For a theory T, the finitary consistency statement $\text{Con}_T(n)$ states that there is no proof of $0 = 1$ in T of size at most n. A fast consistency prover is a theory T - having a polynomial time decidable axiom system - such that for every consistent polynomial time axiomatized theory S there is a proof of $\text{Con}_S(n)$ in T of size at most $p(n)$, for some polynomial $p()$.

Krajíček and Pudlák [1] show that there exists a fast consistency prover if and only if an optimal propositional proof system exists, and thus its existence follows from $NP = co-NP$. It is an open question whether the converse holds, i.e., whether it is equivalent to $NP = co-NP$.

The paper under review studies a modified notion of fast consistency prover, where the required bounds on the proof size are uniformly given by a polynomial. It is shown that the existence of fast consistency provers under this modified definition – and of a similarly modified notion of optimal proof system – is indeed equivalent to $NP = co-NP$.

Moreover it is shown that a related notion of fast consistency prover, where polynomial time decidable is replaced by recursively enumerable, does not exist.

References