In this paper, a new propositional proof system H is introduced, that allows quantification over permutations of the variables. In H the syntax of propositional logic is enriched by quantifiers $(\exists ab)\alpha$ and $(\forall ab)\alpha$ for variables a and b, which are intended to be semantically equivalent to $\alpha \lor \alpha[b/a, a/b]$ and $\alpha \land \alpha[b/a, a/b]$, respectively.

The paper studies the fragment of H with cuts restricted to Σ_1-formulas, denoted H_1. It is shown that H_1 simulates efficiently the Hajós calculus (HC) for constructing graphs which are non-3-colorable. This shows that short proofs using formulas asserting the existence of permutations of the variables can capture polynomial time reasoning, as it is known [1] that HC is equivalent to Extended Frege systems (EF), which capture polynomial time reasoning.

The converse direction is left open, but it is shown that at least EF efficiently simulates tree-like proofs in H_1.

References