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Abstract. We report on a formalization of ordinals and cardinals in Isabelle/HOL.
A main challenge we faced is the inability of higher-order logic to represent or-
dinals canonically, as transitive sets (as done in set theory). We resolved this into
a “decentralized” representation that identifies ordinals with wellorders, with all
concepts and results proved to be invariant under order isomorphism. We also
discuss two applications of this general theory in formal developments.

1 Introduction

Set theory is the traditional framework for ordinals and cardinals. Axiomatizations such
as Zermelo–Fraenkel (ZF) and von Neumann–Bernays–Gödel (NBG) permit the def-
inition of ordinals as transitive sets well ordered by membership as the strict relation
and by inclusion as the nonstrict counterpart. Ordinals form a class Ord which is itself
well ordered by membership. Basic constructions and results in the theory of ordinals
and cardinals make heavy use of Ord, employing definitions and proofs by transfinite
recursion and induction. In short, Ord conveniently captures the notion of wellorder.

The situation is quite different in higher-order logic (HOL, Section 2). There is no
support for infinite transitive sets, since the type system permits only finite iterations
of the powerset. Consequently, membership cannot be used to implement ordinals and
cardinals. Another difficulty is that there is no single type that can host a complete
collection of canonical representatives for wellorders.

A natural question to ask is: Can we still develop in HOL a theory of cardinals?
The answer depends on the precise goals. Our criterion for the affirmative answer is
the possibility to prove general-purpose theorems on cardinality for the working math-
ematician, such as: Given any two types, one can be embedded into the other; given any
infinite type, the type of lists over it has the same cardinality; and so on.

We present a formalization in Isabelle/HOL [14] that provides such general-purpose
theorems, as well as some more specialized results and applications. We follow a “de-
centralized” approach, identifying ordinals with arbitrary wellorders and developing all
the concepts up to (order-preserving) isomorphism (Section 3). Cardinals are defined,
again up to isomorphism, as the minimum ordinals on given underlying sets (Section 4).

The concepts are more abstract than in set theory: Ordinal equality is replaced by
a polymorphic relation =o stating the existence of an order isomorphism, and mem-
bership is replaced by a polymorphic operator ≤o stating the existence of a strict order
embedding (with a nonstrict counterpart ≤o). This abstract view takes more effort to
maintain than the concrete implementation from set theory (Section 5), since all the de-
fined operations need to be shown compatible with the new equality and most of them



need to be shown monotonic with respect to the new ordering. For example, |A|, the
cardinal of A, is defined as some cardinal order on A and then proved to be isomorphic
to any cardinal order on A; similarly, r1 +c r2, the sum of cardinals r1 and r2, is defined
as the cardinal of the sum of r1’s and r2’s fields, before it is proved compatible with =o

and ≤o. Moreover, since the collection of all ordinals does not fit in one type, we must
predict the size of the constructed objects and choose suitably large support types.

Our development validates the following thesis:

The basics of cardinals can be developed independently of membership-based
implementation details and the existence of large classes from set theory.

This was not clear to us when we started formalizing, since we could not find any
textbook or formal development that follows this abstract approach. Most introductions
to cardinals rely quite heavily on set theory, diving at will into the homogeneous ether
provided by the class of all ordinals.3

The initial infrastructure and general-purpose theorems were incorporated in the
Archive of Formal Proofs [19] in 2009, together with thorough documentation, but was
not otherwise published. Since then, the formalization has evolved to help specific ap-
plications: Cofinalities and regular cardinals were added for a formalization of syntax
with bindings [20] (Section 6), and cardinal arithmetic was developed to support Isa-
belle’s new (co)datatype package [24] (Section 7). Moreover, Breitner employed our
cardinal infrastructure to formalize free group theory [2].

Most of the theory of cardinals is already included in the 2012 edition of Isabelle,
but some features will be available starting with the forthcoming 2014 release.

Related Work. Ordinals have been developed in HOL before. Harrison [7] formalized
ordinals in HOL88 and proved theorems such as Zermelo, Zorn, and transfinite induc-
tion. Huffman [11] formalized countable ordinals in Isabelle/HOL, including arithmetic
and the Veblen hierarchies; the countability assumption made it possible to fix a type
of ordinals. Recently, Norrish and Huffman [15] independently redeveloped in HOL4
much of our theory of ordinals and beyond, covering advanced ordinal arithmetic in-
cluding Cantor normal form. In contrast to them, we see the ordinals mostly as a step-
ping stone toward the cardinals and concentrate on these.

Whereas the HOL-based systems have extensive support for finite cardinal reason-
ing, general cardinals have received little attention. The only account we are aware of is
part of the HOL Light library [9], but it employs cardinals only as “virtual objects” [4],
not defining a notion of cardinal but directly relating sets via injections and bijections.

Beyond HOL, Paulson and Grabczewski [17] have formalized some ordinal and
cardinal theory in Isabelle/ZF following the usual set-theoretic path, via the class of
ordinals with membership. Their main objective was to formalize several alternative
statements of the axiom of choice, and hence they preferred constructive arguments for
most of the cardinal theory. In our development, Hilbert’s choice operator (effectively
enforcing a bounded version of the axiom of choice) is pervasive.

3 Notable exceptions are Taylor’s category-theory-oriented foundation for ordinals [23] and
Forster’s implementation-independent analysis of ordinals and cardinals [4]. The latter was
brought to our attention by an anonymous reviewer.



2 Higher-Order Logic

Isabelle/HOL implements classical higher-order logic with Hilbert choice, the axiom of
infinity, and rank-1 polymorphism. HOL is based on Church’s simple type theory [3].
It is the logic of Gordon’s system of the same name [5] and of its many successors.
HOL is roughly equivalent to ZF without support for classes and with the axiom of
comprehension taking the place of the axiom of replacement. We refer to Nipkow and
Klein [13, Part 1] for a modern introduction.

Types in HOL are either atomic types (e.g., unit, nat, and bool), type variables α, β,
or fully applied type constructors (e.g., nat list and nat set). The binary type construc-
tors α→ β, α+ β, and α× β for function space, disjoint sum, and product are written
in infix notation. All types are nonempty. New types can be introduced by carving out
nonempty subsets of existing types. A constant c of type τ is indicated as c : τ.

The following types and constants from the Isabelle library are heavily used in our
formalization. UNIV : α set is the universe set, the set of all elements of type α. 0 and
Suc are the constructors of the type nat. Elements of the sum type are constructed by
the two embeddings Inl : α→ α+β and Inr : β→ α+β.

The function id : α→ α is the identity. f • A is the image of A : α set through f : α→
β, i.e., the set { f a. a ∈ A}. The predicates inj_on f A and bij_betw f A B state that f :
α→ β is an injection on A : α set and that f : α→ β is a bijection between A : α set and
B : β set. The type (α×α) set of binary relations on α is abbreviated to α rel. Id : α rel
is the identity relation. Given r : α rel, Field r : α set is its field (underlying set), i.e., the
union between its domain and its codomain: {a. ∃b. (a,b) ∈ r} ∪ {b. ∃a. (a,b) ∈ r}.
The following predicates operate on relations, where A : α set and r : α rel:

REFLEXIVE refl_on A r ≡ r ⊆ A×A ∧ ∀x∈A. (x, x) ∈ r
TRANSITIVE trans r ≡ ∀abc. (a,b) ∈ r ∧ (b,c) ∈ r→ (a,c) ∈ r
ANTISYMMETRIC antisym r ≡ ∀ab. (a,b) ∈ r ∧ (b,a) ∈ r→ a = b
TOTAL total_on A r ≡ ∀(a∈A) (b∈A). a 6=b→ (a,b)∈ r ∨ (b,a)∈ r
WELLFOUNDED wf r ≡ ∀P. (∀a. (∀b. (b,a) ∈ r→ P b)→ P a)→ (∀a. P a)
PARTIAL ORDER partial_order_on A r ≡ refl_on A r ∧ trans r ∧ antisym r
LINEAR ORDER linear_order_on A r ≡ partial_order_on A r ∧ total_on A r
WELLORDER well_order_on A r ≡ linear_order_on A r ∧ wf (r− Id)

If r is a partial order, then r− Id is its associated strict partial order. Some of the
above definitions are slightly nonstandard, but they can be proved equivalent to standard
ones. For example, well-foundedness is given here a higher-order definition useful in
proofs as an induction principle, while it is usually equivalently defined as the nonexist-
ence of infinite chains a : nat→ α with (a (Suc i), a i) ∈ r for all i.

Note that refl_on A r (and hence well_order_on A r) implies Field r = A. We abbre-
viate well_order_on (Field r) r to Wellorder r and well_order_on UNIV r to wellorder r.

3 Ordinals

This section presents some highlights of our formalization of ordinals. In a break with
tradition, we work with abstract ordinals—i.e., with wellorders—making no assumption
about their underlying implementation.



3.1 Infrastructure

We represent a wellorder as a relation r : τ rel, where τ is some type. Although some of
the lemmas below hold for arbitrary relations, we generally assume that r, s, and t range
over wellorders. The following operators are pervasive in our constructions: under r a is
the set of all elements less than or equal to a, or “under” a, with respect to r; underS r a
gives the elements strictly under a. We call these under- and strict-under-intervals:

under : α rel→ α→ α set underS : α rel→ α→ α set
under r a ≡ {b | (b,a) ∈ r} underS r a ≡ {b | (b,a) ∈ r∧b 6= a}

A wellorder is a linear order relation r such that its strict version, r− Id, is a well-
founded relation. Well-founded induction and recursion are well supported by Isabelle’s
library. We define slight variations of these notions tailored for wellorders.

Lemma 1. If ∀a∈Field r. (∀a′∈underS r a. P a′)→ P a, then ∀a∈Field r. P a.

When proving a property P for all elements of r’s field, wellorder induction allows us
to show P for fixed a ∈ Field r, assuming P holds for elements strictly r-smaller than a.

Wellorder recursion is similar, except that it allows us to define a function f on
Field r instead of to prove a property. For each a ∈ Field r, we assume f already de-
fined on underS r a and specify f a. This is technically achieved by a “wellorder recur-
sor” operator wo_recr : ((α→ β)→ α→ β)→ α→ β and an admissibility predicate
adm_wor : ((α→ β)→ α→ β)→ bool defined by

adm_wor H ≡ ∀ f g a. (∀a′∈underS r a. f a′ = g a′)→ H f a = H g a

A recursive definition is represented by a function H : (α→ β)→ α→ β, where H f
maps a to a value based on the values of f on underS r a. A more precise type for H
would be ∏a∈Field r (underS r a→ β)→ β, but this is not possible in HOL. Instead, H
is required to be admissible, i.e., not dependent on the values of f outside underS r a.
The defined function wo_rec H is then a fixpoint of H on Field r.

Lemma 2. If adm_wor H, then ∀a∈Field r. wo_recr H a = H (wo_recr H) a.

An (order) filter on r, also called an initial segment of r if r is a wellorder, is a subset A
of r’s field such that whenever A contains a, it also contains all elements under a:

ofilter : α rel→ α set→ bool
ofilter r A ≡ A⊆ Field r ∧ (∀a∈A. under r a⊆ A)

Both the under- and the strict-under-intervals are filters of r. Moreover, every filter of r
is either its whole field or a strict-under-interval.

Lemma 3. (1) ofilter r (under r a) ∧ ofilter r (underS r a);
(2) ofilter r A ←→ A = Field r ∨ (∃a ∈ Field r. A = underS r a).

3.2 Embedding and Isomorphism

Wellorder embeddings, strict embeddings, and isomorphisms are defined as follows:

embed, embedS, iso : α rel→ β rel→ (α→ β)→ bool
embed r s f ≡ ∀a∈Field r. bij_betw f (under r a) (under s ( f a))



embedS r s f ≡ embed r s f ∧ ¬ bij_betw f (Field r) (Field s)
iso r s f ≡ embed r s f ∧ bij_betw f (Field r) (Field s)

We read embed r s f as “ f embeds r into s.” It is defined by stating that for all a ∈
Field r, f establishes a bijection between the under-intervals of a in r and those of f a
in s. The more conventional definition (stating that f is injective, order preserving, and
maps Field r into a filter of s) is derived as a lemma:

Lemma 4. embed r s f ←→ compat r s f ∧ inj_on f (Field r) ∧ ofilter s ( f • Field r),
where compat r s f expresses order preservation of f (∀a b. (a,b)∈ r→ ( f a, f b)∈ s).

Every embedding is either an (order) isomorphism or a strict embedding (i.e., iso r s f ∨
embedS r s f ), depending on whether f is a bijection. These notions yield the following
relations between wellorders:

≤o,≤o,=o : (α rel×β rel) set
≤o ≡ {(r, s). Wellorder r ∧Wellorder s ∧ (∃ f . embed r s f )}
≤o ≡ {(r, s). Wellorder r ∧Wellorder s ∧ (∃ f . embedS r s f )}
=o ≡ {(r, s). Wellorder r ∧Wellorder s ∧ (∃ f . iso r s f )}

We abbreviate (r, s) ∈ ≤o to r ≤o s, and similarly for ≤o and =o. These notations are
fairly intuitive; for example, r ≤o s means that r is smaller than or equal to s, in that it
can be embedded in s. The relations are also well behaved.

Theorem 5. The following properties hold:

(1) r =o r
(2) r =o s→ s =o r
(3) r =o s ∧ s =o t→ r =o t
(4) r ≤o r
(5) r ≤o s ∧ s≤o t→ r ≤o t

(6) ¬ r ≤o r
(7) r ≤o s ∧ s≤o t→ r ≤o t
(8) r ≤o s ←→ r ≤o s ∨ r =o s
(9) r =o s ←→ r ≤o s ∧ s≤o r

If we restrict the types of these relations from (α rel×β rel) set to (α rel) rel (by taking
β= α), we obtain that =o is an equivalence (1–3) and≤o is a preorder (4–5). Moreover,
≤o is the strict version of≤o with respect to =o (6–8). If we think of =o as the equality,
≤o becomes a partial order (9) and ≤o a strict partial order.

The above relations establish an order between the wellorders similar to the standard
one on the class of ordinals but distributed across types and, as a consequence, only up
to isomorphism. What is still missing is a result corresponding to the class of ordinals
being itself well ordered. To this end, we first show that ≤o is total.

Theorem 6. r ≤o s ∨ s≤o r.

Proof idea. In textbooks, totality of ≤o follows from the fact that every wellorder is
isomorphic to an ordinal and that the class of ordinals Ord is totally ordered. To show
the former, one starts with a wellorder r and provides an embedding of r into Ord.

In our distributed setting, we must start with two wellorders r : α rel and s : β rel,
without a priori knowing which one is larger, hence which should embed which. Our
proof proceeds by defining a function by transfinite recursion on r that embeds r into s
if r ≤o s and that is the inverse of an embedding of s into r otherwise. ut
This total order is a wellorder. Equivalently, its strict counterpart ≤o is well founded.



Theorem 7. wf (≤o : (α rel) rel).

Theorems 5, 6, and 7 yield that for any fixed type, its wellorders are themselves well
ordered up to isomorphism. This paves the way for introducing cardinals.

3.3 Ordinal Arithmetic

Most textbooks define operations on ordinals (sum, product, exponentiation) by trans-
finite recursion. Yet these operations admit direct, nonrecursive definitions, which are
particularly suited to arbitrary wellorders. In Holz et al. [10], these direct definitions are
presented as “visual” descriptions.

We define the ordinal sum +o by concatenating the two argument wellorders r and s
such that elements of Field r come below those of Field s:

+o : α rel→ β rel→ (α+β) rel
r +o s ≡ (Inl⊗ Inl) • r ∪ (Inr⊗ Inr) • s ∪ {(Inl x, Inr y). x ∈ Field r ∧ y ∈ Field s}

In the above, the operator ⊗ : (α1 → β1)→ (α2 → β2)→ (α1×α2 → β1× β2) is the
map function for products: ( f1⊗ f2) (a1,a2) = ( f1 a1, f2 a2).

Similarly, ordinal multiplication ×o is defined as the anti-lexicographic ordering on
the product type:

×o : α rel→ β rel→ (α×β) rel
r ×o s ≡ {((x1,y1),(x2,y2)). x1, x2 ∈ Field r ∧ y1,y2 ∈ Field s ∧

(y1 6= y2 ∧ (y1,y2) ∈ s ∨ y1 = y2 ∧ (x1, x2) ∈ r)}

For ordinal exponentiation r ^o s, the underlying set consists of the functions of
finite support from Field s to Field r. Assuming f 6= g, the finite support ensures that
there exists a maximum z ∈ Field s (with respect to s) such that f z 6= g z. We make f
smaller than g if ( f z, g z) ∈ r:

^o : α rel→ β rel→ (β→ α) rel
r ^o s ≡ {( f ,g). f ,g ∈ FinFunc (Field s) (Field r) ∧

( f = g ∨ (let z = maxs{x∈Field s. f x 6= g x} in ( f z, g z) ∈ r))}

The definition rests on the auxiliary notion of a function of finite support from B : α set
to A : β set. FinFunc B A carves out a suitable subspace of the total function space β→ α
by requiring that functions are equal to a particular unspecified value ⊥ outside their
intended domains. In addition, finite support means that only finitely many elements of
B are mapped to elements other than the minimal element 0r of the wellorder r:

Func, FinFunc : β set→ α set→ (β→ α) set
Func B A ≡ { f . f • B⊆ A ∧ (∀x /∈B. f x =⊥)}
FinFunc B A ≡ Func B A ∩ { f . finite {x∈B. f x 6= 0r}}

All three constructions yield wellorders. Moreover, they satisfy various arithmetic
properties, including those listed below.

Theorem 8. (1) Wellorder (r +o s); (2) Wellorder (r ×o s); (3) Wellorder (r ^o s).

Lemma 9 (Lemma 1.4.3 in Holz et al. [10]). Let 0 be the empty wellorder and 1 be
the singleton wellorder. The following properties hold:



(1) 0 +o r =o r =o r +o 0
(2) s≤o r +o s
(3) s≤o t→ r +o s≤o r +o t

(4) (r +o s) +o t =o r +o (s +o t)
(5) r ≤o s→ r +o t ≤o s +o t

(6) 0×o r =o 0 =o r ×o 0
(7) (r ×o s)×o t =o r ×o (s×o t)
(8) r ≤o s→ r ×o t ≤o s×o t

(9) 1×o r =o r =o r ×o 1
(10) r ×o (s +o t) =o r ×o s +o r ×o t
(11) 0≤o r ∧ s≤o t→ r ×o s≤o r ×o t

(12) 0≤o r→ 0 ^o r =o 0
(13) (r ^o s) ^o t =o r ^o (s×o t)
(14) r ≤o s→ r ^o t ≤o s ^o t
(15) 1≤o r→ s≤o r ^o s

(16) 1 ^o r =o 1
(17) r ^o s +o t =o r ^o s×o r ^o t
(18) 1≤o r ∧ s≤o t→ r ^o s≤o r ^o t

An advantage of the standard definitions of these operations by transitive recursion is
that the above arithmetic facts can then be nicely proved by corresponding transfinite
induction. With direct definitions, we aim as much as possible at direct proofs via the
explicit indication of suitable isomorphisms or embeddings, as in the definitions of
=o, ≤o, and ≤o. This approach works well for the equations (=o-identities) and for
right-monotonicity properties of the operators (where one assumes equality on the left
arguments and ordering of the right arguments). For example, to prove 0≤o r∧ s≤o t→
r ×o s≤o r ×o t, we use the definition of ≤o to obtain from s≤o t a strict embedding f
of s into t. The desired strict embedding of r ×o s into r ×o t is then id⊗ f .

In contrast, left-monotonicity properties such as r≤o s→ r ×o t≤o s×o t no longer
follow smoothly, because it is not clear how to produce an embedding of r ×o t into
s×o t from one of r into s. An alternative characterization of ≤o is called for:

Lemma 10. r ≤o s ←→ Wellorder r ∧Wellorder s ∧ (∃ f . ∀a∈Field r. f a ∈ Field s ∧
f • underS r a⊆ underS s ( f a)).

Thus, to show r ≤o s, it suffices to provide an order embedding, which need not be
a wellorder embedding (an embedding of Field r as a filter of s). This dramatically
simplifies the proof. To show the left-monotonicity property r ×o t ≤o s×o t assuming
an embedding f of r into s, the obvious order embedding f ⊗ id meets the requirements.
Surprisingly, this technique is not mentioned in the textbooks.

Right-monotonicity holds for both ≤o and ≤o, whereas left-monotonicity holds
only for ≤o. This is fortunate in a sense, because Lemma 10 is not adaptable to ≤o.

4 Cardinals

With the ordinals in place, we can develop a theory of cardinals, which endows HOL
with many conveniences of cardinality reasoning, including basic cardinal arithmetic.

4.1 Bootstrapping

We define cardinal orders on a set (or cardinals) as those wellorders that are minimal
with respect to =o. This is our HOL counterpart of the standard definition of cardinals
as “ordinals that cannot be mapped one-to-one onto smaller ordinals” [10, p. 42]:

card_order_on A r ≡ well_order_on A r ∧ (∀s. well_order_on A s→ r ≤o s)



We abbreviate card_order_on (Field r) r to Card_order r and card_order_on UNIV r to
card_order r. By definition, card_order_on A r implies A = Field r, allowing us to write
Card_order r when we want to omit A.

Cardinals are useful to measure sets. There exists a cardinal on every set, and it is
unique up to isomorphism.

Theorem 11. (1) ∃r. card_order_on A r;
(2) card_order_on A r ∧ card_order_on A s → r =o s.

We define the cardinality of a set |_| : α set→ α rel using Hilbert’s choice operator to
pick an arbitrary cardinal order on A: |A| ≡ εr. card_order_on A r. The order exists
and is irrelevant by Theorem 11. We can prove that the cardinality operator behaves as
expected; in particular, it is monotonic. We can also connect it to the more elementary
comparisons in terms of functions.

Lemma 12. The following properties hold:

(1) card_order_on A |A|
(2) Field |A|= A

(3) A⊆ B → |A| ≤o |B|
(4) r ≤o s → |Field r| ≤o |Field s|

Lemma 13. The following equivalences hold:

(1) |A|=o |B| ←→ (∃ f . bij_betw f A B)
(2) |A| ≤o |B| ←→ (∃ f . inj_on f A ∧ f • A⊆ B)
(3) A 6= /0 → (|A| ≤o |B| ←→ (∃g. A⊆ g • B))

Lemma 13, in conjunction with Theorem 6, allows us to prove the following interesting
order-free fact for the working mathematician, mentioned in Section 1.

Theorem 14. Given any two types σ and τ, one is embeddable in the other: There
exists an injection either from σ to τ or from τ to σ.

4.2 Cardinality of Set and Type Constructors

We analyze the cardinalities of several standard type constructors: α+β (disjoint sum),
α×β (binary product), α set (powertype), and α list (lists). In the interest of generality,
we consider the homonymous set-based versions of these constructors, which take the
form of polymorphic constants:

+ : α set→ β set→ (α+β) set × : α set→ β set→ (α×β) set
A+B ≡ {Inl a | a ∈ A} ∪ {Inr b | b ∈ B} A×B ≡ {(a,b) | a ∈ A ∧ b ∈ B}

Pow : α set→ (α set) set lists : α set→ (α list) set
Pow A ≡ {X | X ⊆ A} lists A ≡ {as | set as⊆ A}

(Such operators can be generated automatically from the specification of a (co)datatype,
as we will see in Section 7.) The cardinalities of these operators are compatible with
isomorphism and embedding.



Lemma 15. Let K be any of +, ×, Pow, and lists, let n ∈ {1,2} be its arity, and let θ
be either =o or ≤o. If ∀i∈{1, . . . ,n}. |Ai| θ |Bi|, then |K A1 . . . An| θ |K B1 . . . Bn|.

Lemma 16. The following orderings between cardinalities hold:

(1) |A| ≤o |A+B|
(2) |A+B| ≤o |A×B| if both A and B have at least two elements
(3) |A| ≤o |Pow A|
(4) |A| ≤o |lists A|

If one of the involved sets is infinite, some embeddings collapse to isomorphisms.

Lemma 17. Assuming infinite A, the following equalities between cardinals hold:

(1) |A×A|=o |A|
(2) |A|=o |lists A|
(3) |A+B|=o (if A≤o B then |A| else |B|)
(4) B 6= /0 → |A×B|=o (if A≤o B then |A| else |B|)

The formalization of property (1) required a significant effort. Its proof relies on the
so-called bounded product construction, which is extensively discussed by Paulson and
Grabczewski [17] in the context of Isabelle/ZF.

In Isabelle/HOL, the Cartesian product is a special case of the indexed sum (or dis-
joint union) operator:

∑ : α set→ (α→ β set)→ (α×β) set
∑ A f ≡

⋃
a∈A

⋃
b∈ f a {(a,b)}

We write ∑a∈A f a for ∑ A f . The properties of × given above carry over to ∑. In
addition, ∑ can be used to prove cardinality bounds of indexed unions:

Lemma 18. (1) |
⋃

a∈A f a| ≤o |∑a∈A f a|;
(2) infinite B ∧ |A| ≤o |B| ∧ (∀a∈A. | f a| ≤o |B|) → |

⋃
a∈A f a| ≤o |B|.

4.3 ℵ0 and the Finite Cardinals

Our ℵ0 is the standard order≤ : nat rel on natural numbers, which we denote by natLeq.
It behaves as expected of ℵ0; in particular, it is ≤o-minimal among infinite cardinals.
Proper filters of natLeq are precisely the finite sets of the first consecutive numbers.

Lemma 19. (1) infinite A ←→ natLeq≤o |A|; (2) Card_order natLeq;
(3) Card_order r ∧ infinite (Field r) → natLeq≤o r;
(4) ofilter natLeq A ←→ A = (UNIV : nat set) ∨ (∃n. A = {0, . . . ,n}).

The finite cardinals are obtained as restrictions of natLeq: natLeq_on n ≡ natLeq ∩
{0, . . . ,n}×{0, . . . ,n}. These behave like the finite cardinals (up to isomorphism):

Lemma 20. (1) card_order (natLeq_on n); (2) finite A ∧ |A|=o |B| → finite B;
(3) finite A ←→ (∃n. |A|=o natLeq_on n).

For finite cardinalities, we prove backward compatibility with the preexisting cardinal-
ity operator card : α set→ nat, which maps infinite sets to 0:

Lemma 21. Assuming finite A ∧ finite B:



(1) |A|=o |B| ←→ card A = card B (2) |A| ≤o |B| ←→ card A≤ card B

The card operator has extensive library support in Isabelle. It is still the preferred car-
dinality operator for finite sets, since it refers to numbers with order and equality rather
than the more bureaucratic order embeddings and isomorphisms.

cardSuc preserves finiteness and behaves as expected for finite cardinals:

Lemma 22. (1) Card_order r → (finite (cardSuc r) ←→ finite (Field r));
(2) cardSuc (natLeq_on n) =o natLeq_on (Suc n).

4.4 Cardinal Arithmetic

To define cardSuc r, the successor of a cardinal r : α rel, we first choose a type that is
large enough to contain a cardinal greater than r, namely, α set. The successor cardinal
is then defined as a cardinal that is greater than r and that is ≤o-minimal among all
cardinals on the chosen type α set:

isCardSuc : α rel→ (α set) rel→ bool
isCardSuc r s ≡ Card_order s ∧ r ≤o s ∧

(∀t : (α set) rel. Card_order t ∧ r ≤o t → s≤o t)

The choice of the second argument’s type, together with Theorem 7, ensures that such
a cardinal exists:

Lemma 23. ∃s. isCardSuc r s.

This allows us to define the function cardSuc : α rel→ (α set) rel that yields an arbi-
trary successor cardinal of its argument r: cardSuc r ≡ εs. isCardSuc r s. The chosen
cardinal is really a successor cardinal:

Lemma 24. isCardSuc r (cardSuc r)

To obtain the desired characteristic properties of successor cardinals in full generality,
we must prove that cardSuc r is minimal not only among the cardinals on α set but
among all cardinals. This is achieved by a tedious process of making isomorphic copies.

Theorem 25. Assuming Card_order (r : α rel) and Card_order (s : β rel):

(1) r ≤o cardSuc r (2) r ≤o s → cardSuc r ≤o s

Finally, we prove that cardSuc is compatible with isomorphism and is monotonic.

Theorem 26. Assuming Card_order r and Card_order s:

(1) cardSuc r =o cardSuc s ←→ r =o s (2) cardSuc r ≤o cardSuc s ←→ r ≤o s

In summary, we first introduced the successor in a type-specific manner, asserting min-
imality within a chosen type, since HOL would not allow us to proceed more generally.
Then we proved the characteristic property in full generality, and finally we showed that
the notion is compatible with =o and ≤o.



This approach is certainly more bureaucratic than the traditional set theoretic con-
structions, but it achieves the desired effect. The same technique is used to introduce
all the standard cardinal operations (e.g, +c : α rel→ β rel→ (α+β) rel), for which we
prove the basic arithmetic properties.

Lemma 27 (Lemma 1.5.10 in Holz et al. [10]). The following properties hold:

(1) (r +c s) +c t =o r +c (s +c t) (2) r +c s =o s +c r

(3) (r ×c s)×c t =o r ×c (s×c t)
(4) r ×c s =o s×c r
(5) r ×c 0 =o 0

(6) r ×c 1 =o r
(7) r ×c (s +c t) =o r ×c s +c r ×c t

(8) r ^c (s +c t) =o r ^c s×c r ^c t
(9) (r ^c s) ^c t =o r ^c (s×c t)

(10) (r ×c s) ^c t =o r ^c t ×c s ^c t
(11) ¬ r =o 0 → r ^c 0 =o 1 ∧ 0 ^c r =o 0

(12) r ^c 1 =o r
(13) 1 ^c r =o 1
(14) r ^c 2 =o r ×c r

(15) r ≤o s ∧ t ≤o u → r +c t ≤o s +c u
(16) r ≤o s ∧ t ≤o u ∧ ¬ t =o 0 → r ^c t ≤o s ^c u

(17) r ≤o s ∧ t ≤o u → r ×c t ≤o s×c u

Another useful cardinal operation is the maximum of two cardinals, cmax r s, which is
well defined by the totality of ≤o. Thanks to Lemma 17(1), it behaves like both sum
and product for infinite cardinals:

Lemma 28. (infinite (Field r) ∧ Field s 6= /0) ∨ (infinite (Field s) ∧ Field r 6= /0) →
cmax r s =o r +c s =o r ×c s.

4.5 Regular Cardinals

A set A : α set is cofinal for r : α rel, written cofinal A r, if ∀a∈Field r. ∃b ∈ A. a 6= b ∧
(a,b)∈ r; and r is regular, written regular r, if ∀A. A⊆ Field r ∧ cofinal A r → |A|=o r.

Regularity is a generalization of the property of natLeq of not being “coverable” by
smaller cardinals—indeed, no finite set A of numbers fulfills ∀m. ∃n∈ A. m < n. The
infinite successor cardinals are further examples of regular cardinals.

Lemma 29. (1) regular natLeq;
(2) Card_order r ∧ infinite (Field r) → regular (cardSuc r).

A property of regular cardinals useful in applications is the following: Inclusion of a set
of smaller cardinality in a union of a chain indexed by the cardinal behaves similarly to
membership, in that it amounts to inclusion in one of the sets in the chain.

Lemma 30. Assume Card_order r, regular r, ∀i j. (i, j) ∈ r → A i⊆ A j, |B| ≤o r, and
B⊆

⋃
i∈Field r A i. Then ∃i∈Field r. B⊆ A i.

Finally, regular cardinals are stable under unions. They cannot be covered by a union of
sets of smaller cardinality indexed by a set of smaller cardinality.

Lemma 31. Assuming Card_order r, regular r, |I| ≤o r, and ∀i∈ I. |A i| ≤o r, we have
|
⋃

i∈ I A i| ≤o r.

We also proved the converse: The above property is not only necessary but also suffi-
cient for regularity.



5 Discussion of the Formalization

Figure 1 shows the main theory structure of our development. The overall development
amounts to about 14 000 lines of scripts, excluding the applications. We also formal-
ized many basic facts about wellorders and (order-)isomorphic transfer across bijec-
tions. When we started, Isabelle’s library had extensive support for orders based on
type classes [6]. However, working with the wellorder type class was not an option,
since we need several wellorders for the same type—for example, the cardinal of a type
is defined as the minimum of all its wellorders.

Reasoning about the modified version of equality and order (=o, ≤o, and ≤o) was
probably the most tedious aspect of the formalization effort. The standard Isabelle proof
methods (auto, blast, etc.) are optimized for reasoning about actual equality and order.
Some of the convenience could be recovered via an appropriate setup; for example,
declaring these relations as transitive enables calculational reasoning in Isar [1].

For the initial version of the formalization, developed in 2009, Isabelle’s Sledge-
hammer tool for deploying external automatic theorem provers [16] did not help much.
The proofs required a careful combination of facts on orders and isomorphic transfer,
and Sledgehammer was not as powerful as it is today. In contrast, cardinal arithmetic
was developed later and largely automated in this way.

Throughout the paper, we have illustrated our effort to adapt the theory of cardinals
to the HOL types, doing without a canonical class of ordinals ordered by membership.
Another limitation of HOL is its inability to quantify over types except universally and
at the statements’ top level. A notorious example originates from the formalizations
of the FOL completeness theorem (e.g., Harrison [8]): A sentence is provable if and
only if it is true in all models. The ‘if’ direction is not expressible in HOL, because
the right-hand side quantifies over all carrier types of all models, which amounts to an
existential type quantification at the top of the formula. But one can express and prove
a stronger statement: Based on the language cardinality, one fixes a witness type so that
satisfaction in all models on that type already ensures provability. Our formalization
abounds in such apparently inexpressible statements. One example is the definition of
the successor cardinal from Section 4.4. Another is the claimed converse of Lemma 31.
Each time, we needed to select a suitable witness type in an ad hoc fashion.

Wellorder_Relation (Section 3.1)

Wellorder_Embedding (Section 3.2)

Constructions_on_Wellorders (Section 3.2)

Ordinal_Arithmetic (Section 3.3) Cardinal_Order_Relation (Section 4)

Syntax with bindings (Section 6) Cardinal_Arithmetic (Section 4.4)

(Co)datatype package (Section 7)

Fig. 1. Theory structure



6 Application: Syntax with Bindings

Popescu has formalized a general theory of syntax with bindings, parameterized over
a binding signature with possibly infinitary operation symbols [20–22]. Cardinals were
crucially needed for supporting infinitary syntax.

We illustrate the problem and solution on an example. Let index and var be types
representing indices and variables, and consider the freely generated type of terms

datatype term = Var var | Lam var term | Sum (index→ term)

Thus, a term is either (an injection of) a variable, a λ-abstraction, or an indexed sum of
a family of terms. The standard operators of free variables fvars : term→ var set and
capture-avoiding substitution _[_/_] : term→ term→ var→ term are defined below:

fvars (Var x) = {x} (Var x)[s/y] = (if x = y then s else Var x)
fvars (Lam x t) = fvars t−{x} (Lam x t)[s/y] = (let x′ = pickFresh [Var y, s]
fvars (Sum f ) =

⋃
i∈ I fvars ( f i) in Lam x′ (t[x′/x][s/y]))

(Sum f )[s/y] = Sum (λi. ( f i)[s/y])

To avoid capture, the Lam case of substitution renames the variable x to x′. The new
name is chosen by the pickFresh operator, which takes a list of terms ts as argument
and returns some variable not occurring freely in ts. But how can we be sure that such
a choice exists? The standard solution of making the type var infinite does not suffice
here: The Sum constructor introduces possibly infinite branching on index, and there-
fore fvars t may return an infinite set of variables, potentially even UNIV.

Fortunately, the essence of the standard solution can be generalized to the infinitary
situation. Finitely branching syntax relies on the observation that no n-ary constructor
violates the finiteness of the set of free variables, since a finite union of finite sets is
finite. Lemma 31 generalizes this notion to regular cardinals. Hence, we simply need to
define var so that it has a regular cardinal greater than index: var = cardSuc |index|.

Lemma 32. regular |var| ∧ |index| ≤o |var| → (∀t. |fvars t| ≤o |var|).

Proof idea. By structural induction on t, using Lemma 31. ut

After passing this milestone, a theory of substitution and free variables proceeds simi-
larly to the finitary case [20]. Most current frameworks for syntax with bindings, includ-
ing nominal logic [12,18], assume finiteness of the syntactic objects. Regular cardinals
provide a foundation for an infinitary generalization.

7 Application: Bounded Functors and the (Co)datatype Package

Isabelle’s new (co)datatype package draws on both category theory and cardinal the-
ory. It maintains a class of functors with additional structure, called bounded natural
functors (BNFs), for which it constructs initial algebras (datatypes) and final coalge-
bras (codatatypes). The category theory underlying the package is described in Traytel
et al. [24]; here, we focus on the cardinality aspects.



BNFs are type constructors equipped with functorial actions, n natural transfor-
mations, and a cardinality bound. A unary BNF consists of a type constructor α F,
a constant Fmap : (α→ β)→ α F→ β F, a constant Fset : α F→ α set that is nat-
ural with respect to F, and a cardinal Fbd such that ∀x. |Fset x| ≤o Fbd. We define
Fin : α set→ (α F) set, the set-based version of F, by Fin A = {x | Fset x⊆ A}—this is
a common generalization of the specific set-based operators from Section 4.2.

An algebra for F is a triple A = (T , A : T set, s : T F→T ) (where T is a type) such
that ∀x∈ Fin A. s x ∈ A. The condition ensures that s is a function from Fin A to A,
and we allow ourselves to write s : Fin A→ A. The set A is the carrier of A , and s is
the structural map of A. The structural map models the operations of the algebra. For
example, if α F = unit+α×α, an algebra A consists of a set A : T set with a constant
and a binary operation on it, encoded as s : unit+α×α→ α.

This notion accommodates standard algebraic constructions. One forms the product
∏i∈I Ai of a family of algebras (of type T ) by taking the product of the carrier sets and
defining the structural map s : Fin (∏i∈ I Ai)→∏i∈ I Ai as s x = (si (Fmap proji x))i∈ I .
A stable part of A is any set A′⊆ A such that ∀x∈Fin A′. s x∈ A′. Since the intersection
of stable parts is a stable part, we can define an algebra Min(A ), the minimal algebra
of A , by taking its carrier to be the intersection of all stable parts and its structural map
to be (the restriction of) s. This corresponds to the notion of subalgebra generated by /0.
A morphism between two algebras A and A ′ is a function h : A→ A′ that commutes
with the structural maps, in that ∀x∈Fin A. h (s x) = s′ (Fmap h x).

Building the initial algebra of F (an algebra such that for any algebra A , there exists
precisely one morphism between it and A ) can be naively attempted as follows: First
we take R =∏{A |A algebra}, the product of all algebras. Given an algebra A , there
must exist a morphism h from R to A —the corresponding projection. The restriction
of h to Min(R) is then the desired unique morphism from Min(R) to A , and Min(R)
is our desired initial algebra.

This naive approach fails since we cannot construct the product of all algebras in
HOL—and even if we could, it would not be an algebra itself due to its size. Fortunately,
it suffices to define the morphism h from R not to A but to Min(A ). Hence, we can
take R as the product of all minimal algebras and consider only a complete collection
of representatives (up to isomorphism). This is where the bound on F comes into play.
If we know that all minimal algebras of all algebras had cardinality smaller than a given
bound r0, we can choose a type T0 of cardinality r0 and define R as the product of all
algebras on T0: R = ∏{A | A = (T0, A : T0 set, s : T0 F→ T0) algebra}. A suitable
cardinal bound is r0 = 2 ^c k, where k = cardSuc (Fbd +c |Fin (Field Fbd)|). To prove
this, we first establish the following consequence of the BNF boundedness property:4

Lemma 33. |A| ≥o 2→ |Fin A| ≤o |A| ^c k.

Theorem 34. For all algebras A, let M be the carrier of Min(A ). Then |M| ≤o 2 ^c k.

Proof idea. The definition of Min(A ) performs a construction of M “from above,” as
an intersection, yielding no cardinality information. We must produce an alternative

4 Initially, we had maintained a slight variation of this property as an additional BNF require-
ment [24, Section IV], not realizing that it is redundant. Removing it has simplified the package
code substantially.



construction “from below,” exploiting the internal structure of F. Let N =
⋃

i∈Field k Ni,
where each Ni is defined by wellorder recursion as follows: Ni =

⋃
j∈underS k i s • Fin N j.

We first prove that N is a stable part of A , and hence M ⊆ N. Let x ∈ Fin N. Then
Fset x⊆ N =

⋃
i∈Field k Ni, and since k is regular by Lemma 29(2), we use Lemma 30 to

obtain i ∈ Field k such that Fset x ⊆ Ni (i.e., x ∈ Fin Ni). Hence, s x ∈ Nsucc k i ⊆ N, as
desired. Conversely, N ⊆M follows by wellorder induction. Thus, we have M = N. The
inequality |N| ≤o 2 ^c k follows by wellorder induction, using Lemma 33 and cardinal
arithmetic to keep the passage from Ni to Fin Ni bounded. Knowing |Ni| ≤o 2 ^c k, we
obtain |Fin Ni| ≤o |Ni| ^c k ≤o (2 ^c k) ^c k =o 2 ^c (k ×c k) =o 2 ^c k. ut

Cardinal arithmetic is also used throughout the package for showing that the various
constructions on BNFs (composition, initial algebra, and final coalgebra) yield BNFs.

8 Conclusion

We have formalized in Isabelle/HOL a theory of cardinals, proceeding locally and ab-
stractly, up to wellorder isomorphism. The theory has been applied to reason about
infinitary objects arising in syntax with bindings and (co)datatypes.

We hope our experiment will be repeated by the other HOL provers, where a theory
of cardinals seems as useful as in any other general-purpose framework for mathemat-
ics. Indeed, the theory provides working mathematicians with the needed injections and
bijections (e.g., between lists over an infinite type, or the square of an infinite type, and
the type itself) without requiring them to perform awkward encodings.

An open question is whether the quotient construction performed by Norrish and
Huffman (briefly discussed in the introduction) would have helped the cardinal formal-
ization. With their approach, we would still need to change the underlying type of car-
dinals to accommodate for increasingly large sizes. HOL offers no way to reason about
arbitrary cardinals up to equality, so isomorphism appears to be the right compromise.
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