〈
o : c

∣∣ MsgQ: Q ∪ {µ}
〉

At some unspecified point after an invocation or reply message µ has been sent, the
recipient receives it. Rewrite Rules R7 and R8 allow message overtaking—messages
might arrive in a different order than they were sent. Again, ACI matching applies.

Rewrite Rule R9 (Method Binding)〈
o : c

∣∣ PrQ: P, MsgQ: {Invoke(o′, k,m, v̄)} ∪Q
〉〈

c′ : Class
∣∣ Mtd: M

〉
−→〈
o : c

∣∣ PrQ: P ∪ {bind(o′, k,m, v̄,M)}, MsgQ: Q
〉〈

c′ : Class
∣∣ Mtd: M

〉
A pending invocation message gives rise to a new pending process. The bind func-
tion fetches method m from the method set M and returns a 〈S, β〉 pair storing
the code and initial state of the process. The rule does not consider base classes;
method binding with multiple inheritance in Creol is treated in Johnsen et al. [15].

Rewrite Rule R10 (Method Return)〈
o : c

∣∣ Pr: return ē; S, LVar: β
〉

−→〈
o : c

∣∣ Pr: ε, LVar: β
〉

Reply({label}β, {ē}β) to {caller}β
The return statement sends a reply message to the caller along with the values
of the output parameters. Reply messages are eventually received by the calling
object and put into its incoming message queue by Rewrite Rule R8.

Rewrite Rule R11 (Asynchronous Reply)〈
o : c

∣∣ Pr: l?(ȳ); S, LVar: β[l 7→ k], MsgQ: {Reply(k, v̄)} ∪Q
〉

−→〈
o : c

∣∣ Pr: ȳ := v̄; S, LVar: β, MsgQ: Q
〉

7



Blanchette and Owe

A statement l?(ȳ) may proceed only if the corresponding reply message has arrived,
which we can find out by looking for a reply message numbered k, where k is l’s
value. The output parameter values stored in the reply are assigned to ȳ.

4 An Alternative Semantics for Open Systems

While the operational semantics presented in the previous section correctly captures
the behavior of a closed system, it doesn’t directly cater for open systems, in which
objects don’t have access to each other’s implementations. This means that we have
no satisfactory way to simulate the activity of a single process taken in isolation once
we abstract away the environment with which it communicates (the other processes
executing in the same object and the other objects in the system). It also means
that there’s no direct way to derive a Hoare logic from the operational semantics.

4.1 Definition of the Open System Semantics

In this section, we will define an alternative version of Creol’s operational semantics
that focuses on the execution of a single process, mimicking a Hoare logic. The
new “open system” operational semantics uses a communication history to abstract
away the environment. This semantics reuses Rewrite Rules R1–R3 and R11 from
the previous section, because these rules involve no interaction between objects or
between processes within an object. Rewrite Rules R4–R10 are replaced with a
new set of rules that operate on the history. The table below compares the closed
system semantics of Section 3 with the open system semantics introduced here.

Closed System Open System

Process Suspension R4
}

R4′
Process Activation R5
Object Creation R6 R6′

Asynchronous Invocation R7 R7′

Transport of Message R8 −
Method Binding R9 −
Method Return R10 R10′

Environment Activity − R12′

From Hoare logic we borrow the concept of a communication history [8]. The
communication history records the creation of objects and the messages that are
exchanged between objects in a distributed system. More formally, a history is a
finite sequence of communication events:

[o→o′.new c(v̄)] object creation
[o→o′.m(v̄)]k asynchronous invocation
[o←o′.m(v̄; w̄)]k asynchronous reply

For invocation events, v̄ stores the values passed to the method; for reply events,
w̄ stores the return values. For both types of event, k is the sequence number of
the method call. For object creation events, v̄ stores the actual class parameters.
The history represents a snapshot of the system’s execution at a given point and is

8



Blanchette and Owe

therefore finite. When designing or analyzing a complex system, we often want to
know the possible histories for that system, to deduce safety properties about it [11].

In the new semantics, Creol objects have the form〈
o : c

∣∣ Pr: S, LVar: β, Att: α, MsgQ: Q, LabCnt: k
〉
.

Since we concentrate on one process’s execution, we now omit the PrQ field. On the
other hand, the object’s attribute set now includes a distinguished H attribute that
stores the system’s communication history. The history could also have been stored
in a separate field, or as a separate object, but making it an attribute will simplify
the definition of Hoare logic formulas. The MsgQ field is redundant now that we
record the history; we keep it because Rewrite Rules R3 and R11 rely on it. Also,
some of the rewrite rules will refer to the class invariant Ic, which is expected to hold
at startup and whenever the processor is released. This invariant is derived from
the semantic specifications supplied by the programmer in the class declaration for
c and in the interface declarations for the interfaces implemented by c.

Rewrite Rule R6′ (Object Creation)〈
o : c

∣∣ Pr: y := new c′(ē); S, LVar: β, Att: α
〉

−→〈
o : c

∣∣ Pr: y := o′; S, LVar: β, Att: α[H 7→ {H }α _ [o→o′.new c′({ē}αβ)]]
〉

if o′ /∈ objectIds({H }α)

With the open system semantics, an object creation statement allocates a fresh
object identity o′ and extends the history H with an object creation event. The
new object is now part of the implicit environment embodied by H .

Rewrite Rule R4′ (Process Suspension and Reactivation)〈
o : c

∣∣ Pr: await g; S, LVar: β, Att: α, MsgQ: Q, LabCnt: k
〉

−→〈
o : c

∣∣ Pr: S, LVar: β, Att: α′, MsgQ: replies({H }α′ , o),
LabCnt: nextLabel({H }α′ , o)

〉
if ¬enabled(g, αβ, Q) ∧ release(Ic, α, α′, β)
∧ enabled(clearWait(g), α′β, replies({H }α′ , o))

If the next statement is await g and the guard g is not enabled, the process is
suspended and wakes up in a different state in which the guard is enabled. The
class attributes, including the history H , might have changed in the meantime; this
is modeled by replacing α with α′. In addition, the MsgQ and LabCnt fields are
updated to reflect the new history.

The function replies(h, o) returns a set of pending reply messages corresponding
to the pending replies encoded in the history h. The constraint release(Ic, α, α′, β)
restricts the values that the attributes α′ may take. It is defined as follows:

release(Ic, α, α′, β) , {H }α � {H }α′ ∧ wf ({H }α′) ∧ {Ic}α⇒{I}α′

∧ pending({H }α′ , {caller}β, {self}α, {label}β)

Informally, the new history {H }α′ must be an extension of the original history {H }α,
it must be well-formed, the class invariant Ic should still hold if it held before the
release, and the call that released the processor should still be pending after the
processor release. The well-formedness predicate is defined below:

9



Blanchette and Owe

wf (ε) , true
wf (h _ [o→o′.new c(v̄)]) , wf (h) ∧ o′ /∈ objectIds(h)
wf (h _ [o→o′.m(v̄)]k) , wf (h) ∧ ∀o′′,m′, v̄′. [o→o′′.m′(v̄′)]k /∈h

wf (h _ [o←o′.m(v̄; w̄)]k) , wf (h) ∧ pending(h, o, o′, k)

A communication history is well-formed if new objects have unique identifiers and
if method invocations and replies match. We also require that a pair (o, k) uniquely
identifies a method call originating from an object o. Well-formedness expresses
program-independent properties of the history. If we omitted it, the programmer
could compensate by embedding well-formedness in the class invariant Ic.

Rewrite Rule R7′ (Asynchronous Invocation)〈
o : c

∣∣ Pr: l !x.m(ē); S, LVar: β, Att: α, LabCnt: k
〉

−→〈
o : c

∣∣ Pr: S, LVar: β[l 7→ k], Att: α[H 7→ {H }α _ [o→{x}αβ .m({ē}αβ)]k],
LabCnt: k + 1

〉
Asynchronous method calls lead to an extension of the history with a new invocation
event. Similarly, returning from a method extends the history with a reply event:

Rewrite Rule R10′ (Method Return)〈
o : c

∣∣ Pr: return ē; S, LVar: β, Att: α
〉

−→〈
o : c

∣∣ Pr: ε, LVar: β,

Att: α[H 7→ {H }α _ replyEvent({H }α, o, {caller}β, {label}β, {ē}αβ)
〉

The auxiliary function replyEvent determines the reply event by inspecting the
history. If [o′→o.m(v̄)]k ∈ h, then replyEvent(h, o, o′, k, w̄) is [o′←o.m(v̄; w̄)]k.

Rewrite Rule R12′ (Environment Activity)〈
o : c

∣∣ Pr: S, Att: α, MsgQ: Q
〉

−→〈
o : c

∣∣ Pr: S, Att: α[H 7→ h], MsgQ: replies(h, o)
〉

if interleave(o, α, h)

Rewrite Rule R12′ lets us extend the history in a nondeterministic way with events
originating from the environment at any point during the execution of a process.
The new history h must abide by the following rules, expressed by the interleave
predicate: The environment may only append events to the history, it must preserve
the well-formedness of the history, and it may not produce events that o can produce.
This is formalized as follows:

interleave(o, α, h) , {H }α � h ∧ wf (h) ∧ {H }α
/
outo = h

/
outo

In the above, outo denotes the set of events that originate from o, and h
/
E denotes

the longest subsequence of h that consists exclusively of events belonging to E.
Because some of the rules presented here use variables that do not occur in their

left-hand side, they cannot be used directly to test or simulate a Creol component.
One solution would be to alter the rewrite rules so that they accept user-supplied
data along with the Creol program. An alternative is to define a custom evaluation
strategy in Maude that instantiates the unbound variables using random data [14].

10



Blanchette and Owe

4.2 Example: An Internet Bank Account

We will consider a NetBankAccount class that models a simplistic Internet bank
account. In a real-world scenario, the user would log into the Internet bank, perform
some deposits and payments, and log out. The deposits and payments take place
during the night, and if there is not enough money in the account, the payment is
delayed. In Creol, this would be modeled using asynchronous calls:

account := new NetBankAccount ;
l1 !account .deposit(50);
l2 !account .payBill(80);
l3 !account .deposit(50)

Because method overtaking is allowed, the bank might receive the deposit and pay-
ment requests in any order. Furthermore, to prevent the user from going overdrawn,
the bank would first process the deposits, then pay the bill. The NetBankAccount
class achieves synchronization using await and relies on Creol’s implicit mutual
exclusion for processes in the same object. The class declaration follows:

class NetBankAccount
begin

var balance : int := 0

op deposit(amount : nat) is
balance := balance + amount ;
return

op payBill(amount : nat) is
await balance ≥ amount ;
balance := balance − amount ;
return

spec balance ≥ 0 ∧ balance = sumDeposits(H )− sumPayments(H )
end

In the class declaration, the spec clause specifies an invariant that should hold
initially and whenever the processor is released. Intuitively, NetBankAccount guar-
antees that the balance will always be nonnegative and that it always equals the
difference between the deposits and the payments that have been performed so far.
The sumDeposits and sumPayments functions are defined recursively on histories,
by inspection of reply events. Here is the definition of sumDeposits:

sumDeposits(ε) , 0
sumDeposits(h _ [o←self .deposit(a)]k) , sumDeposits(h) + a

sumDeposits(h _ υ) , sumDeposits(h) [otherwise]

Using the open system semantics, we can verify the class invariant. The invari-
ant holds initially, because at that point the balance is 0 and sumDeposits(H ) =
sumPayments(H ) = 0. We must prove that deposit and payBill preserve the in-
variant. Let us first verify deposit . We must consider an arbitrary NetBankAccount
object in a state where the class invariant holds just before executing deposit ’s body,
and show that the invariant still holds when the method is finished. Let h0 and b0

be the initial values of H and balance, respectively, such that the invariant holds.

11



Blanchette and Owe

Ignoring Rewrite Rule R12′ (Environment Activity), which has no impact on the
invariant, we only need to consider one execution:〈

o : c
∣∣ Pr: balance := balance + amount ; return ε,
Att: α[H 7→ h0][balance 7→ b0]

〉
R1−→

〈
o : c

∣∣ Pr: return ε, Att: α[H 7→ h0][balance 7→ b0 + a0]
〉

R10′

−→
〈
o : c

∣∣ Pr: ε, Att: α[H 7→ h0
_ [caller←o.deposit(a0)]][balance 7→ b0 + a0]

〉
Clearly, if the invariant holds for H = h0 and balance = b0, it also holds for H =
h0

_ [caller←o.deposit(a0)] and balance = b0 + a0.
Let’s now turn to payBill. If there is enough money to perform the payment, the

await is skipped and the reasoning is similar to what we did for deposit. Otherwise,
there is too little money and the payment must wait, leading to this execution:〈

o : c
∣∣ Pr: await balance ≥ amount ; balance := balance − amount ; return ε,
Att: α[H 7→ h0][balance 7→ b0]

〉
R4′

−→
〈
o : c

∣∣ Pr: await balance ≥ amount ; balance := balance − amount ; return ε,
Att: α[H 7→ h1][balance 7→ b1]

〉
R3−→

〈
o : c

∣∣ Pr: balance := balance − amount ; return ε,
Att: α[H 7→ h1][balance 7→ b1]

〉
R1−→

〈
o : c

∣∣ Pr: return ε, Att: α[H 7→ h1][balance 7→ b1 − a0]
〉

R10′

−→
〈
o : c

∣∣ Pr: ε,Att: α[H 7→ h1
_ [caller←o.payBill(a0)]][balance 7→ b1 − a0]

〉
Rewrite Rule R4′ suspends and reactivates the process. When the process is reac-
tivated, H and balance might have changed; their new value is denoted h1 and b1,
respectively. Furthermore, we may assume that the invariant holds, and from the
await guard, we know that balance ≥ amount , that is, b1 ≥ a0. From there, it’s
easy to prove that the invariant holds at the end of the method’s execution.

Because the open system semantics focuses on a single process executing in an
unspecified environment, an open system configuration will always contain exactly
one object executing one process. Dovland et al. [11] describe a method for compos-
ing objects, including restrictions on the class invariants to account for asynchronous
communication, that can be used unchanged for our semantic setting.

4.3 Connection to the Closed System Semantics

The closed system and the open system operational semantics are fairly similar:
Some rewrite rules are common to both semantics, and for the others there is an
almost one-to-one correspondence between the rules of the two semantics. This
makes it easy to detect inconsistencies between them.

If we wanted to prove that the open system semantics is a safe approximation of
the closed system semantics, we could proceed as follows: We assume that we have
valid class invariants (with respect to the closed system semantics augmented by
an implicit history [13]) for all the classes appearing in an arbitrary Creol program,
and show that each possible closed system behavior is also possible in the open
system semantics, proceeding by cases on the Creol statements.

To illustrate this, we will sketch the proof for await g. If g is enabled, R3
applies for both semantics, so there is nothing to prove. Otherwise, R4 moves the

12



Blanchette and Owe

active process Π to PrQ, then other processes are allowed to run in the object, and
finally R5 reactivates Π and removes the await statement from Pr. Activity in other
objects can be interwoven into this sequence of rewrite rules. In the open semantics,
the behavior of await g with g disabled is captured by R4′ alone. Like R4/R5, it
removes await g from the beginning of the statement list, and it simulates activities
in other objects by allowing nondeterministic extension of the history variable H .
The attributes are assigned random values to reflect activity within the object while
the process was suspended, and the MsgQ and LabCnt fields are updated based on H
to the values they would have had in the corresponding closed system configuration.

We must now show that the side conditions of R4′ are weak enough to model
any possible behavior of R4/R5. (i) R4′ requires that g is initially disabled but that
clearWait(g) is enabled after Π has been reactivated. By inspecting R4 and R5, we
can prove that this will always be the case in the closed semantics. (ii) R4′ specifies
that the new history is an extension of the old history. This obviously holds for
the implicit history of the closed semantics. (iii) R4′ requires the new history to
be well-formed. This can be proved by induction on the length of a closed system
computation. (iv) R4′ requires the invariant to hold when Π is reactivated if it held
when it was suspended. This holds by hypothesis. (v) R4′ requires the call that
initiated Π to be still pending. It suffices to observe that only Π could have sent
the missing reply message, which cannot have happened since Π was suspended.

4.4 Connection to Hoare Logic

With the open system semantics in place, we can interpret Hoare logic formulas as
follows: A partial correctness formulas {P}S {Q} is valid if and only if the state
α′β′ satisfies the postcondition Q for all executions of the form〈

o : c
∣∣ Pr: S; S′, LVar: β, Att: α

〉 ∗−→
〈
o : c

∣∣ Pr: S′, LVar: β′, Att: α′〉
where the initial state αβ satisfies the precondition P . Since the history H is stored
in the object as an attribute, P and Q may refer to H .

Consider the following Hoare axiom schema for await wait:

{∀h, ā. releaseReq(h, ā)⇒ Q[h/H ][ā/Ā]}await wait {Q}

The releaseReq assertion is modeled after the release predicate from Section 4.1:

releaseReq(h, ā) , H � h ∧ wf (h) ∧ Ic(H , Ā)⇒ Ic(h, ā)
∧ pending(h, caller, self , label)

The relationship between the axiom schema for await wait and Rewrite Rule R4′

can be made more obvious by encoding the semantics of the await wait statement
in terms of the following simultaneous random assignment statement [11]:

H , Ā := some h, ā : releaseReq(h, ā)

This statement assigns arbitrary values h, ā to the history H and the other mutable
attributes Ā, such that the condition releaseReq(h, ā) is true. Clearly, the above
random assignment is equivalent to Rewrite Rule R4′ (with wait as the guard).

The Hoare axiom schema for random assignment is {∀ȳ. P ⇒ Q[ȳ/x̄]} x̄ :=
some ȳ : P {Q}, for fresh ȳ. Using it, we derive the axiom schema given above for
await wait. In general, to develop a history-based Hoare logic from a traditional

13



Blanchette and Owe

closed system operational semantics, we follow these steps: (1) Specify an open
system semantics that abstracts away the environment using a history. (2) Develop a
Hoare logic for the language’s sequential subset. (3) Reformulate the open semantics
as an encoding in terms of the language’s sequential subset augmented with random
assignment. (4) Mechanically derive a Hoare logic from this encoding.

The Hoare logic is essentially a reformulation of the open system semantics at
the syntactic level. The strength of the reasoning system depends on the strength
of the class invariant, since the open system semantics relies on class invariants to
determine the possible results of release points.

5 Related Work

The two main interaction models for distributed processes are remote method
invocation (RMI) and message passing [3]. RMI is the approach adopted by
Java and typically leads to unnecessary waiting in a distributed setting; moreover,
Java’s thread concept forces the programmer to choose between reduced parallelism
(using synchronized) and shared-variable interference, and makes reasoning highly
complex [1]. Synchronous message passing also results in unnecessary delays. Asyn-
chronous message passing, as popularized by the actor model [2], is very flexible but
lacks the structure and discipline of object-oriented method calls; moreover, actors
have no direct notion of inheritance or hierarchy. Creol’s release points improve
on the efficiency of future variables, found in several languages [6,18]. Johnsen et
al. [12] provide a more thorough review of alternative communication models.

The open semantics introduced here is inspired by Dovland et al. [11], who
devised an encoding of the Creol language in a nondeterministic sequential language
called SEQ, from which they derived a Hoare logic, following the approach advocated
by de Boer and Pierik [9]. Our presentation retains the history flavor of SEQ.
Histories have been used before both to define the denotational semantics of a
concurrent language [16] and to facilitate program verification [8]. The idea of
recasting the notion of history from the syntactic level to the semantic level is
inspired by de Roever et al. [10], who conduct their soundness and completeness
proofs at the semantic level (in their case, on Floyd inductive assertion networks)
and carry these proofs over to the syntactic level of Hoare logic.

6 Conclusion

The Creol language supports component and object orientation in a high-level and
natural way by means of concurrent objects with processor release points and asyn-
chronous methods calls. The language’s operational semantics is defined using
rewrite rules, which form the core of the language’s interpreter.

In this paper, we introduced an “open system” operational semantics for Creol
that defines the behavior of a single method execution seen in isolation, using a
communication history to abstract away the environment. The semantics can be
seen as the missing link between the Creol interpreter and Hoare logic, bringing the
concept of a communication history to the semantic level. Because the open system
semantics is expressed in rewriting logic, it is straightforward to detect inconsisten-

14



Blanchette and Owe

cies with the interpreter, by comparing the rewrite rules. From the new semantics,
we can easily derive a history-based Hoare logic that is sound and complete by con-
struction. The construction of such a proof system would be significantly simpler
than in Dovland et al. [11], since the communication history is explicitly captured
by the semantics. The open semantics can also serve as a semantic foundation for
studying language extensions, including different network models such as Reo [4].

We have shown in this paper how to construct an “open system” semantics
from a more conventional “closed system” operational semantics. This approach
can easily be adapted to other component-based languages where communication
is done by messages passing, method interaction, or both.

Acknowledgment

We want to thank Willem-Paul de Roever and Martin Steffen for valuable insights
into the nature of semantics, as well as Marcel Kyas, Mark Summerfield, and the
anonymous reviewers for suggesting textual improvements.

References

[1] Ábrahám-Mumm, E., F. S. de Boer, W.-P. de Roever, and M. Steffen, Verification for Java’s reentrant
multithreading concept, “International Conference on Foundations of Software Science and Computation
Structures (FOSSACS 2002),” LNCS 2303, 5–20, Springer, 2002.

[2] Agha, G., I. A. Mason, S. F. Smith, and C. L. Talcott, A foundation for actor computation, J. Funct.
Program. 7 (1997), 1–72.

[3] Andrews, G. R., “Foundations of Multithreaded, Parallel, and Distributed Programming,” Addison-
Wesley, 2000.

[4] Arbab, F., Reo: A channel-based coordination model for component composition, Math. Struct. Comp.
Sci. 14 (2004), 329–366.

[5] Brinch Hansen, P., The nucleus of a multiprogramming system, Comm. ACM 13 (1970), 238–242.

[6] Caromel, D. and L. Henrio, “A Theory of Distributed Objects,” Springer, 2005.

[7] Clavel, M., F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F. Quesada, Maude:
Specification and programming in rewriting logic, Theor. Comput. Sci. 285 (2002), 187–243.

[8] Dahl, O.-J., Can program proving be made practical?, “Les fondements de la programmation,” 57–114,
Institut de Recherche d’Informatique et d’Automatique, Toulouse, 1977.

[9] de Boer, F. S. and C. Pierik, How to cook a complete Hoare logic for your pet OO language, “Formal
Methods for Components and Objects (FMCO 2003),” LNCS 3188, 111–133, Springer, 2004.

[10] de Roever, W.-P., F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel, and J. Zwiers,
“Concurrency Verification,” Cambridge University Press, 2001.

[11] Dovland, J., E. B. Johnsen, and O. Owe, Verification of concurrent objects with asynchronous method
calls, “Proceedings of the 2005 International Conference on Software,” 141–150, IEEE Press, 2005.

[12] Johnsen, E. B. and O. Owe, An asynchronous communication model for distributed concurrent objects,
Softw. Sys. Model. 6 (2007), 39–58.

[13] Johnsen, E. B., O. Owe, and E. W. Axelsen, A run-time environment for concurrent objects with
asynchronous method calls, Electr. Notes Theor. Comput. Sci. 117 (2005), 375–392.

[14] Johnsen, E. B., O. Owe, and A. B. Torjusen, Validating behavioral component interfaces in rewriting
logic, Electr. Notes Theor. Comput. Sci. 159 (2006), 187–204.

[15] Johnsen, E. B., O. Owe, and I. C. Yu, A type-safe object-oriented model for distributed concurrent
systems, Theor. Comput. Sci. 365 (2006), 23–66.

[16] Kahn, G., The semantics of a simple language for parallel programming, “Information Processing ’74:
Proceedings of the IFIP Congress,” 471–475, North-Holland, 1974.

[17] Verdejo, A. and N. Mart́ı-Oliet, Executable structural operational semantics in Maude, J. Log. Algebr.
Program. 67 (2006), 226–293.

[18] Yonezawa, A., “ABCL: An Object-Oriented Concurrent System,” MIT Press, 1990.

15


	Introduction
	The Creol Language
	An Operational Semantics for Creol
	An Alternative Semantics for Open Systems
	Definition of the Open System Semantics
	Example: An Internet Bank Account
	Connection to the Closed System Semantics
	Connection to Hoare Logic

	Related Work
	Conclusion
	References

