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Abstract. Satisfiability modulo theories (SMT) solvers rely on various
quantifier instantiation strategies to support first- and higher-order logic.
We introduce MBQI-Enum, an approach that extends model-based quan-
tifier instantiation (MBQI) with syntax-guided synthesis (SyGuS) tech-
niques. Our approach targets first-order theories without well-established
quantifier instantiation techniques and higher-order quantifiers that can
benefit from instantiations with A-terms. By incorporating a SyGuS enu-
merator, our approach generates a broader set of candidate instantia-
tions, including identity functions and terms containing uninterpreted
symbols, thereby improving the effectiveness of MBQI.

1 Introduction

Satisfiability modulo theories (SMT) solvers combine a Boolean satisfiability
(SAT) solver with decision procedures for interpreted theories. Several SMT
solvers, including Bitwuzla [16], Boolector [17], cvcb [2], veriT [7], and Z3 [15],
also support quantifiers via Skolemization and instantiation. With complete in-
stantiation strategies, SMT solvers offer a semidecision procedure for first-order
logic with theories. SMT has also been partly extended to higher-order logic [4].

Quantifier instantiation is a technique whereby quantified variables in a for-
mula are instantiated with ground terms until a contradiction is found or all
necessary instantiations have been generated. Consider the unsatisfiable axiom
(Vx. p ) A =p b. The SAT solver first finds a model that makes Vx. p = true
and p b false, taken as black boxes. Then the quantifier instantiation strategy of
the SMT solver might heuristically instantiate = with a, resulting in the formula
(Vx. p £) = p a, which is conjoined with the axiom. Next, the SAT solver finds
a new model that also makes p a true. At this point, the instantiation strategy
might instantiate x with b, resulting in (V. p 2) = p b. Since the SAT solver
cannot make p b both true and false at the same time, the axiom conjoined with
the two additional formulas is unsatisfiable at the SAT level, meaning that the
original axiom is unsatisfiable in the SMT logic.

One successful instantiation strategy is model-based quantifier instantiation
(MBQI) [9]. Briefly, it iteratively refines a candidate model constructed from
the quantifier-free part of the problem. This model guides the generation of new
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terms for instantiating quantifiers, reducing the search space. MBQI is complete
for certain fragments and tends to generate small models for satisfiable problems.
But it also has some limitations: First, MBQI instantiates quantifiers only with
terms that denote values in a theory. In particular, it does not consider the
problem’s uninterpreted symbols when creating instantiations, leading it to miss
some useful instantiations. Second, for higher-order problems, MBQI cannot
generate function terms that return an argument, such as the identity Az. z.

Another instantiation strategy, which addresses these limitations, is syntax-
guided instantiation (SyQI) [18]. This constructs a grammar for each universally
quantified variable according to its type and uses enumerated terms derived from
the grammar as instantiations. Its main weakness is that although it is model-
based like MBQI, it uses a less scalable approach to refining models that centers
around syntactic constraints.

In this paper, we propose a new strategy, MBQI-Enum, that combines the
strengths of MBQI and SyQI. Specifically, our strategy augments the set of in-
stantiations created from the MBQI model with instantiations generated by a
syntax-guided synthesis (SyGuS) grammar. It incorporates uninterpreted sym-
bols gathered from the problem. For higher-order problems, it also considers
A-abstractions as potential instantiations. In this way, we exploit the fast model-
finding capabilities of MBQI and the diversity of terms considered by SyQI.

Our work shares some similarities with Preiner et al. [21], but their approach
was limited to selected first-order theories and did not handle higher-order logic.
Our approach is resolutely pragmatic; it does not aim at completeness, which
can be achieved using other instantiation strategies.

As an example where A-terms are needed, consider the unsatisfiable problem
consisting of the axiom Vz.3z,y. z ¢ y # x, where z ranges over binary functions.
Running cveb with strategies such as MBQI and higher-order E-matching [4]
leads the solver to give up early. By contrast, with our strategy, cveb immediately
finds a contradiction based on the substitution {z — Az, y. x}. Indeed, if we
instantiate z with Az, y. « in the axiom and S-reduce, we obtain = # x.

We implemented MBQI-Enum in cveb. Our empirical evaluation finds that
the strategy increases the number of solved problems for a benchmark suite con-
sisting of various first-order SMT-LIB files by a noticeable margin. Our approach
is especially useful to solve unsatisfiable problems involving theories without well-
established quantifier instantiation techniques. We can also report substantial
gains on higher-order TPTP benchmarks. The raw evaluation data are publicly
available online.?> Our source code, along with instructions for reproducing the
experiments, is also available online.*

2 Preliminaries

Our work relies on the following pillars: higher-order logic, SMT with quantifiers,
MBQI, and SyQI.

3 https://doi.org/10.5281 /zenodo.14627782
* https://doi.org/10.5281/zenodo.14604430
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Higher-Order Logic. Monomorphic higher-order logic [1,10], also called sim-
ple type theory [8], generalizes classical first-order logic by allowing quantifica-
tion over functions. The syntax distinguishes between types and terms. Types 7
are either base types k or applications of the function arrow — to two types:
71 — To. The type of Booleans is denoted by o.

The term language is based on Church’s simply typed A-calculus, where terms
t,e are inductively defined as variables w, x, y, z, ..., function symbols p, f,
constants a, b, ¢, term applications ¢ ¢/, and A-abstractions Ax. ¢, where z is the
bound variable and ¢ is the body. A variable is free in a term if it is not bound
by a A-abstraction. We let T stand for z1,zo,...,x,, where n > 1. Terms are
syntactically equal modulo a-, 8-, and n-conversion, meaning, for example, that
(Az. z) cis equal to c. Throughout this work, we assume that terms are expressed
in n-long B-normal form, meaning that n-expansion and S-reduction have been
applied exhaustively. The type of a term ¢ is of the form 74 — --- = 7, — T,
where 7; are the argument types and 7 is the result type. If 7 is of type o, which
is the distinguished Boolean type, we call ¢ a predicate. A term of type o is called
a formula.

SMT with Quantifiers. Traditionally, SMT solvers work on problems in first-
order logic, but they have partly been extended to higher-order logic [4], and
in this paper we consider both first- and higher-order problems. SMT solvers
that support quantifiers typically do so via a combination of Skolemization
and instantiation: Universal quantifiers occurring negatively can be Skolem-
ized; universal quantifiers occurring positively are instantiated heuristically;
and existential quantifiers are expressed in terms of V using the equivalence
(Fz. ¢) < —(Vx. =¢). To simplify the presentation, we will assume that for-
mulas are in a normal form where possibly negated V-quantifiers all appear in a
cluster at the top level—e.g., Vz,y. - Vz. px y 2.

Let T be a theory for a set of interpreted symbols, and let F' be the input
formula over 7. The goal is to find a model of F' or derive a contradiction. If F’
does not contain quantifiers, the quantifier-free part of the SMT solver searches
for a T-satisfiable set L of literals that propositionally satisfies F'. If such an
L exists, F' is T-satisfiable (i.e., satisfiable with respect to 7); otherwise, F' is
T-unsatisfiable.

If the formula F' contains quantifiers, the quantifier-free solver cannot be
directly applied. In the SMT solver’s main loop, presented in Algorithm 1, the
SMT solver tries to find a set L of literals whose atoms come from F' and that
propositionally satisfies F'. Briefly, L is partitioned into a set E of ground literals
and two sets of quantified literals, (), and @),,. The ground literals within £ must
be T-satisfiable, (), consists of formulas of the form Vz. ¢, and @), consists of
formulas of the form —VZz. . If the solver is unable to find such an L, it concludes
that the formula F' is T-unsatisfiable.

On the other hand, if a set L of literals is found, new lemmas A are gen-
erated through the instantiation and Skolemization rounds. The instantiation
round generates instantiation lemmas—that is, lemmas of the form ¢; = ¢;0—
from the sets @, and E. For each ¢; € @);, an instantiation strategy computes
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Algorithm 1 The main SMT loop

1: function sMT-LOOP(F)

2 find a set of literals L where

3 — L |=p F, where L’s atoms are a subset of atoms(F')

4: — L can be partitioned into (E, Qp, @n), where

5: — F is ground and T -satisfiable

6 — @p consists of universally quantified atoms

7 — @n consists of negated universally quantified atoms
8 if no such L exists then

9: return unsat

10: A < INSTANTIATION-ROUND(Qp, F') U SKOLEMIZATION-ROUND(Qy)
11: if A=( then

12: return sat

13: else

14: return sMT-LOOP(F U A)

15: function INSTANTIATION-ROUND({q1,...,qn}, E)
16: I+ 0

17: for each i € {1,...,n} do

18: I+ I1U{q = qio | 0 € INsTS(qs, E)}

19: return /

20: function INSTS(g;, E)

21: return a set of substitutions for g; based on (g;, E)

22: function SKOLEMIZATION-ROUND({—q1,..., " ¢n})

23 K<«

24: for each i € {1,...,n} do

25: K + K U{~¢; = —qiok,:}, where oy ; maps to Skolem constants for g;

26: return K

substitutions ¢ for every top-level variable in ¢; mapping them to terms. The
Skolemization round generates Skolemization lemmas from the set @,—that is,
lemmas of the form —¢; == —¢;0;;, where o0;; instantiates every top-level vari-
able in ¢; with a Skolem constant. (We abuse notation and write (VZ. ¢)o to
mean ¢o, syntactically conflating quantifier instantiation and substitution.) The
lemmas are then added to the original formula F', and the SMT loop is called
recursively. On line 12 of Algorithm 1, we assume that the instantiation strategy
denoted by INSTS is model-sound, meaning that if INSTS returns an empty set of
substitutions, it indicates that the formula F' is T -satisfiable.

We now define the instantiation strategy INSTS starting with a naive ap-
proach. Subsequently, we will introduce more advanced techniques, including
MBQI and SyQI, followed by our strategy, MBQI-Enum. These strategies can
replace the naive approach to improve the solver’s efficiency.

Definition 2. An instantiation strategy takes as input a set of ground terms F
and a quantified formula ¢ of the form VZ. ¢, and outputs a set of grounding
substitutions {o1,...,0m,}, where the variables mapped by o; are exactly the
variables in Z for each i € {1,...,m}.
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Example 3. Let a: Int and p : Int — Bool. Let F be the formula (Vy. p y) A
- p a, where y : Int. In the SMT loop, the sets E = {-p a}, Qp, = {Vy. p y},
and @, = () are defined. The naive instantiation strategy produces substitutions
mapping y to terms from E of the same type as y, as shown below:

q€Qp INSTS(E,q)
Vy.py {{y+a}}

The instantiation lemma (Vy.p y) = p a is added to F. Now, the quantifier-free
solver finds a contradiction.

The most widely used strategy for quantifier instantiation is E-matching [14].
This is a heuristic and typically incomplete technique that chooses substitutions
by matching ground terms with patterns. In Example 3, the ground term p a
matches p y for substitution {y — a}, and hence this substitution is returned
by the strategy. Over the past decade, SMT solvers have been extended with
more sophisticated approaches. Conflict-based instantiation [26] is another in-
complete technique that attempts to find a single instantiation that would induce
a ground conflict, before resorting to E-matching. MBQI [9] is a technique for
finding instantiations that refute a candidate model, and is typically run when E-
matching saturates. This strategy is also able to answer “7T -satisfiable” when no
such instantiation can be found. Enumerative instantiation [22] is an alternative
to MBQI that focuses on finding instantiations over the current set of ground
terms that are not entailed in the current context. This has similar properties
to MBQI but is more tailored for unsatisfiable instances.

Quantifier instantiation strategies that target specific theories have also been
proposed. Counterezample-guided instantiation [24] is complete for specific the-
ories with quantifiers that admit quantifier elimination, such as linear arithmetic
and bit vectors. SyQI [18] is a more general purpose strategy that uses syntax-
guided synthesis for enumerating instantiations and is effective for theories that
otherwise do not have well-established instantiation strategies.

MBQI. MBQI iteratively refines a candidate model M constructed from the
quantifier-free part of the problem. As shown in Algorithm 4, the strategy re-
places function symbols in the body ¢ of the quantified formula with their in-
terpretation in M. If = ¢ is T-satisfiable, this means that a model M’ exists,
and the strategy returns the substitution {y, — yM', ..., y, — yM'}, where
yM ' represents a term denoting the interpretation for the variable y; in M’.

Example 5. Let a: Int and p : Int — Bool. Let F' be the input formula
My.py) NO<a<2A-pa

where y : Int. In the SMT loop, our set of literals L is partitioned into E = {0 <
a<2 -pa}, Qp={Yy.py}, and @, = 0. MBQI builds a model M from E—
assume a = 1 and p™ = Az. x # 1. (We abuse notation by denoting values
using A-terms.) It then considers the negation of the body of the quantified
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Algorithm 4 The MBQI strategy

1: function INSTS MBQI(q, E)
2: assume q is Yy1,...,Yn. ¢

3: let M be a model of E

4: if = ¢™ is unsatisfiable then

5: return ()

6: let M’ be a model of = ¢™

7. return {{y1 =y}, .. yn s yM )}

formula in @), under the interpretation M, which is = (Az. z # 1) y, which
simplifies to y = 1 and has a model M’ where yM/ = 1. Thus, MBQI generates
the substitution {y — 1}, from which the instantiation lemma (Vy.p y) = p 1 is
constructed and added to F'. Now, the quantifier-free solver finds a contradiction.

Example 6. Let f : Int — Int — Bool. Let F be the higher-order formula

Vo,y.yx #y (fx)

where x : Int and y : Int — Int. The set L is partitioned into sets E = 0,
Qp = {Vx,y.yx #y (f z)}, and @, = 0. MBQI constructs a model M for E
such that fM = X\z. 0. It then considers the negation of the body of the quantified
formula in @, under the interpretation M. This is =y & # y ((Az. 0) ), which
simplifies to y x = y 0 and has a model M’ where #M =0 and yM, = Az. 0.
Thus, it generates the substitution {z — 0, y — Az. 0} based on the candidate
model. Now, the quantifier-free solver finds a contradiction. Indeed, if we
instantiate x and y with this substitution and S-reduce, we obtain 0 # 0.

SyQI. SyQI uses SyGuS to choose instantiation terms. It aims to synthesize a
term ¢ for a variable z in a given formula Vz. p & such that —p t holds. Each
quantified variable is associated with a SyGuS grammar. The main advantage of
SyQI is that, unlike MBQI, it does not require theory-specific quantifier instan-
tiation procedures. The only parts that depend on the theory are the grammar
and the T -satisfiability check for the generated instances.

3 The Method

The core idea behind our new instantiation strategy, MBQI-Enum, is to integrate
a SyGuS enumerator within MBQI, thereby enabling the generation of a broader
set of candidate instantiations for quantified variables.

Instantiation Strategy. Instead of restricting instantiations to ground terms
derived from the current MBQI model, our strategy uses a SyGuS grammar
to produce additional candidate instantiations. This grammar is not limited to
ground terms with the types of the quantified variables; rather, it incorporates
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uninterpreted symbols gathered from the entire formula. As a result, it generates
a more extensive and comprehensive language of terms.

For each quantified variable in a formula, our strategy performs iterative term
enumeration. It generates candidate substitutions from the extended grammar
and tests each enumerated term within the formula. For each enumerated term,
the strategy tries to apply it as an instantiation for the quantified variable. For
higher-order problems, it also considers A-abstractions as candidate instantia-
tions. If the strategy produces a useless instance according to the current model,
it continues to the next candidate until a suitable instantiation is found or all
possibilities are exhausted.

When none of the candidate instantiations derived from the SyGuS enumer-
ation prove successful, MBQI-Enum reverts to the original MBQI model-derived
instantiation. This fallback mechanism ensures that our strategy can in principle
solve any problem that MBQI can solve.

Our initial motivation for developing MBQI-Enum was to increase cvch’s
success rate on higher-order problems. Nevertheless, incorporating uninterpreted
symbols gathered from the entire formula extends our approach’s applicability
to first-order problems using various SMT theories.

Our approach is presented in Algorithm 7. The strategy starts by invoking
MBQI to generate a set of initial substitutions X, since the goal is to postpro-
cess the substitutions generated by MBQI using a SyGuS enumerator. If 3 is
empty, the strategy immediately returns an empty set, indicating that no valid
instantiation could be found. Otherwise, it proceeds by initializing ¥ to contain
a single substitution o. Next, it generates additional substitutions by extending
the current one using the SyGuS enumerator.

Our strategy then iterates over the quantified variables y; in the formula ¢
to instantiate. For each variable, it constructs a grammar G; used to guide the
enumeration of candidate terms for substituting y;. The enumeration starts by
generating terms from G; in a sequential manner. For each term e, the strategy
creates a new substitution ¢’ by mapping 1; to e in the current substitution
o. It then checks whether the negation of the body ¢ under ¢’ is T-satisfiable.
This check serves to maintain the invariant that the negation of the body of the
quantified formula, after applying the current substitution, remains 7T -satisfiable.
In other words, we want to ensure that the generated instantiation refutes the
current model (cf. line 6 of Algorithm 4). If it does, o is updated to o', and the
strategy moves on to the next variable. Once all variables have been considered,
the strategy returns the refined substitution o.

Choice of Grammar. Term enumeration is based on a SyGuS grammar.
Choosing an appropriate grammar for each quantified variable is crucial for se-
lecting the correct instantiations. Our strategy builds a set .S of symbols based on
three Boolean options: syms _global, ext wars, and syms _local. These options
specify which symbols from the formula F' will be included when constructing
the SyGuS grammar.

If no options are enabled, the set S is empty. If syms_global is enabled, all
function symbols from the entire formula F' are contained in S. If ext wvars is



8 L. Kondylidou et al.

Algorithm 7 The MBQI-Enum strategy

1: function INSTS MBQI FAST SYGUS(q, E)
2: assume q is Yy1,...,Yn. ¢

3: let ¥ < INsTs _MBQI(q, E)

4: if ¥ =0 then

5: return ()

6: else

7 let ¥ < {0}

8: for each i € {1,...,n} do

9: let G; <~ CHOOSE GRAMMAR(q, ¥;)
10: for each j € {1,2,...} do

11: let e <~ GET_ENUM _TERM(Gj, j)
12: if e does not exist then

13: break

14: o'« oy — €

15: if = ¢o’ is sat then

16: o<+ o

17: break

18: return o

19: function CHOOSE GRAMMAR(q, ¥;)
20: let F' be the original input formula
21:  let S+ 0

22: if option syms_global then

23: S <+ S Usymbols(F)

24: if option _syms_local then

25: S + S Usymbols(q)

26: if option_ext_vars then

27: S+ SU{¥it1,---,Yn}

28: return grammar that generates terms of the same sort as y; over symbols in S

enabled, S is augmented with bound variables from the formula ¢ that are not yet
instantiated. Finally, if syms local is enabled, the set S also contains function
symbols specifically from ¢. Based on these settings, our approach constructs a
grammar that generates terms over the symbols in S, while ensuring that these
terms are well-typed with respect to the type of y;.

For higher-order variables, since we use 7n-long S-normal form, it is sufficient
to consider only grammars that generate A-abstractions. The variables bound
by these A-abstractions are considered terminal symbols of the grammar that
generates the abstraction’s body. For example, for a function variable whose
arity is n and whose arguments are of the same base type as its return type, we
add grammar rules of this form:

A= Ary, ...,z B

Bui=x| | an
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Moreover, there will be additional rules for B and possibly for some of the
grammar’s other nonterminal symbols. This ensures that any A instantiations
are formed by enumerating the body B over the bound variables z1, ..., z,.

Example 8. Let a: Int and p : Int — Bool. Let F' be the input formula

(Vy.—p(ya)) Apa

where y : Int — Int. The set L is partitioned into E = {p a}, Qp, =
{Vy.—p (y a)}, and @, = 0. MBQI generates substitutions such as {y — Az. 0},
{y— Az. 1}, .... As a result, the solver does not terminate. In contrast, MBQI-
Enum augments these instantiations based on enumeration. On the first iteration
of the SMT loop, MBQI-Enum considers the set ¥ = {{y — Az. 0}} consist-
ing of the first substitution generated by MBQI. MBQI-Enum first constructs a
grammar for y. The set of symbols S is empty. The grammar is

A=Az B
B:=x|0]1|B+B|B-B]|ite(C,B,B)
Cu=true|false | B=B|B<B|-C|CAC|CVC

Next, MBQI-Enum enumerates terms derived from the grammar and creates
the substitution ¢/ = {y — Az. 2} by updating o with the enumerated term
Az. z from the grammar. The strategy then checks whether the negation of the
body of the quantified formula after applying ¢’ is T-satisfiable. Indeed, if we
instantiate y with Az. x and S-reduce, we obtain p a, which is T -satisfiable. The
substitution o is then updated to {y — Az. x} and returned. Back in the SMT
loop, the instantiation lemma (Vy. —p (y a)) = —p a is added to F. Now, the
quantifier-free solver finds a contradiction.

The candidate substitutions generated by MBQI-Enum (M) are listed below:

Iter. q€Qyp E M(q, E) New E
1 vy.-p(ya) {pa} {{y—Av.2}} {pa,-pa}

The first column shows the number of the SMT loop iteration. The second
column shows the quantified formula ¢, and the third column shows the set E
of ground literals before every iteration. The fourth column shows the possible
selection of substitutions of y that are considered with MBQI-Enum, and the
fifth column shows the set E after every iteration.

In this example, MBQI-Enum was able to terminate in the first iteration,
since it found a substitution for y that immediately leads to a refutation, whereas
MBQI considers a repeating pattern of instantiations that leads to a timeout.

Another useful candidate substitution would have been {y — Az. a}. MBQI-
Enum would have found this substitution as well if it had not terminated after
finding {y — Az. x}.

In an informal, preliminary evaluation on higher-order TPTP benchmarks,
we determined that the most successful configuration enables ezt wvars and
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syms__local and leaves syms__global disabled. The following examples are based
on this configuration.

Example 9. Let p: Int — Bool and f : Int — Int. Let F' be the input formula
Vy. - Vz.—mp (y 2) Vp (f 2)

where y : Int — Int and z : Int. The set L is partitioned into sets E = 0,
Qp = {Yy. ~Vz.=p (y 2) Vp (f 2)}, and Q, = 0. MBQI generates substitutions
such as {y — Az. 0}, {y — Az. 1}, ..., and the solver goes on forever. In contrast,
MBQI-Enum adds the first substitution generated by MBQI, {y — Az. 0}, to
the set ¥ and proceeds to postprocess it. Our strategy first constructs a grammar
for y using the function symbols from g. The set of symbols used is S = {f, p}.
The grammar is

A= Xx. B
B:u=z|fB|0|1|B+B|B-8]|ite(C,B,B)
Cu=true|false | B=B|B<B|pB|-C|CAC|CVC

In the first iteration, MBQI-Enum generates the substitution ¢ = {y +—
Az. z}. The instantiation lemma (Vy. =Vz. —p (y 2) Vp (f 2)) = = Vz. =p 2z V
p (f z) is added to F. The set L is now partitioned into E =0, @, = {Vy. = Vz.
—p(y2)Vvp (f2)},and @, = {~Vz.-p 2Vp (f 2)}. Next, the quantifier in @, is
Skolemized. The Skolemization lemma (—=Vz.—p 2Vp (f 2)) = p skyA—p (f sky)
is added to F. As a result, the set E is updated to {p sky,—p (f sky)}.

In the next iteration, the substitution o is modified to {y — Az. f z}, in-
corporating the enumerated term Ax. f x from the grammar. The instantiation
lemma (Vy. =Vz.—p (y 2) Vp (f 2)) = —Vz.-p (f 2) Vp (f 2) is then added
to F. After Skolemization, the set E is augmented with {p (f ske), —p (f skq)}.
The quantifier-free solver finds a contradiction. Indeed, if we instantiate y with
Azx. f z in F', B-reduce, and Skolemize z, we obtain p (f ska) A = p (f ska).

The candidate substitutions generated by MBQI-Enum (M) are listed below:

Tter. q€Qp E M(q, E) New E

1 Vy. = Vz.-p (yz) Vp (f 2) ] {{y — Xz. z}} {pski,—p (fski)}
2 Vy.-Vz.op(yz)Vp(fz) {pski,—p(fski)} {{y—= Az fa}}  {pski,~p (fski)
p (fskz), =p (fska)}

In this example, our strategy terminated in the second iteration, whereas MBQI
would lead the solver to time out.

Example 10. In this example, our strategy is run with and without the syms
global option enabled. Let u be an uninterpreted sort, and let a : w and b : u.
Let F be the input formula

(Va,y,z.xy=xzz)Na#£b

where z : (u — u) = u, ¥y : u = u, and z : v — u. The set L is partitioned
into E = {a # b}, Qp = {Va,y,2. 2 y =z z}, and @, = 0. MBQI-Enum fails
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to construct a grammar for a variable x, y, or z that has any terms of the same
type as the variable. As a result, it cannot generate any substitutions, and the
solver gives up early. In contrast, when the syms _global option is enabled in
MBQI-Enum, function symbols from the entire formula F' are used to construct
a grammar for each variable x, y, and z. For these variables, the set of symbols
is {a,b}. The grammar for = follows:

A= w. B
B:=wB|alb]|ite(C,B,B)
C u=true|false | B=B|-C|CAC|CVC

(Since w is of unary function type, we pass an argument corresponding to the
nonterminal B in the second grammar rule.) The grammar for y and z follows:

A= w. B
B:=w|a|b]ite(C,B,B)
C u=true|false | B=B|-C|CAC|CVC

Our strategy then enumerates terms derived from the grammar and builds the
substitutions {x +— Aw. w b}, {y — Aw. w}, and {z — Aw. a}. The instantiation
lemma (Vz,y,z. 2 y = x z) = b = a is added to F. Now, the quantifier-free
solver finds a contradiction. Indeed, if we instantiate z with Aw. w b, y with
Aw. w, and z with Aw. a in F and S-reduce, we obtain a =b A a # b.

The candidate substitutions generated by MBQI-Enum (M) are listed below:

Iter. q€Qp E M(q,E) New E
1 Vo,y,z.zy=zz {a#b} 0 {a#b}

The same information is provided for MBQI-Enum with the option
syms__global enabled (M+g) below:

Tter. q€Qp E M+g)(q, E) New E
1 Veyy,zzy=xzz {a#b} {{r— A w.wb}, {a#ba=b}
{y = dw. w},
{z = dw. a}}

In this example, MBQI-Enum with syms__global was able to terminate in the first
iteration, since it found a substitution for the quantified variables that leads to a
refutation. By contrast, default MBQI-Enum does not terminate since it cannot
build any substitutions.

4 Implementation and Heuristics

We implemented MBQI-Enum as an extension of cvch’s implementation of
MBQI. Our strategy is invoked after the current MBQI strategy returns a can-
didate instantiation (line 3 of Algorithm 7).
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For each variable, our algorithm chooses a grammar (line 9) and initializes a
term enumeration data structure. Since the choice of the grammar is fixed over
the course of solving, the grammar is constructed only once. Our implementation
uses the utility for fast SyGuS enumeration described by Reynolds et al. [23] as
a black box. Since the grammar for each variable is fixed, we can cache the
enumeration and invoke this utility only on line 11 of Algorithm 7, when j is
larger than the number of terms we have generated on a previous run, where we
notice that a term that was skipped in a previous call to this method may be
incorporated into instantiations on later calls.

On line 15 of Algorithm 7, we use cvch’s ability to call a copy of itself as
a subsolver. As an optimization, this satisfiability check can be avoided if the
query to check simplifies to “true” or “false.”

5 Evaluation

We extensively evaluated our cvch implementation of MBQI-Enum on both
higher- and first-order benchmarks.

Setup. As the base configuration, we use the setup that we found to be the most
successful in a preliminary evaluation: MBQI-Enum with the options ezt wvars
and syms_local enabled by default. We denote this configuration by cve5[M].

We first compare the performance of the base configuration against tra-
ditional instantiation techniques: cvchle], which uses enumerative instantia-
tion [22]; cveb[s], which uses SyQI [18]; cvch[e], which uses counterexample-
guided instantiation [24]; and cve5[m], which uses MBQI [9].

Additionally, for higher-order problems, we also include a comparison with
the state-of-the-art provers Vampire [6] and Zipperposition [28]. For Vampire,
we used its portfolio mode, while Zipperposition was run in its so-called “best”
mode, since it does not include a portfolio.

Next, we compare the base configuration on first-order benchmarks with three
state-of-the-art SMT solvers: Z3 [15], the only SMT solver besides cve5 that sup-
ports all the logics handled by our implementation; Bitwuzla [16], which supports
only logics without arithmetic; and Boolector [17], which implements the most
closely related approach to ours, counterexample-guided model synthesis [21],
but focuses only on the theory of bit vectors.

Finally, we compare the performance of all four MBQI-Enum configurations
on both higher-order and first-order problems. In this evaluation, we toggled
one option at a time: cve5[M—x| denotes MBQI-Enum with ezt wars disabled,
cveh|M—£] denotes MBQI-Enum with syms_local disabled, and cve5[M+g| de-
notes MBQI-Enum with syms_ global enabled.

We performed all experiments on a system with a 40-core Intel Xeon Silver
4114 processor at 2.20 GHz and with 192 GB of RAM using Debian Bookworm
as the operating system. We used a time limit of 60 seconds for each benchmark.
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Table 1. MBQI-Enum vs. other strategies and provers on TPTP THO benchmarks

Vampire Zipperposition cvchle] cveb[s] cveb[m] cveb[M]

Satisfiable 6 0 72 78 121 129
Unsatisfiable 1757 1499 1643 1304 1637 1670
Total 1763 1499 1715 1382 1758 1799
Unknown 0 0 350 38 127 59
Timeouts 999 1263 697 1342 877 904

Table 2. MBQI-Enum configurations on TPTP THO benchmarks

cve5[M]  cveb[M—x] cveb[M—4]  cve5[M+g|

Satisfiable 129 129 122 129
Unsatisfiable 1670 1665 1655 1672
Total 1799 1794 1777 1801
Unknown 59 65 88 56
Timeouts 904 903 897 905

Higher-Order Problems. The higher-order part of the experiments was car-
ried out on monomorphic higher-order problems (THO) from version 9.0.0 of the
TPTP library [27]. The benchmark set consists of 2762 problems. From the 3962
THO problems, we excluded 1200 benchmarks that one or more systems could
not parse (e.g., because they use arithmetic).

The results are summarized in Table 1. In this and the following tables, bold
indicates the most successful system. Notably, our approach achieves the high-
est total count of solved benchmarks, surpassing the nearest competitor by 36
solved problems. Overall, it outperforms all other cvch strategies as well as Zip-
perposition in higher-order logic and solves 87 fewer unsatisfiable problems than
Vampire. Our strategy’s advantage over Zipperposition likely stems from using
Zipperposition’s “best” mode instead of a portfolio. Remarkably, our strategy
manages to solve 129 satisfiable problems, whereas Vampire solves only 6, and
Zipperposition none.

Although our approach is based on both MBQI and SyQI, it is considerably
stronger than either of those techniques used individually. Specifically, compared
with MBQI, which was until now the most successful strategy in cveb, MBQI-
Enum solves an additional 41 problems without any losses. When compared with
SyQI, our strategy solves 417 more benchmarks while also incurring no losses.

Table 2 shows the evaluation of the different configurations of MBQI-Enum
on higher-order problems. We see that all three options are beneficial, but for
syms__global the difference is only two problems. (In our preliminary evaluation,
we had found syms_global to be slightly harmful, which is why we disabled it
by default.)



14 L. Kondylidou et al.

First-Order Problems. The experiments on first-order problems were con-
ducted on the SMT-LIB benchmarks [5] from April 2024, focusing on logics that
support quantifiers. We included logics involving theories such as floating-point
arithmetic, linear and nonlinear arithmetic, and bit vectors. Overall, we consider
the logics BV (bit vectors), FP (floating-point arithmetic), LIA (linear integer
arithmetic), LRA (linear real arithmetic), NIA (nonlinear integer arithmetic),
NRA (nonlinear real arithmetic), and their combinations: BVFP, BVFPLRA,
and FPLRA. We also incorporate ABV (arrays and bit vectors) and UFBV (un-
interpreted functions with bit vectors). In total, our benchmark set consists of
21605 problems.

Table 3. MBQI-Enum vs. other techniques and solvers on SMT-LIB benchmarks

Library Boolector Bitwuzla 73 cveble cvebls| cvebe] cveb|m] cve5| M|
SAT UNSAT SAT UNSAT SAT UNSAT SAT UNSAT SAT UNSAT SAT UNSAT SAT UNSAT SAT UNSAT

BV 585 4980 642 5066 547 5001 202 4836 313 4911 437 5190 611 4835 594 5076
SAT+UNSAT 5565 5708 5548 5038 5224 5627 5446 5670
ABV 378 47 387 103 21 930 618 237 17 90 790 135 731 157
ABVFP 24 0 29 2 10 3 15 0 13 0 31 0 31 0
ABVFPLRA 32 1 55 3 14 2 18 1 18 2 41 2 42 2
BVFP 179 12 164 5 26 12 102 3 106 0 167 4 169 7
BVFPLRA 233 25 205 18 80 25 119 24 111 24 220 24 226 25
FP 130 2176 17 1802 113 1591 99 2040 116 2015 115 2059 116 2223
FPLRA 37 0 23 0 20 0 24 0 22 0 37 0 36 0
UFBV 26 120 43 103 8 103 9 108 8 52 23 84 21 105
Subtotal 1681 7447 1470 7037 494 7502 1317 7324 848 7373 2035 7143 1966 7595
SAT+UNSAT 9128 8507 7996 8641 8221 9178 9561
LIA 140 230 12 170 150 236 150 266 150 167 149 239
LRA 760 1361 468 1117 478 1130 593 1303 545 1123 557 1161
NIA 65 144 16 43 49 45 64 144 67 47 80 61
NRA 3 3806 1 3802 1 3785 3 3801 3 3712 3 3802
Total 2438 12578 991 12634 1995 12520 1658 12887 2800 12192 2755 12858
SAT+UNSAT 15016 13625 14515 14545 14992 15613

The results, summarized in Table 3, show that our approach performs re-
markably well against all other cveh configurations, as well as against Boolector,
Bitwuzla, and Z3, across all SMT logics. Notably, it achieves the highest total
count of benchmarks solved, surpassing the nearest competitor by 597 solved
problems. Our strategy solves the most satisfiable problems in ABVFP and NTA
and achieves the highest number of unsatisfiable benchmarks solved in FP.

For the evaluated SMT theories, our strategy is a clear improvement over
previous instantiation strategies. When compared with MBQI, it successfully
solves an additional 701 problems while incurring a loss of 79 problems across
all logics. The raw evaluation data also reveals a notable reduction in timeouts,
decreasing from 3491 to 2343.

Our strategy also substantially outperforms enumerative instantiation and
SyQI across most benchmark categories. Both of these strategies share an enu-
merative nature. The former relies on evolving ground terms within the current
context, while the latter employs a fixed grammar derived from the initial set of
terms. Overall, enumerative instantiation and SyQI perform clearly better than
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Table 4. MBQI-Enum configurations in SMT-LIB benchmarks

Library cve5[M] cveh[M—x] cve5[M—/) cve5[M+g]
SAT UNSAT SAT UNSAT SAT UNSAT SAT UNSAT
ABV 731 157 731 157 647 135 737 159
ABVFP 31 0 31 0 31 0 32 0
ABVFPLRA 42 2 42 2 41 2 38 2
BV 594 5076 594 5075 616 4843 600 5087
BVFP 169 7 169 7 167 4 176 2
BVFPLRA 226 25 226 25 220 24 231 25
FP 116 2223 116 2223 115 2092 116 2223
FPLRA 36 0 36 0 37 0 36 0
LIA 149 239 149 239 150 167 149 239
LRA 557 1157 557 1157 546 1129 557 1157
NIA 80 61 80 61 68 47 78 56
NRA 3 3802 3 3802 3 3712 3 3802
UFBV 21 105 21 105 24 89 17 99
Total 2755 12858 2755 12857 2665 12244 2771 12854

MBQI on unsatisfiable benchmarks (+442), but they underperform on satisfiable
benchmarks (—805). This highlights the need for a hybrid approach that com-
bines model-based and enumerative techniques. Our strategy incorporates the
enumerative aspects of SyQI while enhancing the model-based features of MBQI
to generate instantiations. This is likely why it outperforms all the mentioned
configurations. Our strategy also matches or outperforms counterexample-guided
instantiation in most logics. However, in logics such as LRA, counterexample-
guided instantiation is expected to perform better due to its specialized handling
of such theories.

Compared with Boolector, our strategy outperforms it on both satisfiable
and unsatisfiable benchmarks, solving 105 more benchmarks overall. Compared
with Bitwuzla and Z3, our approach performs very well across various logics,
often closely matching or even surpassing both competitors. Overall, our strat-
egy solves 433 more benchmarks than Bitwuzla and 597 more than Z3 in total.
Bitwuzla is generally stronger for satisfiable problems, which is not surprising be-
cause MBQI-Enum is primarily designed for deriving contradictions. Z3’s higher
success rate for real arithmetic is likely attributable to its well-established in-
stantiation strategies for these theories.

Finally, the evaluation of the various configurations of MBQI-Enum on first-
order SMT-LIB benchmarks across different theories is shown in Table 4. We
see that most configurations perform similarly; however, MBQI-Enum without
the syms_local option enabled shows significantly poorer performance.

In summary, our approach is highly effective on first-order SMT-LIB bench-
marks, solving the highest number of benchmarks. With refinements tailored to
specific logics, we suspect that its performance could be improved further.
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6 Related Work

Mainstream approaches for quantifier instantiation in SMT are typically cen-
tered around E-matching [14]. Conflict-based instantiation [3,11,26] can improve
the solver’s ability to answer “7-unsatisfiable” by prioritizing instantiations that
induce quantifier-free conflicts. As a whole, these techniques are generally incom-
plete and do not target specific background theories. For satisfiable instances,
Ge and de Moura [9] introduced MBQI, which is complete for certain fragments.
Finite model finding [25] is a variant of this technique that targets quantified
formulas whose domains are small and finite. Approaches for quantified formulas
in higher-order logic are discussed by Barbosa et al. [4], but, in contrast to this
work, they are based on (higher-order) E-matching,.

Other approaches for higher-order logic, notably in Vampire [6] and Zipperpo-
sition [28], rely on superposition. Vampire has been initially extended to handle
higher-order reasoning using applicative first-order logic with combinators. Since
this proved insufficient for problems requiring complex unifiers, its superposition
calculus was later enhanced with native A-abstractions and a depth-bounded ver-
sion of higher-order unification [6]. As for Zipperposition, it also uses a superpo-
sition calculus that directly supports higher-order terms. It tackles the challenge
of higher-order unification by using techniques such as pattern unification and
heuristics to manage undecidability issues.

Certain background theories admit quantifier elimination, which can be han-
dled using domain-specific instantiation strategies. Specifically, efficient and com-
plete instantiation procedures have been developed for quantified linear arith-
metic [24] and quantified bit vectors [19]. These techniques require specific knowl-
edge of the background theory.

Other recent works on quantifier instantiation have pursued enumeration
as a pragmatic means for discovering useful instantiations. Reynolds et al. [22]
introduced enumerative instantiation as an alternative to MBQI, which primarily
focused on first-order logic in the empty theory. This technique has been further
studied in more recent works, where more advanced selection strategies are used
for instantiations, including those based on machine learning [12,13, 20].

The closest related works to ours are counterexample-guided model synthe-
sis [21] and SyQI [18], which both focus on enumerative approaches for finding
useful instantiations in rich background logics. The former was implemented in
the Boolector [17] solver; it was limited to selected first-order theories and did not
handle higher-order logic. The latter work can potentially be used for any theory
but does not leverage MBQI for guiding the instantiation procedure. Our evalu-
ation shows that our MBQI-Enum strategy generally outperforms SyQI overall.

7 Conclusion

We presented a new strategy, MBQI-Enum, for instantiating quantifiers in SM'T
solvers. It extends MBQI with the SyGuS enumerator, thereby augmenting the
number of instantiations considered at every iteration. The main strength of our
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strategy is that it combines the fast model-finding capabilities of MBQI and the
diversity of terms considered by SyQI. MBQI generates very specific instances;
by resorting to a grammar, the terms in our instantiations are more abstract and
therefore tend to lead to more useful instances. We implemented the strategy in
cveh and found that it helps solve many first- and higher-order problems from
SMT-LIB and TPTP for which cvch previously either timed out or gave up early.

Several aspects of our approach present opportunities for future work. First,
we could improve performance by enhancing the quantifier-free solver to better
integrate with our instantiation approach. Moreover, although our instantiation
technique is designed to be generic, we could tailor it to individual SMT logics.
Finally, we could develop more sophisticated instantiation strategies for higher-
order logic. By designing methods that can more intelligently navigate the space
of enumerated terms, we should be able to improve the solver’s ability to handle
complex higher-order problems.
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