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Abstract

In thread-based object-oriented languages, synchronous method calls usually provide the mechanism to
transfer control from caller to callee, blocking the caller until the call is completed. This model of control
flow is well-suited for sequential and tightly coupled systems but may be criticized in the concurrent and
distributed setting, not only for unnecessary delays but also for the reasoning complexity of multithreaded
programs. Concurrent objects propose an alternative to multithread concurrency for object-oriented lan-
guages, in which each object encapsulates a thread of control and communication between objects is asyn-
chronous. Creol is a formally defined modeling language for concurrent objects which clearly separates
intra-object scheduling from inter-object communication by means of interface encapsulation, asynchronous
method calls, and internal processor release points. This separation of concerns provides a very clean model
of concurrency which significantly simplifies reasoning for highly parallel and distributed object-oriented
systems. This paper gives an example-driven introduction to these basic features of Creol and discusses
how this separation of concerns influences analysis of Creol models.

1 Introduction
Inter-process communication is becoming increasingly important with the rise of
distributed computing over the Internet and local area networks. Object-oriented
programming is the dominant paradigm for concurrent and distributed systems
and has been recommended by the RM-ODP [28], but traditional models of object
interaction and concurrency may be criticized in the distributed setting.

Creol is an executable modeling language that aims at uniting object orientation
and distribution in a more natural way [30]. It is object-oriented in the sense that
classes are the fundamental structuring unit and that all interaction is by means
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of method calls between named objects. Moreover, it features multiple inheritance
and late binding. What sets Creol apart from other object-oriented languages is its
concurrency model: the language combines the concurrent object model of concur-
rency with interface encapsulation and processor release points. In the concurrent
object model, each object executes on its own virtual processor and objects com-
municate using asynchronous method calls. When an object A calls a method m of
an object B, it sends an invocation message to B along with arguments. Method
m executes on B’s processor and sends a reply to A when it is finished, with return
values. Object Amay continue executing while it is waiting for B’s reply. Compared
to standard synchronous method calls this approach leads to increased parallelism
in a distributed system, where objects may be dispersed geographically. As usual in
object-oriented languages, object identities may be passed around between objects.

Creol offers a very flexible model of encapsulation based on interfaces. An in-
terface exposes some of an object’s methods to the environment. Fields are not
exposed, and may only be accessed by the object itself. However, an object can
offer several interfaces, and each interface may require a cointerface; i.e., a static
requirement on the caller which enables call-back between peer objects in the dis-
tributed environment. Thus, asynchronous method calls through interfaces is the
only means of inter-object communication. Creol’s interface and cointerface con-
cepts ensure that method calls and call-backs are type-safe [35].

Internally, a concurrent object contains a set of processes which are executed
in some interleaved order. These processes result from method calls to the object,
but the order in which they are executed may depend dynamically on delays and
instabilities in the environment. At most one process may execute on the object’s
virtual processor at any given time, and the executing process may release proces-
sor control by means of explicitly declared processor release points. Processes may
communicate with each other via the object’s state; the values of these local fields
may also influence the scheduling of processes through guards. This “cooperative”
approach to intra-object concurrency has the advantage that while a method is
executing, it can assume that no other processes are accessing the object’s fields
between its release points. This leads to a programming and reasoning style remi-
niscent of monitors [9,27], but simpler because it abstracts from explicit signaling to
other processes. The use of processor release points in concurrent objects also leads
to increased parallelism when objects are waiting for replies, and allows objects to
easily combine active and reactive behavior in a peer-to-peer manner [31].

This paper presents an overview of Creol’s concurrency model and reasoning
system. Focus is on the basic inter-object communication model of interfaces and
asynchronous method calls, and on the intra-object synchronization model. We refer
the reader to other papers for the discussion of advanced features such as, e.g., class
inheritance [35], specification [29], dynamic class updates [33,42] and type checking
[35,36]. The paper then discusses how this model supports analysis of Creol models
by means of query-driven executable analysis and a compositional proof system.

The rest of this paper is structured as follows: Section 2 briefly compares Creol’s
concurrency model with traditional approaches to inter-process communication.
Section 3 introduces Creol by example. Section 4 presents the language syntax
and informally describes its semantics. Section 5 gives an overview of analysis tech-
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niques for Creol models. Finally, Section 6 concludes the paper.

2 Interaction and Synchronization

The two main interaction models for distributed processes are remote method invo-
cation (RMI) and message passing [5]. For tightly coupled systems, shared memory
models are also an option, but they do not generalize well to distributed environ-
ments where communication takes time and is unreliable.

With remote method invocations, the thread of control is transferred with the
call and caller activity is blocked until the return values from the call have been
received. In this setting, intra-object concurrency can be handled in various ways.
In Java [24], where concurrency is achieved through multithreading, methods can
be declared to be serialized by using the synchronized keyword, which ensures
that only one (serialized) method is active in an object at a time. For non-serialized
Java methods, the interference problem related to shared variables reemerges when
several threads operate simultaneously in the same object. Consequently, reason-
ing about Java programs is highly complex [2,12]; safety is by convention rather
than by language design [10]. Verification considerations therefore suggest that all
methods should be serialized, as in Hybrid [39]. However, an object which makes
a remote method call must then wait for the call’s return before it can proceed
with its execution; any other activity in the object is prohibited while waiting. This
waiting imposes a severe limitation in the distributed setting; external delays and
instabilities may cause unnecessary waiting. Furthermore, this blocking of internal
activity makes it difficult to combine active behavior in an object with the process-
ing of requests from the environment, the combination of which is typical for the
peer objects one would expect in the distributed setting.

In contrast to remote method invocation, message passing does not transfer
control between the communicating parties. A method call can be modeled in this
setting by an invocation and a reply message. Message passing may be synchro-
nized, as in Ada’s rendezvous mechanism, in which case both the sender and the
receiver must be ready before communication can occur. Hence, the objects syn-
chronize on the message transmission. Remote method invocation can be captured
in this model if the calling object is blocked between the two synchronized messages
representing the call [5]. If the calling object is allowed to proceed for a while be-
fore resynchronizing on the reply message, we obtain a model of method calls that
resembles future variables [6,41] or eager invocation [19]. For distributed systems,
even this form of synchronization may easily result in unnecessary delays through
the blocking of internal activity.

Message passing can also be asynchronous. In this case, message emission is
always possible, regardless of when the receiver accepts the message. This approach
is well-known from the Actor model [26,3]. However, actors do not distinguish replies
from invocations, so capturing method calls with actors quickly becomes unwieldy.
Languages that support future variables are usually based on asynchronous message
passing; the caller’s activity is synchronized with the arrival of the reply message
rather than with its emission, and the activities of the caller and the callee need not
directly synchronize [7,11,16,41]. This approach seems well-suited for distributed
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environments, because it provides execution flexibility; the local execution adapts
to the network’s inherent latency and unreliability.

Creol’s asynchronous method invocation mechanism is implemented in terms of
asynchronous message passing. Asynchronous method calls resemble asynchronous
message passing as they also avoid blocking, but they provide a more structured
interaction model. With asynchronous method calls, object activities may be de-
fined and invoked as usual in object orientation, and code may be structured in
terms of inheritance and late binding. Furthermore the separation of execution
threads and objects, as done in thread-based languages such as Java, compromises
the modularity and encapsulation of objects, thereby resulting in a low-level style
of programming. This is avoided by encapsulating control within asynchronously
communicating concurrent objects, a very natural model for the distributed setting.
Creol is a modeling language based on asynchronously communicating concurrent
objects which allows processor release at synchronization points. Compared to other
concurrent object models, this reduces the waiting for replies inside objects by al-
lowing different activities to be interleaved inside the concurrent object. In fact any
method in Creol may be invoked both synchronously and asynchronously. It is the
caller’s decision when to synchronize, this decision can even be made at runtime.

The language focuses on high-level programming constructs which adapt to the
possible delays in an underspecified environment, abstracting from the exact de-
tails of local scheduling. Creol’s implicit mutual exclusion within an object and
its forced hiding of the object’s internal fields makes interference-freedom tests un-
necessary [5,20]. Reasoning about a Creol program involves establishing interface
properties from invariants for the program’s classes. Knowledge of another object
is purely based on the known interface of that object, so the external point of view
is restricted to the type information of each pointer. Due to the concurrency model
discussed above, reasoning about concurrent programs in Creol is based on local
proof rules. An advantage of this approach is that the proof system is composi-
tional [18]. In Creol, concurrent objects are independent units of composition.

3 Example: Producers and Consumers

Before reviewing Creol’s syntax in detail, let us look at a simple example. Consider
a buffer which is shared between a producer and a consumer object. The producer
writes to the shared buffer and the consumer reads data from the buffer as it is
written. Although it does not demonstrate all the features found in Creol, the
example presents most of Creol’s key concepts. The example consists of three
interfaces and four classes. Let us start with the interfaces:
interface WritableBuffer
begin
with Producer

op put(in x: Int)
end

interface ReadableBuffer
begin
with Consumer

op get(out x: Int)
end

interface Buffer
inherits WritableBuffer, ReadableBuffer

begin end
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The WritableBuffer interface declares the signature of a put method that has
an input parameter x of type Int. The ReadableBuffer interface declares the
signature of a get method that has an output parameter y of type Int; i.e., y
will be the return value from the call. The with Producer and with Consumer
clauses declare cointerface requirements, which express that only objects of type
Producer may invoke the put method and similarly only objects of type Consumer
may invoke the get method. We omit the Producer and Consumer interfaces, which
do not export any methods, and proceed with the Producer and Consumer classes.
class Producer(buf: WritableBuffer) implements Producer
begin

var i: Int :=1;
op run == buf.put(i;); i :=i +1; !run()

end

class Consumer(buf: ReadableBuffer) implements Consumer
begin

var sum: Int :=0;
op run == var j: Int; buf.get(; j); sum :=sum +j; !run()

end

The Producer class provides the Producer interface and takes an object that
supports the WritableBuffer interface as parameter. Its run method repeatedly
calls put on the WritableBuffer object with arguments 1, 2, 3, . . . . These calls
are synchronous; i.e., the run process is blocked until the method has returned. By
prefixing these calls by await, one would obtain non-blocking calls, as demonstrated
further below. Objects in Creol are active; the run method is automatically invoked
when Producer is instantiated. The Consumer class resembles Producer. Instances
of Consumer get their data from an object that supports the ReadableBuffer in-
terface, one integer at a time, and compute the sum of the data received from the
buffer. The semicolon in buf.get(; j) indicates that j is an output argument (get
has no input argument).
class OneSlotBuffer implements Buffer
begin

var value: Int, full: Bool
op init == full :=false
with Producer op put(in x: Int) == await ¬full; value, full :=x, true
with Consumer op get(out x: Int) == await full; x, full :=value, false

end

The OneSlotBuffer class supports the WritableBuffer and ReadableBuffer
interfaces, and implements the put and get methods. The methods are annotated
with their respective cointerface requirements. The class also declares two fields
value and full and a parameterless init method. This is the constructor method
which is called before run is invoked. The initial await statements of put and get
provide enabling conditions. Thus the execution of an invocation of put must wait
for full to be false, and the execution of an invocation of put for full to be true.

The buffer’s role is to synchronize the producer and the consumer, ensuring that
the consumer doesn’t read data that the producer hasn’t generated yet and that the
producer doesn’t overwrite data that the consumer hasn’t read. In this example, the
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single slot buffer can store at most one data item at a time — a more realistic (and
more efficient) Buffer class implementation would typically use a circular buffer
internally.
class Main
begin

op run == var buf: Buffer, prod: Producer, cons: Consumer;
buf :=new OneSlotBuffer; prod :=new Producer(buf);
cons :=new Consumer(buf)

end

To launch the program, we instantiate the Main class. This can be achieved
in the Creol interpreter using a special command that takes the name of a class
and optional arguments corresponding to the class parameters. The run method,
which is invoked automatically when Main is instantiated, starts by creating a
OneSlotBuffer instance. Object creation connects the types of references to the
classes of objects. The method then creates one Producer and one Consumer in-
stance, both initialized with a reference to the buffer. At that point, the producer’s
and the consumer’s run methods are invoked, giving rise to two nonterminating
activities that exchange data through the Buffer object. Producer–consumer syn-
chronization works as follows: If the consumer calls get before the producer calls
put, then full is false and the get method invocation is suspended by the await
full statement. This enables put to execute. When put returns, full has become
true and get may resume its execution. Similarly, if the producer calls put twice
before the consumer calls get, the second put invocation is suspended by await
¬full. The await-statements explicitly declare processor release points.

Creol’s concurrency model makes it easy to combine active and reactive behavior
in the same object. The run method initiates the object’s active behavior, whereas
its exported methods are available to the environment. We illustrate this by the
following version of the Consumer class:
class Consumer (buf: ReadableBuffer) implements Consumer
begin

var sum :Int;
op init == sum :=0;
op run == var j: Int; while true do await buf.get(; j); sum :=sum +j end
with Any op getSum(out s: Int) == s :=sum

end

In this version of the class, a method getSum returns the sum computed so far, and
initialize sum by an init method. Note that getSum has a cointerface Any. This is
the supertype of all interfaces and does not impose any requirements on the caller,
so any object may call getSum. In contrast, only Producer objects could call the
put method on Buffer objects.

The introduction of the getSum method has led to one more change to the
Consumer class. The synchronous method call buf.get(; j) in run has been replaced
by the statement await buf.get(; j), which invokes get asynchronously, releases the
processor while it waits for the reply to this call, and then retrieves the return value.
Thanks to the explicit processor release, the object can service incoming calls to
getSum while waiting for buf’s reply.
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Syntactic categories

C, I,m ∈ Names
t ∈ Label
g ∈ Guard
p ∈ MtdCall
s ∈ Stmt
x ∈ Var
e ∈ Expr
o ∈ ObjExpr
b ∈ BoolExpr

Definitions

IF ::= interface I [inherits I] begin {with I Sg} end

CL ::= class C [x : I] [inherits C [(e)]] [implements I][contracts I]
begin {var {x : I [:= e]}} M {with I M} end

M ::= Sg == [var {x : I [:= e]}; ] s
Sg ::= op m ([in x : I][out x : I])
g ::= b | t? | g ∧ g | g ∨ g
s ::= begin s end | s 2 s | x := e | x := new C [(e)]
| skip | if b then s [else s] end | while b do s end
| [t]![o.]m(e) | t?(x) | release | await g | [await][o.]m(e;x)

Figure 1. The language syntax. Terms such as e, x, and s, denote lists over terms of the corresponding
syntactic categories, {. . .} denotes lists over larger syntactical elements, and [. . .] denotes optional elements.
Elements in a list are separated by a comma (except statement in statement lists by semicolon).

4 The Creol Syntax

This section presents Creol’s syntax and informally explains its semantics. Refer-
ences to further presentations of language aspects and to the type system and formal
semantics are given in Section 4.5. A Creol program consists of a list of interface
and class declarations. Before looking at the syntax given in Figure 1, we intro-
duce a few basic syntactic categories: identifiers and data types. The set Names of
identifiers are used to name interfaces, classes, methods, fields, parameters, local
variables, and method call labels. The set Types comprises the built-in data types
Bool, Int, Char, Float. In addition, the name of any interface may be used as a
type. If T, . . . , T ′ ∈ Types are types, then List[T ] and Set[T ] are lists and sets of
type T and T × . . . × T ′ is a tuple of types T, . . . , T ′. For modeling intra-object
data manipulation, we assume given a language Expr of side effect free expressions,
including operations on natural numbers, lists, etc. This language is not discussed
in this paper. In the presentation of the language below, some syntactic elements
are optional. The optional elements are specified in Figure 1.

4.1 Interface Declarations

The syntax of an interface declaration is given by the production IF in Figure 1.
The cointerface k of a method is an interface that the calling object is required
to implement; using the implicit caller parameter, the callee can then make call-
backs to the calling object through interface k [29]. In order to allow any object to
call the methods of an interface, the cointerface is the empty interface Any, which
is implicitly supported by all classes.

A method signature Sg is given by op m (in x : I out y : J), with m ∈ Names,
x, y ∈ Var, and I, J ∈ Types. Instead of returning a value directly, Creol meth-
ods may assign values to one or several output parameters declared using the out
keyword. If the method has neither input nor output parameters, the parentheses
around the empty parameter list may be omitted.

4.2 Class Declarations

The syntax of a class definition is given by the production CL in Figure 1. A
class defines a number of methods which work on a local state. These methods
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may include a method init, used to initialize objects of the class, and a method
run, used to define active behavior. If defined, these methods are automatically
invoked at creation time; first init, then run. A class may declare parameters
and fields x : I. The parameters must be provided at object creation time and
serve as arguments to the constructor method init, but otherwise they behave like
read-only variables. Parameters and fields are not accessible to other objects.

Whereas interfaces only declare method signatures, classes also contain method
bodies. The setM of method declarations contains elements with the syntax Sg ==
var x : T:=e; s where Sg is the method signature, x ∈ Var is a local variable of
type T ∈ Types, initialized to e, and s ∈ Stmt is a statement list. Methods declared
before the first with clause can only be called by the object itself. Methods declared
in the scope of a clause with I require I as an interface of the caller.

A class C may inherit fields and methods from one or several superclasses, but
methods may be overridden. The interfaces supported by the class are specified in
the implements and contracts clauses. The class must provide implementations
for all methods declared by these interfaces, with matching cointerface requirements.
Note that in Creol, inheritance and subtyping do not coincide: Classes that inherit
from a class C are not required to support the interfaces in the implements clause
of C. This stands in contrast with the concept of inheritance as found in Java or
C], but allows more flexible code reuse without breaking behavioral requirements.
If we want to force a certain interface (and its behavioral specification) upon a class
and all its direct and indirect subclasses, the interface is declared in the contracts
clause instead of the implements clause. Thus, the interfaces contracted by a class
are inherited by its subclasses but the interfaces implemented by a class are not.

4.3 Basic Statements

The imperative statements in Creol are now briefly introduced. In addition to
standard statements, Creol offers a few statements that are only relevant in a con-
current or distributed context. Basic statements are discussed in this section and
composition operators in Section 4.4.

Let x ≡ x1, . . . , xn ∈ Names be a list of variables and e ≡ e1, . . . , en ∈ Exp be a
list of expressions such that each ei is type-compatible with the corresponding xi.
Assignment has the following syntax: x := e. If n > 1, the assignments to x1, . . . , xn
are performed simultaneously. Thus, the statement a, b := b, a swaps the values of
a and b. Since expressions do not have side effects, an additional syntax rule is used
to assign a newly created object to a variable. Let x ∈ Names be the name of a
variable, c ∈ Names be the name of a class, and e ≡ e1, . . . , en ∈ Exp be a list of
expressions. New instances of class C may be created as follows: x := new C(e).
The expressions e1, . . . , en are assigned to the class parameters specified in the
class declaration. If the class has a parameterless method called init, this method
executes immediately. If class C has superclasses, the superclasses’ init methods
are called recursively, before C’s version of init is run. In addition, if a run method
is declared or inherited by the class, it is invoked immediately after init. Remark
that init implicitly gets its parameters from the class and that run does not have
parameters.
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The statement release represents unconditional release. The await statement
is used for conditional processor release. The statement await g releases the proces-
sor if the guard g evaluates to false and reacquires the processor at some later time
when g is true. The syntactic category Guard of conditional guards is constructed by
the production g in Figure 1, including (conjunctions and disjunctions of) Boolean
expressions b over the local state of the object and queries t? of whether replies to
method calls made by the current process have arrived.

Any method may be called synchronously with the syntax o.m(e; y) or asyn-
chronously with the syntax l!o.m(e); . . . ; l?(y). Here, l ∈ Names is a label, i.e. a
special kind of variable used to identify an asynchronous call, o ∈ Exp is an object
expression of type t, m ∈ Names is the name of a method supported by the t type,
e ∈ Exp is a list of input arguments, and y ∈ Names is a list of output arguments. As
usual, the input and output arguments must match the parameters declared in the
method’s signature. In addition, the calling object must implement the method’s
cointerface if one was specified.

Asynchronous method calls consist of an invocation and a reply. The invocation
can be seen as a message from the caller to the called method, with arguments
corresponding to the method’s input parameters. The reply is a message from the
called method, containing the return values for the call. Thus, in the asynchronous
case, the call is captured by two separate statements; an invocation l!o.m(e) and a
reply l?(y). Here, l ∈ Names is a label whose value identifies the asynchronous call.
This label makes it possible to refer to a specific asynchronous call in cases where
several calls are active at the same time.

The guard l? evaluates to true if and only if a reply for the call identified by
label l is available, and allows us to program non-blocking calls. In particular,
the sequence t!o.m(e); await t?; t?(y) gives a standard non-blocking call, and is
abbreviated await o.m(e; y).

Example 4.1 The following code initiates an asynchronous method call, executes
some statements, releases the processor if the reply has not arrived, and finally
retrieves the return values stored in the reply:

var result: Int; var l: Label[Int];
l!server.request(); . . .; await l?; l?(result)

Without the await statement, the program would block on the reply statement
l?(result) until the associated method invocation had terminated. This is the
standard behavior of transparent futures (e.g., [11]), in which case the reply state-
ment could be made implicit by identifying l with reply.

Method calls may be local or remote. Local synchronous calls correspond to the
case where o is omitted or evaluates to self and are executed immediately in order
to avoid deadlocking the object. In contrast, a remote synchronous call o.m(e; y) is
implemented as an asynchronous method invocation t!o.m(e) followed by the reply
statement t?(y), for some fresh label t. Because there is no await statement between
the method invocation and the reply statement, the calling object is blocked while
the remote method executes. The values assigned to the output parameters become
available in y.
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When overriding a method in a subclass, it is often necessary to call the original
superclass implementation of the method as well. This is done using qualified method
calls, which have the syntax l!m@C(e) for the local asynchronous call, m@C(e; y)
for the local synchronous call, and await m@C(e; y) for the local non-blocking call,
where C ∈ Names is the name of a superclass. Qualified method calls give static
access to methods defined in any superclass and are always local.

4.4 Compound Statements

Statements can be grouped (s) and composed using sequential composition s1; s2,
conditionals if b then s1 else s2 end, and loops while b do s end, with b ∈ BoolExp
and s, si ∈ Stmt. In addition, Creol offers an operator for nondeterministic choice,
written S1 2 S2. The composition operator ; binds more strongly than the choice
operator 2 and both operators are associative.

In order to understand the choice operator, the following definitions are used.
A statement S is enabled if it can execute in the current state without releasing
the processor immediately. For example, await b is enabled if b evaluates to true;
otherwise it is disabled. If s is enabled and does not block immediately, then we
say that s is ready. The statement l?(y) is always enabled, but it is only ready if
the reply associated with l has arrived.

The nondeterministic choice statement s1 2 s2 executes either s1 or s2. If both
branches si are ready, then s1 2 s2 chooses either s1 or s2. If only one branch si is
ready, that branch is executed. If neither branch is ready, s1 2 s1 blocks if either s1
or s2 is enabled and releases the processor otherwise.

Example 4.2 The nondeterministic statements are typically used in conjunction
with asynchronous method calls. Consider the following method bodies:

var res: Int; var l1, l2: Label[Int];
l1!server1.request(); l2!server2.request();

l1?(res) 2 l2?(res); processResult(res)

var res1,res2: Int; var l1, l2: Label[Int];
l1!server1.request(); l2!server2.request();

l1?(res1); processResult(res1); l2?(res); processResult(res2)
2 l2?(res2); processResult(res2); l1?(res1); processResult(res1)

In both method bodies, two asynchronous method calls are made: one to server1
and one to server2. In the first method body the nondeterministic choice selects the
first reply which arrives for further processing, and the other reply is ignored. In the
second method body, both replies are processed, but the order of processing depends
on which reply arrives first. (The second method body suggests a nondeterministic
merge operator, discussed in [30].)

4.5 The Full Language and Formal Semantics

In this paper, focus has been on the basic model of concurrency and communication
in Creol. A more in-depth discussion of this model and its formal semantics may be
found in [30]. The integration of first-class futures in Creol is discussed in [17]. An
industrial case study of the ASK communication system in Creol is presented in [4].
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Type systems for asynchronous method calls are developed in [36] and for the full
language in [35]. An extension of Creol for service-oriented computing is presented
in [13] and for wireless communication in [32]. Creol further supports runtime
reprogramming of distributed systems by means of a dynamic class construct which
allows objects of a class and its subclasses to gradually evolve in a type-safe way
without interrupting the overall system execution [33,42].

5 Analysis of Creol Models

Creol is a formally defined language with an operational semantics defined in rewrit-
ing logic [38]. Rewriting logic specifications are executable on the Maude rewriting
engine [14], which provides a range of analysis facilities like simulation, search, and
model checking. Thus Maude works as an interpreter for Creol models with sup-
port for analysis. A compiler and type checker for Creol is available which translates
Creol models to the input format of the interpreter. A plug-in to Eclipse helps in
developing models and which interacts with the interpreter; e.g., it is possible to
query a given state of an execution without being exposed to the underlying Maude
representation of the runtime state. The Creol compiler and interpreter, as well as
the Eclipse front-end and a range of example models, are available from the Creol
web-site [15].

Creol models of distributed systems are highly nondeterministic, both with re-
spect to intra-object scheduling and to inter-object communication. Testing meth-
ods for Creol models exploit the flexibility of the Maude rewriting engine to drive the
interpreter in specific directions. In order to customize a concurrent object for a spe-
cific application, a scheduler may be added to the object which resolves aspects of its
nondeterminism. Initial work on testing concurrent objects with application-specific
schedulers is presented in [40]. Inter-object testing exploits the strong encapsulation
of the internal object state in Creol and is therefore based on observable behavior,
building on a theory of observability for distributed concurrent objects [1]. Using
Maude’s support for reflection, the monitoring of communication in the interpreter
may be done in a non-obtrusive way, leaving the language semantics unchanged.
However, rule selection may be guided by predicates expressing constraints on the
observable behavior of objects, partly resolving inter-object nondeterminism [34,25].

The concurrency model and strong encapsulation of Creol is also exploited in
the proof system for the language. Reasoning about Creol models is done in two
steps. First the intra-object behavior is specified in terms of a class invariant,
using an auxiliary variable for the local history of communication. This invariant is
similar to a monitor invariant, but in contrast to monitor reasoning we need not be
concerned with the amount of signaling between processes as this is taken care of by
the semantics of processor release points. The proof system for internal reasoning
about concurrent objects with asynchronous method calls and futures is based on
purely local proof rules and is sound and complete [17]. The relationship between
model interpretation in Maude and the proof system is studied in [8]. Since class
inheritance and interface subtyping are distinct, code reuse can be more flexible
than with behavioral subtyping [37]. Nevertheless, code reuse supports incremental
reasoning based on lazy behavioral subtyping [22,23]. Based on the class invariant,
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the behavioral specification of the interfaces implemented by the class need to be
derived [21]. Consequently, reasoning about object composition is done in terms of
observable behavior, relying on the behavioral properties of the interfaces, specifying
the observable object behavior.

6 Conclusion

Creol is an object-oriented language that integrates high-level programming con-
structs for handling inter-object and intra-object concurrency. The language guar-
antees that an active method has exclusive access to the object’s fields, as in a
monitor. Each object has its own virtual processor, and pending method invoca-
tions on the same object compete for the processor. By enforcing mutual exclusion
within an object and by relying on explicit processor release points, the interfer-
ence issue related to shared variable concurrency in multithreaded object-oriented
languages is avoided. Objects communicate with each other through asynchronous
method calls, which consist of an invocation and a reply message. This allows the
calling object to perform other activities while the call is being serviced. Using non-
deterministic statements, the caller can process replies in the order in which they
arrive, allowing execution to adapt to the environment in a flexible way. Interfaces
with cointerface requirements statically control communication, enabling call-back
between peer objects in the distributed setting.

The Creol modeling language is executable on an interpreter which supports
query-driven resolution of nondeterminism based on the runtime state of execution.
This enables the application of a range of testing methods to the language and exper-
imentation with application-specific scheduling at the modeling stage. Furthermore,
the concurrency model and object encapsulation adopted in the modeling language
enables compositional reasoning about concurrent distributed systems.
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