
Toward Nitpick and Sledgehammer for Coq

Jasmin Christian Blanchette1,2

1 Inria Nancy & LORIA, Villers-lès-Nancy, France
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany

My overall goal is to make proof assistants easier to use, by increasing their automa-
tion and expressiveness. As part of my Ph.D., I developed or co-developed two tools for
Isabelle/HOL: the counterexample generator Nitpick and the proof tool Sledgehammer.

Nitpick builds on the third-party SAT-based first-order model finder Kodkod, and
handles idioms such as (co)inductive predicates, (co)datatypes, and (co)recursive func-
tions specially. The SAT-based approach is quite different from the testing-based ap-
proach (e.g., Quickcheck and QuickChick). Neither is clearly superior to the other, and
there are problems that clearly benefit from a SAT solver. For example, in joint work
with Cambridge, I applied Nitpick to debug a specification of the C++ memory model
(which revealed some flaws in the Isabelle formalization).

Sledgehammer integrates third-party automatic theorem provers such as CVC4, E,
SPASS, Vampire, veriT, and Z3. It heuristically selects a few hundred facts (lemmas,
definitions, etc.) from Isabelle’s libraries, translates them to first-order logic along with
the conjecture, delegates the proof search to external provers, and produces a (one-line
or multi-line) textual Isar proof that rechecks the proof in Isabelle.

My foremost vehicle is Isabelle, but I am also interested in Coq, which is probably
the more widely used of the two but (perhaps due to its richer logic) lacks many of the
conveniences offered by its rival. In the Coq world, there is plenty of room for tools like
Nitpick and Sledgehammer. I have a few sketchy ideas which I would like to discuss at
the Coq workshop.

On the counterexample generation side, Inria has accepted my project proposal
to develop Nitpick’s successor, tentatively called Nunchaku. The idea for Nunchaku
emerged in 2013, to address Nitpick’s main limitations: (1) It is too tied to its fron-
tend, Isabelle/HOL; (2) it is too tied to its backend, Kodkod. The idea with Nunchaku
is to allow many frontends, including Isabelle and (a fragment of) Coq, and many back-
ends, notably SMT solvers. Nunchaku itself would be a standalone application. Arthur
Charguéraud is a partner for the Coq frontend.

On the proving side, my ideas are more sketchy. SMTCoq shows a lot of promise,
but it has not yet reached the point where most end users can benefit from it. With
Sledgehammer, we noticed that three ingredients are necessary to succeed: (1) a heuris-
tic relevance filter to select a few hundreds of lemmas to include in the generated prob-
lems; (2) a translation module that can cope, locally, with higher-order constructs; (3) a
reconstruction module that translates the essence of the external proof into something
that can be inserted in the user’s formalization. Coq’s logic poses particular challenges,
but I am hopeful that something can be done for a practically relevant fragment of Coq,
with classical axioms and no or few dependent types.


