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Abstract We present a decision procedure that combines reasoning about datatypes and
codatatypes. The dual of the acyclicity rule for datatypes is a uniqueness rule that identifies
observationally equal codatatype values, including cyclic values. The procedure decides uni-
versal problems and is composable via the Nelson–Oppen method. It has been implemented
in CVC4, a state-of-the-art SMT solver. An evaluation based on problems generated from
formalizations developed with Isabelle demonstrates the potential of the procedure.

1 Introduction

Freely generated algebraic datatypes are ubiquitous in functional programs and formal spec-
ifications. They are especially useful to represent finite data structures in computer science
applications but also arise in formalized mathematics. They can be implemented efficiently
and enjoy properties that can be exploited in automated reasoners.

To represent infinite objects, a natural choice is to turn to coalgebraic datatypes, or co-
datatypes, the non-well-founded dual of algebraic datatypes. Despite their reputation for
being esoteric, codatatypes have a role to play in computer science. The verified C com-
piler CompCert [24], the verified Java compiler JinjaThreads [25], and the formalized Java
memory model [26] all depend on codatatypes to capture infinite processes.

Codatatypes are freely generated by their constructors, but in contrast with datatypes,
infinite constructor terms are also legitimate values for codatatypes (Section 2). Intuitively,
the values of a codatatype consist of all well-typed finite and infinite ground constructor
terms, and only those. As a simple example, the coalgebraic specification

codatatype enat = Z | S(enat)
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introduces a type that models the natural numbers Z, S(Z), S(S(Z)), . . . , in Peano notation,
extended with an infinite value ∞ = S(S(S(. . .))). The equation S(∞)≈∞ holds as expected,
because both sides expand to the infinite term S(S(S(. . .))), which uniquely identifies ∞.

Datatypes and codatatypes are an integral part of many proof assistants, including Agda,
Coq, Isabelle, Matita, and PVS. In recent years, datatypes have emerged in a few automatic
theorem provers as well. The SMT-LIB [2] format, supported by most SMT (satisfiability
modulo theories) solvers, is being extended with a syntax for datatypes. In this article, we
introduce a unified decision procedure for universal problems involving datatypes and co-
datatypes in combination (Section 3). The procedure is described abstractly as a calculus and
is composable via the Nelson–Oppen method [29]. It generalizes the procedure by Barrett
et al. [3], which covers only datatypes.

Datatypes and codatatypes share many properties, so it makes sense to consider them
together. There are, however, at least three important differences. First, codatatypes need
not be well-founded. For example, the type

codatatype streamτ = SCons(τ, streamτ)

of infinite sequences or streams over an element type τ is allowed, even though it has no
base case. By contrast, the corresponding datatype specification

datatype fstreamτ = FSCons(τ, fstreamτ)

would be rejected as non-well-founded [9]. Second, a uniqueness rule takes the place of the
acyclicity rule of datatypes. Cyclic constraints such as x ≈ S(x) are unsatisfiable for data-
types, thanks to an acyclicity rule, but satisfiable for codatatypes. For the latter, a unique-
ness rule ensures that two values having the same infinite expansion are equal; from x ≈
S(x) and y ≈ S(y), it deduces x ≈ y. These two rules are needed to ensure complete-
ness (solution soundness) on universal problems. They cannot be finitely axiomatized, so
they naturally belong in a decision procedure. Third, it must be possible to express cyclic
(regular) values as closed terms and to enumerate them. This is necessary when generat-
ing models. The µ-binder notation associates a name with a subterm; it is used to repre-
sent cyclic values in the metatheory and in the generated models. For example, the µ-term
SCons(1, µs. SCons(0, SCons(9, s))) stands for the lasso-shaped sequence 1,0,9,0,9, . . . .

Our procedure is implemented in the SMT solver CVC4 [1] as a combination of rewrit-
ing and a theory solver (Section 4). It consists of about 2000 lines of C++ code, most of
which are shared between datatypes and codatatypes. The code is integrated in the develop-
ment version of the solver and is expected to be part of the CVC4 1.5 release. An evalua-
tion on problems generated from Isabelle/HOL [30] formalizations using the Sledgehammer
tool [5] demonstrates the usefulness of the approach (Section 5).

An earlier version of this article was presented at the CADE-25 conference in Berlin,
Germany [32]. This article extends the conference paper with additional background ma-
terial on (co)datatypes (Section 2), more detailed metatheoretical proofs (Section 3), a de-
scription of the generation of models with µ-binders in CVC4 (Section 4), and a more com-
prehensive evaluation (Section 5).

Related Work. Barrett et al. [3] provide a good account of related work on datatypes as of
2007, in addition to describing their implementation in CVC3. Since then, datatypes have
been added not only to CVC4 (a complete rewrite of CVC3) but also to the SMT solver
Z3 [28] in unpublished work by Leonardo de Moura and to a SPASS-like superposition
prover by Wand [41]. In his Ph.D. thesis [4], Bjørner introduced a decision procedure for
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(co)datatypes in STeP, the Stanford Temporal Prover. Closely related are the automatic struc-
tural induction in SMT solvers [34] and superposition provers [11,20], the (co)datatype and
(co)induction support in Dafny [23], and the (semi-)decision procedures for datatypes im-
plemented in Leon [39] and RADA [31]. Datatypes are supported by the higher-order model
finder Refute [42] for Isabelle. Its successor, Nitpick [7], can also generate models involving
cyclic codatatype values. Cyclic values have been studied extensively under the heading of
regular or rational trees—see Carayol and Morvan [10] and Djellou et al. [12] for recent
work. The µ-notation is inspired by the µ-calculus [13, 22].

Conventions. Our setting is a monomorphic (or many-sorted) first-order logic. A signature
Σ = (Y ,F ) consists of a set of types Y and a set of function symbols F . Types are atomic
sorts and interpreted as nonempty domains. The set Y must contain a distinguished type
bool interpreted as the set of truth values. The metavariables δ, ε range over (co)datatypes,
whereas τ, υ range over arbitrary types.

Function symbols are written in a sans-serif font (e.g., f, g) to distinguish them from
variables (e.g., x, y). Symbol names starting with an uppercase letter (e.g., S) are reserved for
constructors. With each function symbol f is associated a list of argument types τ1, . . . , τn (for
n≥ 0) and a return type τ, written f : τ1×·· ·×τn→ τ; this notation collapses to f : τ if n = 0.
Functions invocations f(t1, . . . , tn) apply the n-ary function symbol f to n arguments t1 :τ1, . . . ,
tn :τn of the right types. Nullary function symbols, also called constants, can appear without
parentheses in terms. The set F must at least contain true, false : bool, interpreted as truth
values. The only predicate is equality, written ≈; it belongs to the logical symbols. Other
predicates can be represented as functions to bool, with p(. . .) abbreviating p(. . .) ≈ true.
The notation tτ stands for a term t of type τ; it should not be confused with t : τ, which
is a statement expressing that t has type τ. When applied to terms, the standard equality
symbol = denotes syntactic equality. The operator

∧
i ϕi abbreviates a conjunction ϕ1 ∧

·· · ∧ ϕn. Finally, x̄ abbreviates a list or tuple x1, . . . , xn.

2 (Co)datatypes

We fix a signature Σ = (Y ,F ). The types are partitioned into Y = Ydt ] Ycodt ] Yord, where
Ydt are the datatypes, Ycodt are the codatatypes, and Yord are the remaining ordinary types
(which can be interpreted or not). The function symbols are partitioned into F = Fctr ] Fsel,
where Fctr are the constructors and Fsel are the selectors. There is no need to consider
further function symbols because they can be abstracted away as variables when combining
theories. Exceptionally, it is convenient to use numeric constants (0, 1, . . . ) in examples.
Σ-terms are standard first-order terms over Σ, without µ-binders.

In an SMT problem, the signature is typically given by specifying first the uninter-
preted types in any order, then the (co)datatypes with their constructors and selectors in
groups of mutually (co)recursive (co)datatypes, and finally any other function symbols.
Each (co)datatype specification consists of ` mutually recursive types that are either all data-
types or all codatatypes. Polymorphic types, nested (co)recursion, and datatype–codatatype
mixtures fall outside this fragment.1 We allow ourselves some notational parameteriza-

1 In principle, rank-1 (top-level) polymorphism [8] does not raise any special difficulties. Nesting datatypes
inside datatypes, and likewise for codatatypes, can be reduced to the mutual case [17]. So the only genuinely
interesting cases missing are mixed nested (co)recursion as well as (co)recursion through a non-(co)datatype
(both of which make sense, at least in a higher-order setting [6]).
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tion through subscripts—for example, streamτ denotes a family of ground types including
stream int, streambool, and streamstream real .

Each (co)datatype δ is equipped with m ≥ 1 constructors, and each constructor for δ
takes zero or more arguments and returns a δ value. The argument types must be either ordi-
nary, among the already known (co)datatypes, or among the (co)datatypes being introduced.
To every argument corresponds a selector. The names for the (co)datatypes, the constructors,
and the selectors must be distinct and different from existing names.2 Schematically:

(co)datatype δ1 = C11(
[
s1

11:
]
τ1

11, . . . ,
[
sn11

11 :
]
τ

n11
11 ) | · · · | C1m1(. . .)...

and δ` = C`1(. . .) | · · · | C`m`
(. . .)

with Cij : τ1
ij×·· ·×τ

nij
ij → δi and sk

ij : δi→ τk
ij. Defaults are assumed for the selector names

if they are omitted. The δ constructors and selectors are denoted by F δ
ctr and F δ

sel. For types
with several constructors, it is useful to provide discriminators dij : δi → bool. Instead of
extending F , we let dij(t) be an abbreviation for t ≈ Cij

(
s1

ij(t), . . . ,s
nij
ij (t)

)
.

Here are a few examples of legal specifications of (co)datatype families:

datatype listτ = Nil | Cons(hd: τ, tl: listτ)

codatatype llistτ = LNil | LCons(lhd: τ, ltl: llistτ)

datatype treeτ = Node(τ, forestτ)
and forestτ = FNil | FCons(treeτ, forestτ)

Because all types must be inhabited (nonempty), a datatype specification is admissible
only if a ground constructor term can be exhibited. This rules out non-well-founded spec-
ifications such as that of fstream in Section 1. For codatatypes, no admissibility check is
necessary because there is always a term, finite or infinite, that witnesses nonemptiness [9].

A type δ depends on another type ε if ε is the type of an argument to one of δ’s con-
structors. Semantically, a set of types is mutually (co)recursive if and only if the associated
dependency graph is strongly connected. A type is (co)recursive if it belongs to such a set
of types. Types can be declared together in a mutual fashion even if they are not actually
mutually (co)recursive. The semantic notion is more precise and is the one that interests us.

Non(co)recursive type specifications such as either of

datatype optionτ = None | Some(τ)

codatatype complex = Complex(re: real, im: real)

are permitted. At the semantic level, it makes no difference whether such types are intro-
duced as datatypes or as codatatypes.

One way to characterize datatypes is as the initial model of the selector–constructor
equations [3]. A drawback of this approach is that it does not naturally account for selectors
applied to wrong constructors. Barrett et al. address this by parameterizing the construction
by default values, but this gives rise to spurious equalities between unrelated terms. For
example, given

datatype x = C(s: int) | D | E

we would have the spurious equality s(D) ≈ s(E). This flaw could be corrected, but the
added complexity seems to suggest that selectors are better characterized axiomatically.

2 It can be convenient to specify the same selector for several constructors associated with the same
(co)datatype, as long as the argument types coincide. However, this is disallowed by SMT-LIB, so we do
not consider it here.
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A related semantic view of datatypes is as initial algebras of suitable functors. Codata-
types are then defined dually as final coalgebras [37]. The datatypes are generated by their
constructors, whereas the codatatypes are viewed through their selectors.

Datatypes and codatatypes share many basic properties. All properties below are implic-
itly universally quantified and range over all i, j, j ′, and k within bounds:

Distinctness: Cij(x̄) 6≈ Cij ′(ȳ) if j 6= j ′

Injectivity: Cij(x1, . . . , xnij)≈ Cij(y1, . . . ,ynij)−�→ xk ≈ yk

Exhaustiveness: di1(x) ∨ ·· · ∨ dimi(x)
Selection: sk

ij(Cij(x1, . . . , xnij))≈ xk

Expressed in the algebraic jargon, exhaustiveness helps ensure that “no junk” exists, whereas
distinctness and injectivity guarantee that “no confusion” can arise. The result of selectors
applied to the wrong constructor is left completely unspecified. Datatypes are additionally
characterized by an induction principle for proving a conjunction of properties P1, . . . ,P`
over arbitrary values v1 : δ1, . . . ,v` : δ`:

Induction:
∧`

i=1
∧mi

j=1 ∀x1 . . . xnij .
(∧nij

k=1 IH [xk]
)
−�→ Pi[Cij(x1, . . . , xni j)]∧`

i=1 Pi[vi]

The notation IH [x] denotes either Pi ′[x] if there exists some i ′ such that the formula is type-
correct or else > (truth). The induction principle ensures that the interpretation of datatypes
is standard. For the natural numbers constructed from Z and S, induction prohibits models
that contain infinite values S(S(. . .)).

For codatatypes, the dual notion is called coinduction. It makes it possible to derive the
equality of pairs of codatatype values v1,w1 :δ1, . . . , v`,w` :δ`, based on suitable coinduction
witnesses R1, . . . ,R`:

Coinduction:

∧`
i=1 Ri[vi,wi]∧`

i=1
(
∀x y. Ri[x,y]−�→

∧mi
j=1

(
dj(x)−�→ dj(y) ∧

∧nij
k=1 sk

ij(x)∼ sk
ij(y)

))
∧`

i=1 vi ≈ wi

The notation x ∼ y stands for Ri ′[x,y] if there exists some i ′ such that the formula is type-
correct or x ≈ y otherwise. The second premise ensures that the coinduction witnesses are
bisimulations. The first premise and the conclusion capture the notion that equality is the
largest bisimulation on codatatypes. Thus, the coinduction principle encodes a form of ex-
tensionality: Two values that yield the same observations must be equal, where the observa-
tions are made through selectors and discriminators.

Example 1 The induction principle for listτ is given below:

P[Nil] ∀x, xs. P[xs]−�→ P[Cons(x,xs)]

P[vs]

Assuming that lnull and its negation are the discriminators associated with LNil and LCons,
the coinduction principle for llistτ is

R[vs, ws]
∀xs ys. R[xs,ys]−�→

(
lnull(xs)−�→ lnull(ys)

)
∧
(
¬ lnull(xs)−�→¬ lnull(ys) ∧ hd(xs)≈ hd(ys) ∧ R[tl(xs), tl(ys)]

)
vs≈ ws

�
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Codatatypes are guaranteed to contain all values corresponding to infinite ground con-
structor terms. In general, this cannot be captured by a first-order axiomatization, since there
may be uncountably many of them. For example, stream int is isomorphic to the uncountable
function space nat→ int. Bjørner gives a rigorous treatment of this aspect [4].

Given a signature Σ,DC refers to the theory of datatypes and codatatypes, which defines
a class of Σ-interpretations J , namely those that satisfy the properties mentioned in this
section, including (co)induction. The interpretations in J share the same interpretation for
constructor terms and correctly applied selector terms (up to isomorphism) but may differ
on variables and wrongly applied selector terms. A formula is DC -satisfiable if there exists
an interpretation in J that satisfies it. For deciding universal formulas, induction can be
replaced by the acyclicity axiom schema, which states that constructor terms cannot be equal
to any of their proper subterms [3]. Dually, coinduction can be replaced by the uniqueness
schema, which asserts that codatatype values are fully characterized by their expansion [37,
Theorem 8.1, 2⇔5].

For datatypes, any recursive specification gives rise to an infinite datatype. Paradoxi-
cally, this does not extend to codatatypes: Some codatatypes are so degenerate as to be finite
even though they have infinite values. A simple example is codatatype a = A(a), which is
corecursive and yet has a cardinality of one; its unique value is µa. A(a). Other specimens
are streamunit and both b and c in the specification

codatatype b = B(b, c, b, unit)
and c = C(a, b, c)

assuming unit is a datatype with the single constructor Unity : unit. We call such codatatypes
corecursive singletons, or simply singletons. For the decision procedure, it will be crucial to
detect these. A type may also be a corecursive singleton only in some models. If the example
above is altered to make unit an uninterpreted type, b and c will be singletons precisely when
unit is interpreted as a singleton. Fortunately, given cardinalities for the ordinary types, it is
easy to characterize this degenerate case.

Lemma 1 Let δ be a corecursive codatatype. For any interpretation in J , the domain in-
terpreting δ is either infinite or a singleton. In the latter case, δ necessarily has a single
constructor, whose arguments have types that are interpreted as singleton domains.

Proof By definition, the type is equipped with at least one (directly or indirectly) corecursive
constructor C. If it additional has second corecursive constructor D, it is possible to encode
infinitely many alternation patterns—e.g., C(D(C(C(. . .))))—all of which correspond to dis-
tinct values (by distinctness and injectivity). If the type has a noncorecursive constructor E,
it is possible to create terms of arbitrary depth—e.g., C(. . .(C(E)) . . .). In either case, there
can be no finite models.

Therefore, C must be the only constructor. If any of its noncorecursive arguments has
a cardinality greater than 1, it is possible to encode alternation patterns using it—e.g.,
C(0, C(1, C(0, C(0, . . .))))—which again excludes finite models. Otherwise, the coinduc-
tion principle ensures that the type has at most one value. ut

3 The Decision Procedure

Given a fixed signature Σ, the decision procedure for the universal theory of (co)datatypes
determines the DC -satisfiability of finite sets E of literals: equalities and disequalities be-
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tween Σ-terms, whose variables are interpreted existentially. The decision procedure is for-
mulated as a tableau-like calculus. Proving a universal quantifier-free conjecture is reduced
to showing that its negation is unsatisfiable. The presentation is inspired by Barrett et al. [3]
but at a higher level, using unoriented equations instead of oriented ones.

To simplify the presentation, we make a few assumptions about Σ. First, all codatatypes
are corecursive. This is reasonable because noncorecursive codatatypes can be seen as non-
recursive datatypes. Second, all ordinary types have infinite cardinality. Without quantifiers,
the constraints E cannot entail an upper bound on the cardinality of any uninterpreted type,
so it is safe to consider these types infinite. As for ordinary types interpreted finitely by other
theories (e.g., bit vectors), each interpreted type having finite cardinality n can be viewed as
a datatype with n nullary constructors [3].

3.1 A Calculus for DC

Our calculus for DC consists of derivation rules. A derivation rule can be applied to E if its
premises are met. The conclusion either specifies equalities to be added to E or is ⊥ (con-
tradiction). One of the rules has multiple conclusions, denoting branching. An application
of a rule is redundant if one of its non-⊥ conclusions leaves E unchanged. A derivation tree
is a tree whose nodes are finite sets of equalities, such that child nodes are obtained by a
nonredundant application of a derivation rule to the parent. A derivation tree is closed if all
of its leaf nodes are ⊥. A node is saturated if no nonredundant instance of a rule can be
applied to it.

The derivation rules are partitioned into three sets of rules, given in Figs. 1 to 3, corre-
sponding to three phases of the calculus. The first phase computes the bidirectional closure
of E. The second phase makes inferences based on acyclicity (for datatypes) and uniqueness
(for codatatypes). The third phase performs case distinctions on constructors for various
terms occurring in E. The rules belonging to a phase have priority over those of subsequent
phases. The rules are applied until the derivation tree is closed or all leaf nodes are saturated.

Phase 1: Computing the Bidirectional Closure (Fig. 1). In conjunction with Refl, Sym, and
Trans, the Cong rule computes the congruence (upward) closure, whereas the Inject and Clash
rules compute the unification (downward) closure. For unification, equalities are inferred
based on the injectivity of constructors by Inject, and failures to unify equated terms are
recognized by Clash. The Conflict rule recognizes when an equality and its negation both
occur in E, in which case E has no model.

Let T (E) denote the set of Σ-terms occurring in E. At the end of the first phase, E
induces an equivalence relation over T (E) such that two terms t and u are equivalent if and
only if t ≈ u ∈ E. Thus, we can regard E as a set of equivalence classes of terms. For a term
t ∈ T (E), we write [t] to denote the equivalence class of t in E. Moreover, at the end of
this phase, each equivalence class [t] contains at most one constructor term that is unique up
to congruence. Thus, in the subsequent phases, when considering the case that [t] contains
constructor terms, it is enough to select an arbitrary constructor term C(t̄ )∈ [t] among these.

Phase 2: Applying Acyclicity and Uniqueness (Fig. 2). The rules in this phase are described
in terms of a mapping A that assigns to each equivalence class a µ-term as its representative.

Formally, µ-terms are defined recursively as being either a variable x or an applied con-
structor µx.C(t̄ ) for some C ∈ Fctr and µ-terms t̄ of the expected types. The variable x need
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t ∈ T (E)
t ≈ t ∈ E

Refl
t ≈ u ∈ E
u≈ t ∈ E

Sym
s≈ t, t ≈ u ∈ E

s≈ u ∈ E
Trans

t̄ ≈ ū ∈ E f(t̄ ), f(ū) ∈ T (E)
f(t̄ )≈ f(ū) ∈ E

Cong
t ≈ u, t 6≈ u ∈ E

⊥
Conflict

C(t̄ )≈ C(ū) ∈ E
t̄ ≈ ū ∈ E

Inject
C(t̄ )≈ D(ū) ∈ E C 6= D

⊥
Clash

Fig. 1 Derivation rules for bidirectional closure

δ ∈ Ydt A [tδ] = µx. u x ∈ FV(u)
⊥

Acyclic
δ ∈ Ycodt A [tδ] =α A [uδ]

t ≈ u ∈ E
Unique

Fig. 2 Derivation rules for acyclicity and uniqueness

tδ ∈ T (E) F δ
ctr = {C1, . . . ,Cm}(

s(t) ∈ T (E) and s ∈ F δ
sel
)

or
(
δ ∈ Ydt and δ is finite

)
t ≈ C1

(
s1

1(t), . . . ,s
n1
1 (t)

)
∈ E · · · t ≈ Cm

(
s1

m(t), . . . ,s
nm
m (t)

)
∈ E

Split

tδ,uδ ∈ T (E) δ ∈ Ycodt δ is a singleton
t ≈ u ∈ E

Single

Fig. 3 Derivation rules for branching

not occur free in the µ-binder’s body, in which case the binder can be omitted. FV(t) de-
notes the set of free variables occurring in the µ-term t. A µ-term is closed if it contains no
free variables. It is cyclic if it contains a bound variable. The α-equivalence relation t =α u
indicates that the µ-terms t and u are syntactically equivalent for some capture-avoiding
renaming of µ-bound variables—e.g., µx. D(y, x) =α µz. D(y,z), but µx. C(x), µx. D(y, x),
µx. D(z, x), and µy. D(y, x) are all α-disequivalent. Two µ-terms can denote the same value
despite being α-disequivalent—e.g., µx. S(x) 6=α µy. S(S(y)).

The µ-term A [tτ] describes a class of τ values that t and other members of t’s equivalence
class can take in models of E. When τ is a datatype, a cyclic µ-term describes an infeasible
class of values.

The mapping A is defined as follows. With each equivalence class [u], we associate a
fresh variable ũ of the same type as u. For a term t ∈ T (E), we write t̃ to denote the variable
associated with the equivalence class [t]. Initially, we set A [u] := ũ for each equivalence
class [u]. Because ũ is unconstrained, this indicates that there are initially no constraints on
the values for any equivalence class [u]. The mapping A is refined by applying the following
unfolding rule exhaustively:

ũ ∈ FV(A ) C(t1, . . . , tn) ∈ [u] C ∈ Fctr

A := A [ũ 7→ µ ũ. C(t̃1 , . . . , t̃n)]

FV(A ) denotes the set of free variables occurring in A ’s range, and A [x 7→ t] denotes the
variable-capturing substitution of t for x in A ’s range. It is easy to see that the height of
terms produced as a result of the unfolding is bounded by the number of equivalence classes
of E, and thus the construction of A will terminate.
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Example 2 Suppose that E contains four distinct equivalence classes [w], [x], [y], and [z]
such that C(w,y) ∈ [x] and C(z, x) ∈ [y] for some C ∈ Fctr. A possible sequence of unfolding
steps is given below, omitting trivial entries such as [w] 7→ w̃.

1. Unfold x̃: A = {[x] 7→ µ x̃. C(w̃, ỹ)}
2. Unfold ỹ: A = {[x] 7→ µ x̃. C(w̃, µ ỹ. C(z̃, x̃)), [y] 7→ µ ỹ. C(z̃, x̃)}
3. Unfold x̃: A = {[x] 7→ µ x̃. C(w̃, µ ỹ. C(z̃, x̃)), [y] 7→ µ ỹ. C(z̃, µ x̃. C(w̃, ỹ))}

The resulting A indicates that the values for x and y in models of E must be of the forms
C(w̃,C(z̃,C(w̃,C(z̃, . . .)))) and C(z̃,C(w̃,C(z̃,C(w̃, . . .)))), respectively. �

Given the mapping A , the Acyclic and Unique rules work as follows. For acyclicity, if [t] is
a datatype equivalence class whose values A [t] = µx. u are cyclic (expressed by x ∈ FV(u)),
then E is DC -unsatisfiable. For uniqueness, if [t], [u] are two codatatype equivalence classes
whose values A [t], A [u] are α-equivalent, then t ≈ u. Comparison for α-equivalence may
seem too restrictive, since µx. S(x) and µy. S(S(y)) specify the same value despite being
α-disequivalent, but the rule will make progress by discovering that the subterm S(y) of
µy. S(S(y)) must be equal to the entire term, as demonstrated next.

Example 3 Let E = {x ≈ S(x), y ≈ S(S(y))}. After phase 1, the equivalence classes are
{x, S(x)}, {y, S(S(y))}, and {S(y)}. Constructing A yields

A [x] = µ x̃. S( x̃) A [y] = µ ỹ. S(µS̃(y). S(ỹ)) A [S(y)] = µS̃(y). S(µ ỹ. S(S̃(y)))

Since A [y] =α A [S(y)], the Unique rule applies to derive y ≈ S(y). At this point, phase 1
is activated again, yielding the equivalence classes {x, S(x)} and {y, S(y), S(S(y))}. The
mapping A is updated accordingly:

A [x] = µ x̃. S( x̃) A [y] = µ ỹ. S(ỹ)

Since A [x] =α A [y], Unique can finally be applied to derive x≈ y. �

Phase 3: Branching (Fig. 3). If a selector is applied to a term t, or if t’s type is a finite
datatype, t’s equivalence class must contain a δ constructor term. This is enforced in the
third phase by the Split rule. Another rule, Single, focuses on the degenerate case where
two terms have the same corecursive singleton type and are therefore equal. Both Split’s
finiteness assumption and Single’s singleton constraint can be evaluated statically based on
a recursive computation of the cardinalities of the constructors’ argument types.

3.2 Termination and Correctness of the Calculus

We now show the termination and correctness of the calculus. Correctness means the fol-
lowing: If there exists a closed derivation tree with root node E, then E is DC -unsatisfiable;
and if there exists a derivation tree with root node E that contains a saturated node, then E
is DC -satisfiable.

Theorem 1 (Termination) All derivation trees are finite.
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Proof Consider a derivation tree with root node E. Let D⊆ T (E) be the set of terms whose
types are finite datatypes, and let S ⊆ T (E) be the set of terms occurring as arguments to
selectors. For each term t ∈ D, let

S0
t = {t} S i+1

t = S i
t ∪ {s(u) | uδ ∈ S i

t , δ ∈ Ydt, |δ| is finite, s ∈ F δ
sel}

and let S∞
t be the limit of this sequence. This is a finite set for each t, because all chains of

selectors applied to t are finite. Let S∞ be the union of all sets S∞
t where t ∈D, and let T ∞(E)

be the set of subterms of E ∪ {Cj
(
s1

j (t), . . . ,s
nj
j (t)

)
| tδ ∈ S ∪ S∞, Cj ∈ F δ

ctr}. In a derivation
tree with root node E, it can be shown by induction on the rules of the calculus that each non-
root node F is such that T (F)⊆ T ∞(E), and hence contains an equality between two terms
from T ∞(E) not occurring in its parent node. Thus, the depth of a branch in a derivation tree
with root node E is at most |T ∞(E)|2, which is finite since T ∞(E) is finite. ut

Theorem 2 (Refutation Soundness) If there exists a closed derivation tree with root node
E, then E is DC -unsatisfiable.

Proof The proof is by structural induction on the derivation tree with root node E. If the tree
is an application of Conflict, Clash, or Acyclic, then E is DC -unsatisfiable. For Conflict, this
is a consequence of equality reasoning. For Clash, this is a consequence of distinctness. For
Acyclic, the construction of A indicates that the class of values that term t can take in models
of E is infeasible. If the child nodes of E are closed derivation trees whose root nodes are
the result of applying Split on tδ, by the induction hypothesis E ∪ t ≈ Cj

(
s1

j (t), . . . ,s
nj
j (t)

)
is DC -unsatisfiable for each Cj ∈ F δ

ctr. Since by exhaustiveness, all models of DC entail
exactly one t ≈ Cj

(
s1

j (t), . . . ,s
nj
j (t)

)
, E is DC -unsatisfiable. Otherwise, the child node of E

is a closed derivation tree whose root node E ∪ t ≈ u is obtained by applying one of the
rules Refl, Sym, Trans, Cong, Inject, Unique, or Single. In each of these cases, E �DC t ≈ u.
For Refl, Sym, Trans, Cong, this is a consequence of equality reasoning. For Inject, this is a
consequence of injectivity. For Unique, the construction of A indicates that the values of t
and u are equivalent in all models of E. For Single, t and u must have the same value since the
cardinality of their type is one. By the induction hypothesis, E ∪ t ≈ u is DC -unsatisfiable
and thus E is DC -unsatisfiable. ut

It remains to show the converse of the previous theorem: If a derivation tree with root
node E contains a saturated node, then E is DC -satisfiable. The proof relies on a specific
interpretation J that satisfies E.

First, we define the set of interpretations of the theory DC ,which requires custom termi-
nology concerning µ-terms. Given a µ-term t with subterm u, the expansion of u with respect
to t is the µ-term 〈u〉 /0t , abbreviated to 〈u〉t, as returned by the function

〈x〉Bt =

{
x if x ∈ B
µx. C

(
〈ū〉B]{x}t

)
if µx. C(ū) binds this occurrence of x /∈ B in t

〈µx. C(ū)〉Bt =

{
x if x ∈ B
µx. C

(
〈ū〉B]{x}t

)
otherwise

The recursion will eventually terminate because each recursive call adds one bound vari-
able to B and there are finitely many distinct bound variables in a µ-term. Intuitively, the
expansion of a subterm is a self-contained µ-term that denotes the same value as the original
subterm—e.g., 〈µy.D(x)〉µx.C(µy.D(x)) = µy.D(µx.C(y)).

The µ-term u is a self-similar subterm of t if u is a proper subterm of t, t and u are of
the forms µx. C(t1, . . . , tn) and µy. C(u1, . . . ,un), and 〈tk〉t =α 〈uk〉t for all k. The µ-term t is
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normal if it does not contain self-similar subterms and all of its proper subterms are also nor-
mal. Thus, t = µx. C(µy. C(y)) is not normal because µy. C(y) is a self-similar subterm of t.
Their arguments have the same expansion with respect to t: 〈µy. C(y)〉t = µy. C

(
〈y〉{y}t

)
=

µy. C(y) is α-equivalent to 〈y〉t = µy. C
(
〈y〉{y}t

)
= µy. C(y). The term u = µx. C(µy. C(x))

is also not normal, since µy. C(x) is a self-similar subterm of u, noting that 〈µy. C(x)〉u =
µy. C

(
〈x〉{y}u

)
= µy. C

(
〈µx. C(µy. C(x))〉{y}u

)
= µy. C

(
µx. C(〈µy. C(x)〉{x,y}u )

)
= µy. C(µx.

C(y)) is α-equivalent to 〈x〉u = u.
For any µ-term t of the form µx. C(ū), its normal form btc is obtained by replacing all

of the self-similar subterms of t with x and by recursively normalizing the other subterms.
For variables, bxc= x. Thus, bµx. C(µy. C(x))c= µx. C(x).

We now define the class of interpretations for DC . J (τ) denotes the interpretation type τ
in J —that is, a nonempty set of domain elements for that type. J (f) denotes the interpretation
of a function f in J . If f : τ1×·· ·× τn → τ, then J (f) is a total function from J (τ1)×·· ·×
J (τn) to J (τ). All types are interpreted as sets of µ-terms, but only values of types in Ycodt
may contain cycles.

Definition 1 (Normal Interpretation) An interpretation J is normal if the following con-
ditions are met:

1. For each type τ, J (τ) includes a maximal set of closed normal µ-terms of that type that
are unique up to α-equivalence and acyclic unless τ ∈ Ycodt.

2. For each constructor term C(t̄ ) of type τ, J (C)(J (t̄ )) is the value in J (τ) that is α-
equivalent to bµx. C(J (t̄ ))c, where x is fresh.

3. For each selector term sk
j (t) of type τ, if J (t) is µx. Cj(ū), then J(sk

j )
(
J (t)

)
is the value

in J (τ) that is α-equivalent to 〈uk〉J (t).

Not all normal interpretations are models of codatatypes, because models must contain
all possible infinite terms, not only cyclic ones. However, acyclic infinite values are not
interesting for deciding universal formulas: For such formulas, it is trivial to extend any
normal interpretation with extra domain elements to obtain a genuine model if desired.

When constructing a model J of E, it remains only to specify how J interprets wrongly
applied selector terms and variables. For the latter, this will be based on the mapping A
computed in phase 2 of the calculus.

First, we need the following definitions. We write t =x
α u if µ-terms t and u are syn-

tactically equivalent for some renaming that avoids capturing any variable other than x.
For example, µx. D(x) =y

α µx. D(y) (by renaming y to x), µx. C(x, x) =x
α µy. C(x,y), and

µx. C(z, x) =z
α µy. C(z,y), but µx. D(x) 6=x

α µx. D(y) and µx. C(x, x) 6=y
α µy. C(x,y). For a

variable xτ and a normal interpretation J , we let V x
J (A ) denote the set consisting of all val-

ues v ∈ J (τ) such that v =x
α 〈u〉t for some subterm u of a term t occurring in the range of A .

This set describes shapes of terms to avoid when assigning a µ-term to x.
The completion A? of A for a normal interpretation J assigns values from J to unas-

signed variables in the domain of A . We construct A? by initially setting A? := bAc and by
exhaustively applying the following rule:

x̃ τ ∈ FV(A?) µ x̃. t =α v v ∈ J (τ) v /∈ V x̃
J (A?)

A? := bA?[ x̃ 7→ µ x̃. t]c

Given an unassigned variable in A?, this rule assigns it a fresh value—one that does not
occur in V x̃

J (A?) modulo α-equivalence—excluding not only existing terms in the range of
A? but also terms that could emerge as a result of the update. Since this update removes one
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variable from FV(A?) and does not add any variables to FV(A?), the process eventually
terminates. We normalize all terms in the range of A? at each step.

To ensure disequality literals are satisfied by an interpretation based on A?, it suffices
that A? is injective modulo α-equivalence. This invariant holds initially, and the last premise
in the above rule ensures that it is maintained. The set V x̃

J (A?) is an overapproximation
of the values that, when assigned to x̃, will cause values in the range of A? to become
α-equivalent. For infinite codatatypes, it is always possible to find fresh values v because
V x̃

J (A?) is a finite set.

Example 4 Let δ be a codatatype with the constructors C, D, E : δ→ δ. Let E be the set
{u ≈ C(z), v ≈ D(z), w ≈ E(y), x ≈ C(v), v ≈ s, z 6≈ v}. After applying the calculus to
saturation on E, the mapping A is as follows:

A [u] = µ ũ. C(z̃) A [w] = µw̃. E(ỹ) A [y] = ỹ
A [v] = µ ṽ. D(z̃) A [x] = µ x̃. C(µ ṽ. D(z̃)) A [z] = z̃

Here, [u] denotes the equivalence class {u,C(z)}, [v] denotes {v,C(z), s}, and so on. To con-
struct a completion A?, we must choose values for ỹ and z̃, which are free in A . Modulo
α-equivalence, V z̃

J (A ) = {µa.C(a), µa.D(a), µa.C(D(a)), C(µa.D(a))}. Now consider a
normal interpretation J that evaluates variables in E based on A : J (u) = A [u], J (v) = A [v],
and so on. Assigning a value for A [z] that is α-equivalent to a value in V z̃

J (A ) may cause
values in the range of A to become α-equivalent, which in turn may cause E to be falsified
by J . For example, assign µ z̃. D(z̃) for z̃. After the substitution, A [v] = µ ṽ. D(µ z̃. D(z̃)),
which has normal form µ ṽ. D(ṽ), which is α-equivalent to µ z̃. D(z̃). However, this contra-
dicts the disequality z 6≈ v in E. On the other hand, if the value assigned to z̃ is fresh, the
values in the range of A remain α-disequivalent. We can assign a value such as µ z̃. E(z̃),
µ z̃. D(C(z̃)), or µ z̃. C(C(D(z̃))) to z̃.

Legal substitutions for z̃ may cause the range of A to contain abnormal terms. For ex-
ample, after assigning µ z̃. D(C(z̃)) to z̃, we have A [u] = µ ũ. C(µ z̃. D(C(z̃))), with normal
form µ ũ. C(µ z̃. D(ũ)). This explains why the term is normalized in the rule’s conclusion. �

In the following lemma about A?, Var(t) =
{

t if t is a variable
x if t is of the form µx. u.

Lemma 2 If A is constructed for a saturated set E and A? is a completion of A for a
normal interpretation J , the following properties hold for all [x] and [y] in the domain of
A?:

(1) A?[xτ] is α-equivalent to a value in J (τ).
(2) A?[x] = 〈t〉A?[y] for all subterms t of A?[y] with Var(t) = x̃.
(3) A?[x] =α A?[y] if and only if [x] = [y].

Proof To show (1), we first show that A? contains no free variables. Assume by contradic-
tion that A? contains a free variable ỹ for some [y] of type τ. Then it must be the case that
[y] does not contain a constructor term, or else ỹ would not occur as a free variable in A .
Consider the case when τ is finite. By assumption, τ /∈ Yord. Since Split does not apply to
E, we have τ /∈ Ydt. If τ ∈ Ycodt, then τ is corecursive by assumption, and by Lemma 1,
the cardinality of τ must be one. Since Single does not apply, there is only one equivalence
class of type τ in E, and thus there are no terms in V ỹ

J (A?) of type τ. This is a contra-
diction, since completion can assign the value in the domain of τ to ỹ. Now, consider the
case when τ is infinite. This is also a contradiction, since there are only a finite number of
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closed terms in V ỹ
J (A?), and thus completion can assign a value not occurring in V ỹ

J (A?)
to ỹ. By construction, A?[x] is normal. Since Acyclic does not apply, A [x] is acyclic when
τ ∈ Ydt. Moreover, the construction of A? applies substitutions of the form {ỹ 7→ t}, where
t is acyclic when the type of ỹ is not a codatatype. Thus, A?[x] is acyclic when τ /∈ Ycodt.
Therefore, by definition, A?[x] is α-equivalent to a value in J (τ).

We now show that (2) and (3) hold initially for A . For all equivalence classes [z], each
pair of constructor terms Cj(t̄ ) and Cj ′(ū) in [z] are such that j = j ′, since Clash does not
apply, and are such that [t̄ ] = [ū], since Inject does not apply. Thus, A was constructed by
applying a sequence of substitutions where all substitutions for variables z̃ were uniquely
of the form {z̃ 7→ Cj(t̃1 , . . . , t̃n)} when [z] contains a constructor Cj(t1, . . . , tn). Suppose A [y]
has a subterm t such that Var(t) = x̃. Both A [x] and the subterm t of A [y] were constructed
by applying a sequence of substitutions of the form mentioned above to x̃. Moreover, free
variables z̃ in t that are bound in A [y] are interpreted in the expansion of 〈t〉A [y] as a term
constructed by a sequence of substitutions of the form mentioned above to z̃. Thus, we have
〈t〉A [y] = 〈A [x]〉A [x] = A [x], and (2) holds for A . Property (3) holds for A since Unique does
not apply.

We now show that A = bAc. Assume by contradiction A [x] 6= bA [x]c for some A [x]
of minimal size. We have that A [x] is of the form µ x̃. C(t1, . . . , tn). Due to the construction
of A , we know [x] contains a constructor C(z1, . . . ,zn) and Var(ti) = zi for some i. Since A [x]
is a minimal, it contains a subterm of the form µ ỹ.C(u1, . . . ,un) where 〈ti〉A [x] =α 〈ui〉A [x] for
some i. Due to the construction of A , [y] contains a constructor C(w1, . . . ,wn) and Var(ui) =
wi for some i. Since Cong does not apply, we have [wj] and [zj] are distinct for some j. By (2),
〈tj〉A [x] = A [zj] and 〈uj〉A [x] = A [wj], which are not α-equivalent by (3), contradicting the
fact that µ ỹ. C(u1, . . . ,un) is a self-similar subterm of A [x]. Thus, A = bAc, and (2) and (3)
hold for bAc.

We now show that if (2) and (3) hold for some A 1, they also hold for bA 1σc, where σ is
a substitution of the form { x̃ 7→ µ x̃. t}, x̃ ∈ FV(A 1), and µ x̃. t is not α-equivalent to a term in
V x̃

J (A 1). To show (2), by assumption of (2) on A 1,we have 〈u〉A 1[y] =A 1[x] for all subterms
u of A 1[y] where Var(t) = x̃. Thus, 〈u〉A 1σ[y] = A 1σ[x] and 〈u〉bA 1σc[y] = bA 1σc[x]. To show
(3), consider two distinct equivalence classes [y] and [z], and assume by contradiction that
bA 1σc[y] =α bA 1σc[z]. Due to (3) for A 1, [y] and [z] must have (minimal) subterms where
t1 occurs in A 1[y] the same position p as t2 occurs in A 1[z], and t1 6=α t2. If t1 (resp. t2) is a
free variable that is not x̃, then bA 1σc[y] (resp. bA 1σc[z]) contains t1 (resp. t2) at position p,
and bA 1σc[z] (resp. bA 1σc[y]) does not. If t1 is of the form µw1. C(t̄ ) and t2 is of the form
µw2. D(ū), then the expansion of bA 1σc[y] and bA 1σc[z] are α-disequivalent at position p.
Since t1 and t2 are minimal, say t1 is of the form µw. C(t̄ ), and t2 is x̃. Since σ maps x̃ to
a closed µ-term µ x̃. t, we have that FV(t1) ⊆ { x̃}, or else the expansion of bA 1σc[y] and
bA 1σc[z] are α-disequivalent at position p since they do not contain the same free variables.
Since 〈t1〉A 1[y] is normal, there is a closed µ-term v∈V x̃

J (A 1) such that v = x̃
α 〈t1〉A 1[y]. Thus,

by assumption on the selection of µ x̃. t, we have µ x̃. t 6= x̃
α 〈t1〉A 1[y], which implies that the

expansion of bA 1σc[y] and bA 1σc[z] are α-disequivalent at position p.
Thus, by induction on the number of applications of the above rule used to obtain A?,

we have that A? satisfies (2) and (3). ut

Intuitively, this lemma states three properties of A? that together ensure that a normal
interpretation J can be constructed that satisfies E. Property (1) states that the values in the
range of A? are α-equivalent to a value in normal interpretation. This means they are closed,
normal, and acyclic when required. Property (2) states that the interpretation of all subterms
in the range of A? depends on its associated variable only. In other words, the interpretation
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of a subterm t where Var(t) = x̃ is equal to A?[x], independently of the context. Property (3)
states that A? is injective (modulo α-equivalence), which ensures that distinct values are
assigned to distinct equivalence classes.

Example 5 Consider A from Example 4. While extending A to its corresponding comple-
tion A?, we may, for instance, assign µ z̃. E(z̃) to z̃, and subsequently assign µ ỹ. D(ỹ) to ỹ.
We obtain the following mapping A? from equivalence classes to µ-terms:

A?[u] = µ ũ. C(µ z̃. E(z̃)) A?[w] = µw̃. E(µ ỹ. D(ỹ)) A?[y] = µ ỹ. D(ỹ)
A?[v] = µ ṽ. D(µ z̃. E(z̃)) A?[x] = µ x̃. C(µ ṽ. D(µ z̃. E(z̃))) A?[z] = µ z̃. E(z̃)

Notice that A? satisfies the properties from Lemma 2 for a normal interpretation J : All
terms in the range of A? are closed and normal, A?[s] = 〈t〉A?[y] for all subterms t where
Var(t) = s̃ for all s, and all terms in the range of A? are pairwise α-disequivalent. We may
construct an interpretation J where variables are interpreted as the value that is α-equivalent
to one from J (δ) and that is uniquely associated with its equivalence class by A?. �

Theorem 3 (Solution Soundness) If there exists a derivation tree with root node E con-
taining a saturated node, then E is DC -satisfiable.

Proof Let F be a saturated node in a derivation tree with root node E. We consider a normal
interpretation J that interprets wrongly applied selectors based on equality information in F
and that interprets the variables of F based on the completion A?. For the variables, let J (xτ)
be the value in J (τ) that is α-equivalent with A?[x] for each variable x ∈ T (F), which by
Lemma 2(1) is guaranteed to exist.

We first show that J satisfies all equalities t1 ≈ t2 ∈ F. To achieve this, we show by
structural induction on tτ that J (t) =α A?[t] for all terms t∈ T (F),which implies J � t1 ≈ t2
since J is normal.

If t is a variable, then J (t) =α A?[t] by construction.
If t is a constructor term of the form C(u1, . . . ,un), then J (t) is α-equivalent with bµx.

C(J (u1), . . . ,J (un))c for some fresh x, which by the induction hypothesis is α-equivalent
with bµx. C(A?[u1], . . . ,A?[un])c. Call this term t′. Since Inject and Clash do not apply to F,
by the construction of A? we have that A?[t] is a term of the form µ t̃. C(w1, . . . ,wn) where
Var(wi) = ũi for each i. Thus by Lemma 2(2), 〈wi〉A?[t] = A?[ui]. For each i, let ui

′ be
the ith argument of t′. We have that 〈ui

′〉t′ =α A?[ui], and thus 〈ui
′〉t′ =α 〈wi〉A?[t]. Thus,

J (t) =α t′ =α A?[t], and we have J (t) =α A?[t].
If t is a selector term sk

j (u), since Split does not apply to F, [u] must contain a term of
the form Cj ′

(
s1

j ′(u), . . . ,s
n
j ′(u)

)
for some j ′. Since Inject and Clash are not applicable, by con-

struction A?[u] must be of the form µ ũ. Cj ′(w1, . . . ,wn), where Var(wi) = s̃i
j ′(u) for each i,

and thus by Lemma 2(2), 〈wi〉A?[u] = A?[si
j ′(u)]. If j = j ′, then J (t) is α-equivalent with

〈wk〉A?[u], which is equal to A?[sk
j (u)] = A?[t]. If j 6= j ′, since Cong does not apply, any

term of the form sk
j (u
′) not occurring in [t] is such that [u] 6= [u′]. By the induction hypothe-

sis and Lemma 2(3), J (u) 6= J (u′) for all such u, u′. Thus, we may interpret J (sk
j )(J (u)) as

the value in J (τ) that is α-equivalent with A?[t].
We now show that all disequalities in F are satisfied by J . Assume t 6≈ u ∈ F. Since

Conflict does not apply, t ≈ u /∈ F and thus [t] and [u] are distinct. Since J (t) =α A?[t] and
J (u) =α A?[u], by Lemma 2(3), J (t) 6= J (u), and thus J � t 6≈ u.

Since F contains only equalities and disequalities, we have J � F, and since E ⊆ F, we
conclude that J � E. ut
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Example 6 Continuing Example 5, let J be a normal interpretation, where up to renaming
of µ-bound variables, we have

J (u) = C(µ z̃. E(z̃)) J (w) = E(µ ỹ. D(ỹ)) J (y) = µ ỹ. D(ỹ)
J (s) = J (v) = D(µ z̃. E(z̃)) J (x) = C(D(µ z̃. E(z̃))) J (z) = µ z̃. E(z̃)

It is easy to see that J satisfies the constraints

�u≈ C(z) v≈ D(z) w≈ E(y) x≈ C(v) v≈ s z 6≈ v �

By Theorems 1, 2, and 3, the calculus is sound and complete for the universal theory
of (co)datatypes. We may rightly call it a decision procedure for that theory. The proof of
solution soundness is constructive in that it provides a method for constructing a model for
a saturated configuration, by means of the mapping A?.

4 Implementation in CVC4

The decision procedure was presented at a high level of abstraction, omitting quite a few
details. This section describes the main aspects of the implementation within the SMT solver
CVC4: the integration of the procedure into CDCL(T ) [15], the construction of models with
µ-terms, and the extension of the procedure to quantified formulas.

4.1 A Theory Solver for DC

The decision procedure is implemented as a theory solver of CVC4—that is, a specialized
procedure for determining the satisfiability of conjunctions of literals for its theory. Given
a theory T = T1 ∪ ·· · ∪ Tn and a set of input clauses F in conjunctive normal form, the
CDCL(T ) procedure incrementally builds partial assignments of truth values to the atoms
of F such that no clause in F is falsified. We can regard such a partial assignment as a set M
of true literals. By a variant [19] of the Nelson–Oppen method [29], each Ti-solver takes as
input the union Mi of

– the purified form of Ti-literals occurring in M, where fresh variables replace terms con-
taining symbols not belonging to Ti;

– additional (dis)equalities between variables of types not belonging to Ti.

Each Ti-solver either reports that a subset C of Mi is Ti-unsatisfiable, in which case ¬C is
added to F, adds a clause to F, or does nothing. When M is a complete assignment for F, a
theory solver can choose to do nothing only if Mi is indeed Ti-satisfiable.

Assume E is initially the set Mi described above. With each equality t ≈ u added to
E, we associate a set of equalities from Mi that together entail t ≈ u, which we call its
explanation. Similarly, each A [x] is assigned an explanation—that is, a set of equalities
from Mi that entail that the values of [x] in models of E are of the form A [x]. For example,
if x≈ C(x) ∈ Mi, then x≈ C(x) is an explanation for A [x] = µ x̃. C( x̃). If multiple rules can
derive the same conclusion, the solver simply keeps the first explanation it encounters.

The rules of the calculus are implemented as follows. For all rules with conclusion⊥,we
report the union of the explanations for all premises is DC -unsatisfiable. The implementa-
tion does not use any techniques to minimize the size of this set, which in some cases may be
non-minimal. For Split, we add the exhaustiveness clause t≈ C1

(
s1

1(t), . . . ,s
n1
1 (t)

)
∨ ·· · ∨ t≈
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Acyclic(t):
1. Let U be the datatype equivalence classes of E.
2. Repeat until U 6= /0:

2.1. For some [t] ∈ U, Traverse([t],U, /0).

Traverse([t],U,P):
1. If [t] ∈ P, Acyclic(t).
2. If [t] ∈ U:

2.1. If C(t1, . . . , tk) ∈ [t], then for each j = 1, . . .k:
2.1.1. Traverse([t j],U,P∪{[t]}).

2.2. U := U\{[t]}.

Fig. 4 Algorithm for applying the Acyclic rule

Unique(t,u):
1. Let U be a partition of the equivalence classes of E such that [t] =U [u] for distinct

[t], [u] if and only if t, u have type δ ∈ Ycodt, C(t1, . . . , tk) ∈ [t], and C(u1, . . . ,uk) ∈ [u].
2. Repeat until U is unchanged:

2.1. U′ := /0.
2.2. For each Ui ∈U:

2.2.1. Let U i be a partition of Ui such that [t] =U i [u] for distinct [t], [u] if and only if
– C(t1, . . . , tk) ∈ [t] and C(u1, . . . ,uk) ∈ [u], and
– [t j] =U [u j] for each j = 1, . . . ,k.

2.2.2. U′ := U′∪U i.
2.3. U := U′.

3. If distinct [t], [u] ∈ U for some U ∈U, Unique(t,u).

Fig. 5 Algorithm for applying the Unique rule

Cm
(
s1

m(t), . . . ,s
nm
m (t)

)
to F. Decisions on which branch to take are thus performed externally

by the SAT solver. All other rules add equalities to the internal state of the theory solver. The
rules in phase 1 are performed eagerly—that is, for partial satisfying assignments M—while
the rules in phases 2 and 3 are performed only for complete satisfying assignments M.

Before constructing a model for F, the theory solver constructs neither µ-terms nor the
mapping A . Instead, it relies on the algorithms in Figs. 4 and 5 for determining whether the
rules Acyclic and Unique apply to the set E.

For Acyclic, Fig. 4 considers the set U of all datatype equivalence classes of E. We
choose an arbitrary [t] in U and call the recursive subprocedure Traverse, which takes as
input the current equivalence class we are processing, the set of equivalence classes U we
have yet to process, and the set of equivalence classes P we are currently processing. If a call
to Traverse([t],U,P) is such that [t]∈ P, we know that the rule Acyclic applies to t. Otherwise,
if we have yet to process [t], as indicated by the condition [t] ∈ U, then if [t] contains a
constructor term C(t1, . . . , tk), then we recursively call Traverse on each of [t1], . . . , [tn]. If this
succeeds, we remove [t] from U.

For Unique, Fig. 5 considers a partition U of the equivalence classes of our set E such
that codatatype equivalence classes having a constructor term with top symbol C are placed
in the same subset, for each constructor C. We write [t] =U [u] to denote that [t] and [u]
reside in the same subset within U. We then refine U by constructing a partition U i of each
Ui ∈ U such that distinct [t] and [u] reside in the same subset of U i if and only if they
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contain constructor terms C(t1, . . . , tk) and C(u1, . . . ,uk) where each t j,u j are such that [t j]
and [u j] reside in the same subset of U for each j = 1, . . . ,k. Let U′ be the union of each of
these partitions. We update U to U′. This refinement is repeated until U is left unchanged.
If the resulting partition U contains a subset U having two distinct equivalence classes [t]
and [u], then Unique applies to t and u. This algorithm is analogous to Hopcroft’s algorithm
for minimizing deterministic finite automata [18]—terms correspond to states, argument
positions 1, . . . ,k correspond to input symbols, and the top constructor symbol of a term
generalizes the accepting/rejecting status of a state.

The implementation of the decision procedure uses several optimizations following the
lines of Barrett et al. [3]. We briefly mention the main ones. Discriminators are part of the
signature and not abbreviations. This requires extending the decision procedure with sev-
eral rules, which apply uniformly to datatypes and codatatypes. This approach often leads
to better performance because it introduces terms less eagerly to T (E). Selectors are col-
lapsed eagerly: If sk

j (t) ∈ T (E) and t = Cj(u1, . . . ,un), the solver directly adds sk
j (t)≈ uk to

E,whereas the presented calculus would apply Split and Inject before adding this equality. To
reduce the number of unique literals considered by the calculus, we compute a normal form
for literals as a preprocessing step. In particular, we replace u≈ t by t≈ u if t is smaller than
u with respect to some term ordering, replace Cj(t̄ )≈ Cj ′(ū) with ⊥ when j 6= j ′, replace
all selector terms of the form sk

j (Cj(t1, . . . , tn)) by tk, and replace occurrences of discrimi-
nators dj(Cj ′(t̄ )) by > or ⊥ based on whether j = j ′. Finally, finite ordinary types are not
converted to finite datatypes. We instead rely on standard extensions of the Nelson–Oppen
method [40], which impose requirements regarding terms having finite sorts are shared be-
tween multiple theories. In particular, given an ordinary type τ of finite cardinality n belong-
ing to theory Ti, the theory solver for Ti must communicate enough equalities over shared
terms to ensure that all other theory solvers, including the one for DC , interpret τ as a set
having cardinality at most n.

As Barrett et al. observed for their procedure, it is both theoretically and empirically
beneficial to delay applications of Split as long as possible. Similarly, Acyclic and Unique are
fairly expensive because they require traversing the equivalence classes, which is why they
are part of phase 2.

4.2 Model Construction

When instructed to do so, the implementation produces models for satisfiable inputs. As de-
scribed in Section 3.2, given a saturated set E, we construct a map A? from the equivalence
classes of E to closed normal µ-terms. Recall that our construction of A? requires choosing
values µ x̃. t for each x̃ ∈ FV(A?) such that µ x̃. t does not occur in the set V x̃

J (A?). To
choose values, we use a fair enumerator for each (co)datatype τ, which lists all the values of
type τ in a normal interpretation.

For codatatypes, we enumerate a stream of every µ-term of our signature Σ in a fair
manner, discarding those that have free variables or are not normal. For those that are closed
and normal, we then check whether they occur in the set V x̃

J (A?). This set does not need to
be explicitly constructed. To determine if a term µ x̃. t occurs in the set V x̃

J (A?), we check
if it is α-equivalent to a closed term (µ ỹ. u){ x̃ 7→ z} for some µ ỹ. u in the range of A? and
variable z. This can be efficiently achieved by matching the term µ x̃. t with µ ỹ. u.
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4.3 Extension to Quantified Formulas

While the decision procedure is restricted to universal conjectures, users often want to solve
problems that feature universal axioms and existential conjectures. Many SMT solvers, in-
cluding CVC4, can reason about quantified formulas using incomplete instantiation-based
techniques [27,36]. These techniques extend naturally to quantified formulas involving data-
types and codatatypes.

However, the presence of quantifiers poses an additional challenge in the context of
(co)datatypes. Quantified formulas can entail an upper bound on the cardinality of an un-
interpreted type u. Since it assumes that uninterpreted types have infinite cardinality, the
calculus presented in Section 3 is incomplete since it may fail to recognize cases where Split
and Single should be applied. This does not impact the correctness of the procedure in this
setting, since the solver is already incomplete for quantified formulas.

Nonetheless, two techniques help increase the precision of the solver. First, we can apply
Split to datatype terms whose cardinality depends on the finiteness of uninterpreted types.
Second, we can conditionally apply Single to codatatype terms whose type potentially has
cardinality one. For example, the codatatype streamu has cardinality one precisely when
u has cardinality one. If there exist two equivalence classes [s] and [t] for this type, the
implementation adds the clause (∃x yu. x 6≈ y) ∨ s ≈ t to F, which states that either the
cardinality of u is greater than one or s must be equal to t.

5 Evaluation on Isabelle Problems

The decision procedure for (co)datatypes is useful both for proving (via negation, in the
refutational style) and for model finding [16, 35]. It is in fact vital for finite model finding,
because the acyclicity and uniqueness rules are necessary for solution soundness, without
which the generated models would often be spurious. For example, given the constraints

zeros≈ SCons(0, zeros) repeat(n)≈ SCons(n, repeat(n))

on streams, the conjecture zeros≈ repeat(0) would be “refuted” by a spurious countermodel
that interprets zero and repeat(0) by two distinct values that both correspond to the term
µs. SCons(0, s), violating uniqueness.

By contrast, the contributions of the decision procedure to proving are less obvious; they
depend on how often acyclicity and uniqueness are necessary for a proof. To evaluate this,
we generated benchmark problems from existing interactive proof goals arising in existing
Isabelle formalizations, using Sledgehammer [5] as translator from Isabelle to SMT-LIB.
We included all the formalizations from the Isabelle distribution (Distro, 1179 goals) and
the Archive of Formal Proofs (AFP, 3014 goals) [21] that define codatatypes falling within
the supported fragment. We also included formalizations about Bird and Stern–Brocot trees
(SBT, 265 goals) [14]. To exercise the datatype support, formalizations about finite lists and
trees were added to the first two benchmark sets. The formalizations were selected before
conducting any experiments. The experimental data are available online.3

For each proof goal in each formalization, we used Sledgehammer to select either 16 or
256 lemmas, which were monomorphized and translated to SMT-LIB along with the goal.
The resulting problem was given to the development version of CVC4 (from 15 September

3 http://lara.epfl.ch/~reynolds/JAR-CADE2015-cdt/ or http://www21.in.tum.de/~blanchet/
JAR-CADE2015-cdt/

http://lara.epfl.ch/~reynolds/JAR-CADE2015-cdt/
http://www21.in.tum.de/~blanchet/JAR-CADE2015-cdt/
http://www21.in.tum.de/~blanchet/JAR-CADE2015-cdt/
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Distro AFP SBT Overall
CVC4 Z3 CVC4 Z3 CVC4 Z3 CVC4 Z3

No (co)datatypes 287 282 765 771 47 44 1099 1097
Datatypes without Acyclic 298 – 771 – 47 – 1116 –
Full datatypes 298 294 775 783 47 44 1120 1121
Codatatypes without Unique 288 – 797 – 47 – 1132 –
Full codatatypes 288 – 797 – 52 – 1137 –
Full (co)datatypes 299 – 806 – 52 – 1157 –

Table 1 Number of solved goals with 16 lemmas per goal

Distro AFP SBT Overall
CVC4 Z3 CVC4 Z3 CVC4 Z3 CVC4 Z3

No (co)datatypes 617 560 1503 1271 89 80 2209 1911
Datatypes without Acyclic 617 – 1504 – 90 – 2211 –
Full datatypes 617 560 1504 1263 90 78 2211 1901
Codatatypes without Unique 617 – 1501 – 90 – 2208 –
Full codatatypes 620 – 1502 – 98 – 2220 –
Full (co)datatypes 619 – 1501 – 99 – 2219 –

Table 2 Number of solved goals with 256 lemmas per goal

2015) and to Z3 4.3.2 for comparison, each running for up to 60 s on StarExec [38]. Prob-
lems not involving any (co)datatypes were left out. Due to the lack of machinery in Isabelle
for parsing CVC4 proofs and reconstructing inferences about (co)datatypes, the solvers are
trusted as oracles.

CVC4 was run on each problem several times, with the support for datatypes and co-
datatypes either enabled or disabled. The contributions of the acyclicity and uniqueness rules
were also measured, by selectively enabling or disabling the rules. Even when the decision
procedure is disabled, the problems may contain basic lemmas about constructors and selec-
tors, allowing some (co)datatype reasoning. This is especially true for problems generated
using 256 lemmas. The problems with 16 lemmas put more stress on the decision procedure
but are less typical of Sledgehammer-generated problems.

The results are summarized in Tables 1 and 2. The decision procedure makes a difference
across all three benchmark suites. For the 16-lemma problems, it accounts for an overall
success rate increase of over 5%. Moreover, every aspect of the procedure, including the
more expensive rules, makes a contribution. For the 256-lemma problems, the difference
is much smaller, at 0.5%. Table 2 indicates that the theoretically stronger instances of the
decision procedure do not always subsume the weaker ones in practice. The raw data reveal
that the full procedure proved 27 goals that could not be proved without it, but failed for
17 goals that could be proved without it. This potentially points to poor interactions between
the decision procedure and the quantifier instantiation module [36].

Overall, four proofs were found thanks to the acyclicity rule and 17 required unique-
ness. Interestingly, no proofs were lost by enabling these rules. Among the 17 proofs re-
quiring uniqueness, some were simple arguments of the form by coinduction auto in Isa-
belle [6], while others involved more elaborate reasoning, including the following example
about Stern–Brocot trees:
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lemma num_mod_den_unique: x = Node 0 num x =⇒ x = num_mod_den
proof (coinduction arbitrary: x rule: tree.coinduct_strong)

case (Eq_tree x) show ?case
by (subst (1 2 3 4) Eq_tree) (simp add: eqTrueI[OF Eq_tree])

qed

The tree num_mod_den is defined as num_mod_den = Node 0 num num_mod_den.

6 Conclusion

We introduced a decision procedure for the universal theory of datatypes and codatatypes.
Our main contribution has been the support for codatatypes. Both the metatheory and the
implementation in CVC4 rely on µ-terms to represent cyclic values. Although this aspect
is primarily motivated by codatatypes, it makes a uniform account of datatypes and co-
datatypes possible—in particular, the acyclicity rule for datatypes exploits µ-terms to detect
cycles. The empirical results on Isabelle benchmarks confirm that CVC4’s new capabilities
improve the state of the art.

This work is part of a wider program that aims at enriching automatic provers with
high-level features and at reducing the gap between automatic and interactive theorem prov-
ing. We are currently interfacing CVC4’s finite model finding capabilities for generating
counterexamples in proof assistants [33]; in this context, the acyclicity and uniqueness rules
are crucial to exclude spurious countermodels. As future work, it would be useful to imple-
ment proof reconstruction for (co)datatype inferences in Isabelle. In addition, it might be
worthwhile to extend SMT solvers with dedicated support for (co)recursion.
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D. Jovanović (eds.) SMT 2015 (2015)
34. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D. D’Souza, A. Lal, K.G. Larsen (eds.)

VMCAI 2015, LNCS, vol. 8931, pp. 80–98. Springer (2014)
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