On Proofs About Threshold Circuits and Counting Hierarchies (Extended Abstract)

Jan Johannsen*
Department of Mathematics
University of California, San Diego
La Jolla, CA 91093-0112

Chris Pollett
Department of Computer Science
Boston University
Boston, MA 02215

Abstract

We define theories of Bounded Arithmetic characterizing classes of functions computable by constant-depth threshold circuits of polynomial and quasipolynomial size. Then we define certain second-order theories and show that they characterize the functions in the Counting Hierarchy. Finally we show that the former theories are isomorphic to the latter via the so-called RSUV-isomorphism.

1 Introduction

A phenomenon that is commonly observed in Complexity Theory is that proofs of results about counting complexity classes (\#P, Mod_\#P etc.) can often be scaled down to yield results about small depth circuit classes with the corresponding counting gates. For example, Toda’s result [17] that every problem in the Polynomial Hierarchy can be solved in polynomial time with an oracle for \#P corresponds to Allender’s theorem [1] that polynomial size constant-depth circuits with unbounded fan-in AND and OR gates can be simulated by quasi-polynomial size depth 3 threshold circuits.

We give a logical explanation for this phenomenon and turn the observation into a theorem by defining bounded arithmetic theories corresponding to the Counting Hierarchy FCH (which is the union of \#P, \#P^{\#P}, \#P^{\#P^{\#P}} etc. and can be viewed as the largest counting class) on the one hand and constant-depth threshold circuits (TC^0-circuits) of quasi-polynomial size on the other hand, and showing that they are isomorphic.

The paper is organized as follows: First we give characterizations of the classes of functions computable by constant-depth threshold circuits of polynomial and quasi-polynomial size, and more generally of size \(exp(\exp((\log \log n)^{(1)})\)) \ldots by function algebras. In order to do that, we give a new proof of Cloit and Takeuti’s [9] function algebra characterization of the functions computed by polynomial size \(TC^0\) circuits. Unlike the original proof, ours can be generalized to the case of quasi-polynomial and the above larger size bounds.

We then define a hierarchy of bounded arithmetic theories \(C^0_k\) for \(k \geq 2\), and show that these theories characterize the above classes of threshold circuits. More precisely, the functions whose graphs are defined by bounded existential formulas and that are provably total in the theories \(C^0_2\) and \(C^0_3\) are precisely those in computable by polynomial size and quasipolynomial size \(TC^0\)-circuits, and analogous relations hold between the theories \(C^0_k\) for \(k > 3\) and the larger size threshold circuit classes mentioned above. This simplifies and generalizes earlier work by the first author [10].

Next we define another hierarchy of second-order bounded arithmetic theories \(D^0_k\) for \(k \geq 1\). Using the function algebra characterization of the counting hierarchy FCH by Vollmer and Wagner [18], we then show that the theory \(D^0_2\) characterizes FCH: The functions provably total in \(D^0_2\) whose graphs are definable by second-order existential bounded formulas are exactly the functions in FCH. Similarly, the theories \(D^0_k\) with \(k > 2\) correspond to classes defined analogous to FCH, but using machines with quasi-polynomial (for \(k = 3\)) and longer running times. The witnessing argument that we use to prove these results is simpler than the second-order witnessing of Buss [3] and could also be applied to give simpler proofs of earlier results concerning second-order bounded arithmetic.

Finally we show that for every \(k \geq 1\), the theories \(C^0_{k+1}\) and \(D^0_k\) are isomorphic via the so-called RSUV-isomorphism [14, 16]. The idea behind this isomorphism is that a number \(a\) can be viewed as the set

* Supported by DFG grant No. Jo 291/1-1
\{ i ; \text{the } i\text{th bit in } a \text{ is 1} \}.$ and vice versa finite set A
can be viewed as representing the number $\sum_{a \in A} 2^a$.
This way, the numbers in a second-order theory
 correspond to the small numbers in a first-order theory, i.e.
those in the range of the logarithm function, whereas
the sets in a second-order theory correspond to all
numbers in a first-order theory.

Technically, this means that there are translations
mapping a first-order formula A to a second-order formula
A^H, and a second-order formula B to a first-order
formula B^L such that D^H proves A^H for every
theorem A of C^H_{k+1}, and D^L proves B^L for every
theorem B of D^L_k. These statements are proved by
induction on the lengths of proofs, so that a proof in
one of the theories can be translated step by step into
a proof in the other theory. Moreover A and A^H are
provably equivalent in C^H_{k+1}, and for a bounded for-
mal formula B, B^L is provably equivalent in D^L_k,
so the translations indeed form a kind of isomorphism
between theories.

2 Function Algebras
We define a hierarchy of growth rates by $\tau_1(n) :=$
$O(n)$, and then inductively $\tau_{k+1}(n) := 2^{\tau_k(\log_2 n)}$.
In particular, $\tau_2(n)$ are the polynomial and $\tau_3(n)$ are
the quasi-polynomial growth functions.

Let $TC^0(f(n))$ denote the set of functions computable
by Dlogtime-uniform families of threshold circuits
of constant depth and size $O(f(n))$, and let TC^0
abbreviate $TC^0(\tau_1(n)) = TC^0(n^{O(1)})$ and $qTC^0 =$
$TC^0(\tau_2(n))$. Thus TC^0 has its usual meaning, and
qTC^0 denotes the class of functions computed by
quasi-polynomial size TC^0 circuits.

The model of a Threshold Turing Machines (TTM)
was introduced by Parberry and Schnitger [13]. A
TTM is similar to an alternating machine, but instead
of existential and universal states it has deterministic
and threshold states, and it has a distinguished read-
only guess tape. The successor configurations of a
configuration in a threshold state all have the same state,
but the initial segment of the guess tape through the
position of the head is filled with zeroes and ones in
all possible ways. Hence if the head on the guess tape
is over the mth cell, there are 2^m successor configura-
tions. The configuration is accepting if the majority of
its successors are. A TTM also has a read-only input
tape with random access via an index tape to allow for
sub-linear runtimes. In the following, all $TTMs$ are
required to perform only constantly many threshold
operations on each computation path. The following
was noted by Allender [2]:

Proposition 1. The class of languages accepted in
time $O(t(n))$ on a TTM coincides with $TC^0(2^{O(t(n))})$,
for every complexity function $t(n) = \Omega(\log n)$.

Thus $TC^0(\tau_k(n))$ is equal to $\tau_{k-1}(\log n)$ time on a
TTM, and in particular, TC^0 is equal to $O(\log n)$
time on a TTM, and polynomial time on a TTM is
the same as qTC^0.

The scheme of concatenation recursion on notation
(CRN) was introduced by Clote [7]. We say that a
function f is defined by CRN from g and h_0, h_1 if

\[
\begin{align*}
f(\vec{x}, 0) &= g(\vec{x}) \\
f(\vec{x}, s_0(y)) &= 2 \cdot f(\vec{x}, y) + h_0(\vec{x}, y) \quad \text{for } y > 0 \\
f(\vec{x}, s_1(y)) &= 2 \cdot f(\vec{x}, y) + h_1(\vec{x}, y)
\end{align*}
\]

provided that $h_i(\vec{x}, y) \leq 1$ for all \vec{x} and $i = 0, 1$.
Let $s_0(x) := 2x$, $s_1(x) := 2x + 1$, $[x] :=
[\log_2 (x + 1)]$. $\text{Bit}(x, i) := \lfloor x/2^i \rfloor$ mod 2, and for
$j \leq n$ let $\pi_j(x_1, \ldots, x_n) := x_j$. Furthermore let
$x_{\#_k} := 2^{k+1} \cdot b_1$ and for $k \geq 2$ let $x_{\#_k+1} := 2^{k+1} \cdot b_1$.

For $k \geq 2$, let T^n_k denote the least class of functions
that contains the set

\[
\{0, s_0, s_1, [\cdot], \text{Bit}, \cdot, \#_2, \ldots, \#_k \} \cup \{\pi_j^n ; j \leq n\}
\]

and is closed under composition and CRN. Clote and
Takeuti [9] showed that $T^n_2 = TC^0$. We generalize this
to:

Theorem 2. $T^n_k = TC^0(\tau_k(n))$ for every $k \geq 2$. In
particular, $T^n_2 = TC^0$ and $T^n_3 = qTC^0$.

Proof. For the inclusion $T^n_k \subseteq TC^0(\tau_k(n))$ the proof
in [9] for the case $k = 2$ can be used to show that
$TC^0(\tau_k(n))$ is closed under CRN. Then it is easy to
see that the function $\#_k$ can be computed by circuits
of the required size.

For the reverse inclusion, it is shown how to
code the computation of a TTM operating in time
$\tau_{k-1}(\log n)$ by a function in T^n_k. This is done analogous
to Clote’s proof in [8] that the algebra A_0, which is
T^n_2 without multiplication, is equal to the alternating
logarithmic time hierarchy. The idea is to code
sequences of instructions instead of configurations and
to use the closure of T^n_k under sharply bounded major-
ity quantifiers. The details will be presented in the
full version of the paper.

3 First-Order Theories
For $k \geq 1$, the language L^n_k comprises the usual
signature of arithmetic. A, S, +, \cdot, \leq plus function
symbols for $\lfloor 12 \rfloor$, $[\cdot]$, $\text{MSP}(x, i) := [x/2^i]$ and, if
$k \geq 2$, the functions $\#_2, \ldots, \#_k$.
A quantifier of the form $\forall x \leq t$, $\exists x \leq t$ with x not occurring in t is called a bounded quantifier. Furthermore, the quantifier is called sharply bounded if the bounding term t is of the form $[a]$ for some term s. A formula is called (sharply) bounded if all quantifiers in it are (sharply) bounded.

We denote the class of quantifier-free formulas in L_k by $open_k$. The class of sharply bounded formulas in L_k is denoted Σ^b_k or Π^b_k. For $i \in \mathbb{N}$, $\Sigma^b_{i+1,k}$ (resp. $\Pi^b_{i+1,k}$) is the least class containing Π^b_k (resp. Σ^b_k) and closed under conjunction, disjunction, sharply bounded quantification and bounded existential (resp. universal) quantification. We usually omit the index k from the names of these classes, the value of k will always be clear from the context.

$BASIC_k$ denotes a set of quantifier-free axioms specifying the interpretations of the function symbols from $\{0, \ldots, \}$ together with the axioms for \land, \lor, \forall, \exists, \neg, \rightarrow, \leftarrow. For each $\forall \in [0,1]$ and the two axioms

$$|x\#_j y| = S(|x|\#_{j-1}|y|)$$

$$z < x\#_j y \rightarrow |z| < |x\#_y|$$

for $3 \leq j \leq k$.

For a class of formulas Φ, the axiom schema \land-LIND is

$$A(0) \land \forall x \left(A(x) \rightarrow A(S x) \right) \rightarrow \forall x A(x)$$

for each $A(x) \in \Phi$. By \land-IND we denote the usual induction scheme for formulas in \land.

The theory S^b_k is the theory in the language L_k axiomatized by the $BASIC_k$ axioms and the Σ^b_k-LIND scheme, and T^b_k is the theory given by $BASIC_k$ and Σ^b_k-IND. The results from [3, 4, 12, 11, 5] show a close connection between the theories S^b_k and T^b_k and polynomial time computations.

Before we can introduce the theories we are going to consider, we have to define some frequently used terms. Let

$$2^{\#_j} := 1\#_j 2$$

$$\text{mod}_2(x) := x \equiv 2 \cdot \frac{|x|}{2}$$

$$\text{Bit}(x, i) := \text{mod}_2(\text{MSP}(x, i))$$

$$2^{\min(|x|, |y|)} := \text{MSP}(2^{\#_j |y|}, |y| - x)$$

$$\text{LSP}(x, i) := x \equiv 2^{\min(|i|, |x|)} \cdot \text{MSP}(x, i)$$

$$\beta_b(w, i) := \text{MSP}(\text{LSP}(w, S_i \cdot |a|), i \cdot |a|)$$

so that $\text{LSP}(x, |y|)$ returns the number consisting of the last $|y|$ bits of x, and if w codes a sequence $\langle b_1, \ldots, b_t \rangle$ with $|b_i| \leq |a|$ for all i, then $\beta_b(w, i) = b_i$.

Thus the code for such a sequence is simply the number w whose binary representation consists of a 1 followed by the binary representations of the b_i concatenated, each padded with zeros to be of exact length $|a|$. The replacement scheme $BB\Phi$ is then

$$\forall x \leq |a| \exists y \leq t(x) \left(A(x, y) \rightarrow \exists w < 2(t\#_j 2x) \forall x \leq |a| \left(\beta_b(w, x) \leq t(x) \land A(x, \beta_b(w, x)) \right) \right)$$

for each $A(x, y) \in \Phi$, where $t^* := t^M(|s|)$ for some monotone term t^M that, provably in $BASIC_k + open$-LIND, surpasses t. The comprehension scheme Φ-COMP is

$$\exists y < 2^{t^*} \forall x < |a| \left(\text{Bit}(y, x) = 1 \leftrightarrow A(x) \right)$$

for each $A(x) \in \Phi$.

The theory C^0_k is the theory in the language L_k given by $BASIC_k$, the open-LIND scheme and $BB\Sigma^b_k$. The following proposition is easily proved:

Proposition 3. C^0_k proves the Σ^b_COMP axioms and the Σ^b_IND axioms.

For a class of formulas Φ, a function f is said to be Φ-definable in a theory T if there is a formula $A(\bar{x}, y) \in \Phi$, describing the graph of f in the standard model, and a term $t(\bar{x})$, such that T proves

$$\forall \bar{x} \exists y \leq t(\bar{x}) A(\bar{x}, y)$$

In [10], the theory \hat{R}^0_2 was defined as S^b_2 plus Σ^b_COMP and $BB\Sigma^b_2$, and it was shown that the $\Sigma^b_\hat{\text{R}}^0_2$-definable functions of \hat{R}^0_2 are precisely the functions in TC^0. By Prop. 3, the theory C^0_2 is equal to \hat{R}^0_2 and thus the $\Sigma^b_{C^0_2}$-definable functions of C^0_2 are also the functions in TC^0. This can be generalized as follows:

Theorem 4. The $\Sigma^b_{C^0_2}$-definable functions of C^0_2 are exactly the functions in $TC^0(\rho_k(n))$.

Proof. Using Proposition 3, we can do the same proof as in [10], showing that the $\Sigma^b_{C^0_2}$-definable functions of C^0_2 are the function algebra T^0_k, hence the result follows from Theorem 2 above.

In particular, the $\Sigma^b_{C^0_2}$-definable functions of C^0_2 are the functions in qTC^0.

4 Counting Hierarchies

The counting hierarchy is the following hierarchy of functions: At the first level one has $1\#_P := \#_P$, the class of those functions computable as the number of accepting paths of an NP machine. The higher levels
are defined inductively by \((i + 1) \# P = \# P \# P\). The counting hierarchy is \(FCH = \bigcup_{i \geq 0} i \# P\). We define \(FCH(f(n))\) similarly to \(FCH\) except rather than using \(NP\) machines we use \(O(f(n))\) time bounded non-deterministic machines. Another characterization of \(FCH(f(n))\) is those functions computed by a TTM with runtime bounded by \(O(f(n))\). If \(\Psi\) is a set of functions then \(FCH(\Psi) = \bigcup_{f \in \Psi} FCH(f(n))\).

Definition: Let \(\Psi\) be a set of unary functions. A \(\Psi\)-sum is a sum of the form

\[
\sum_{z=0}^{f(|x|)} g(x, z)
\]

where \(f\) is in \(\Psi\). We write \(Exp\) for the set \(\{2^n ; k \in \mathbb{N}\}\).

Let \(FCA(\Psi)\) denote the smallest class of functions that contains the arithmetic operations \(0, 1, +, -\) and \(\cdot\) and the projection functions \(\pi_j\), and is closed under composition and \(\Psi\)-sums.

Corollary 4.4 in Vollmer and Wagner [18] shows that \(FCA(Exp) = FCH\). Their proof generalizes in a straightforward manner to show:

Theorem 5. Let \(\Psi\) be a set of complexity functions of at least polynomial growth. Then

\[
FCH(\Psi) = FCA(2^\Psi)
\]

where \(2^\Psi = \{2^f ; f \in \Psi\}\).

We define the class \(FCA^\alpha(\Psi)\) in the same way as \(FCA(\Psi)\) except now we also let the predicate variables \(\tilde{\alpha}\) viewed as 0-1-valued functions be initial functions in the algebra. We define \(CA^\alpha(\Psi)\) to be the 0-1 valued functions in \(FCA^\alpha(\Psi)\).

Lemma 6. Suppose \(A(z, \bar{x}, \tilde{\alpha})\) is a predicate in \(CA^\alpha(2^n(n))\). Then

\[
f(y, \bar{x}, \tilde{\alpha}) = mu \sum_{z \leq y} A(z, \bar{x}, \tilde{\alpha})
\]

is in \(FCA^\alpha(2^n(n))\).

5 Second-Order Theories

Let \(L_k\) be the language \(L_k\) extended to allow second-order unary predicate variables \(\alpha_i\) for \(i \in \mathbb{N}\) and \(L_k\)-term \(t\). The idea is \(t\) is a bound on the range of true values of this variable. A second-order formula is called bounded if all its first-order quantifiers are bounded. We usually omit the index \(i\) and use other lower case Greek letters as names for predicate variables instead.

\(\Sigma_{i+1,k}^1 = \Pi_{i+1,k}^1\) is the class of formulas with only bounded first-order quantifiers. Then for every \(i\), the class \(\Sigma_{i,k}^1\) (resp. \(\Sigma_{i,k}^1\)) is the least class that contains \(\Pi_{i,k}^1\) (resp. \(\Sigma_{i,k}^1\)) and is closed under conjunction, disjunction, bounded first-order quantification and existential (resp. universal) second-order quantification. A formula \(B\) is a \(\Delta_{i,k}^1\) in a theory \(T\) if \(B\) is provably in \(T\) equivalent to both a \(\Sigma_{i,k}^1\) and a \(\Pi_{i,k}^1\)-formula.

We will use the following boundedness axioms for predicate variables in our theories:

\[
\forall x (\alpha^i(x) \rightarrow x < t) .
\]

We write \(\{x\} V^t\) for the abstract \(\{x\}(x < t \land V)\). Let \((i, j)\) be a pairing function with inverses \((1, 0)\) and \((0, 1)\), and let \(bd(s, t)\) be a term that bounds all pairs of the form \((i, j)\) where \(i < t\) and \(j < s\). Let \(\beta(b, \alpha)\) be the abstract for the second-order \(\beta\) function \(\{x\alpha((b, x))\}\), and let \(So\) be the abstract \(\{x\}[\alpha(x) \leftrightarrow \exists y \leq x - \alpha(y)]\).

Then the counting axiom is given by

\[
\exists x_{\beta^b(t, |t|)} \forall j \leq |t| (\beta(0, \varphi)(j) \leftrightarrow j = 0 \land \alpha^i(j)(0)) \\
\land \forall i < t \left[\neg \alpha^{i}(S(i) \land \beta(S(i), \varphi) \equiv \beta(i, \varphi)) \lor \left(\alpha^{i}(S(i) \land \beta(S(i), \varphi) \equiv \beta(i, \varphi) \land S \beta(i, \varphi) \right) \right]
\]

where \(\alpha_1 = \alpha_2 : = \forall j < t \alpha_1(j) \leftrightarrow \alpha_2(j)\).

Definition:

1. **\(\Phi\)-BCA**. \(\Phi\)-bounded comprehension axiom is the following scheme:

\[
\exists x_{\alpha^i} \forall x < t \left(\alpha(x) \leftrightarrow A(x) \right)
\]

where \(A\) is in \(\Phi\) and does not contain the variable \(\alpha\).

2. **\(\Phi\)-BCR**. \(\Phi\)-bounded comprehension rule is the following inference:

\[
\Gamma \Rightarrow A(V^t) , \Delta \\
\Gamma \Rightarrow \exists x_{\alpha^i} \forall x < t A'(\psi^i) , \Delta
\]

where \(V\) is a \(\Phi\)-abstract.

3. **\(\Phi\)-AC**. \(\Phi\)-second-order replacement is the following scheme

\[
\forall x < s \exists \psi^u B(x, \alpha) \leftrightarrow \exists \psi^u \forall x < s B(x, \beta(x, \psi^u))
\]

where \(A\) is in \(\Phi\) and \(u := bd(s, t)\).

4. **\(\Phi\)-ACR**. \(\Phi\)-second-order replacement rule is the following inference

\[
\Gamma \Rightarrow \forall x < s \exists \psi^u A(x, \alpha) , \Delta \\
\Gamma \Rightarrow \exists \psi^u \forall x < s A(x, \beta(x, \psi^u)) , \Delta
\]

where \(A\) is in \(\Phi\) and \(u := bd(s, t)\).
The theories D_k^0 over the language L_k are axiomatized as $BASIC_k$ together with counting axioms, open-IND, open-BCA and Σ_0^b-AC. We could have alternatively characterized this theory as those statements provable in the second-order sequent calculus with $BASIC_k$ axioms, counting axioms, open-IND, Σ_0^b-ACR and open-BCR.

Theorem 7. D_k^0 proves the following extensionality axioms, where $u \geq \max(s, t)$:

$$\forall x \leq u (\alpha^s(x) \leftrightarrow \gamma^t(x)) \rightarrow \forall x (\alpha^s(x) \leftrightarrow \gamma^t(x)).$$

This follows immediately from the boundedness axiom. Using an abstract to code a pair of predicates into a single predicate, one can show the following:

Theorem 8. D_k^0 proves $\Sigma_1^{1,b}$-AC.

Lemma 9. D_k^0 proves $\Delta_1^{1,b}$-BCA and $\Delta_1^{1,b}$-IND.

Proof. Let $A(x)$ be $\Delta_1^{1,b}$ in D_k^0, and consider the formula $A(x) \leftrightarrow \alpha^0(0)$, which is equivalent in D_k^0 to a $\Sigma_1^{1,b}$-formula $B(x, \alpha^0)$. Now D_k^0 proves $\forall x \leq t \exists \alpha^0 B(x, \alpha^0)$, hence by $\Sigma_1^{1,b}$-AC there is a predicate $\psi^{bd(1,0)}$ such that $\forall x \leq t \beta(x, \psi)(0) \leftrightarrow A(x)$, and hence by open-BCA there is ϕ^t such that $\forall x \leq t \phi^t(x) \leftrightarrow A(x)$, which proves $\Delta_1^{1,b}$-BCA. Now $\Delta_1^{1,b}$-IND follows immediately from $\Delta_1^{1,b}$-BCA and open-IND. \(\square\)

Using $\Delta_1^{1,b}$-BCA, it is possible to show:

Theorem 10. D_k^0 can $\Sigma_1^{1,b}$-define the functions in $FCA^d(2^{\alpha(n)})$. Moreover, D_k^0 can $\Sigma_1^{1,b}$-define any $f \in FCA(2^{\alpha(n)})$ using a formula not containing free predicate variables.

Proof. The only nontrivial thing to prove is the closure of the $\Sigma_1^{1,b}$-definable functions under summation. So let $g(x)$ be $\Sigma_1^{1,b}$-definable in D_k^0, and let s be a term bounding g. Now $y < g(x)$ is $\Delta_1^{1,b}$ in D_k^0, so by $\Delta_1^{1,b}$-BCA we can define a predicate $\alpha^{bd(s,t)}$ with

$$\forall x, y \leq t \alpha((y, x)) \leftrightarrow y < g(x).$$

Now note that the number of $x \leq bd(s, t)$ with $\alpha(x)$ is $\sum_{i=0}^{s} g(t)$, and this number can be counted by use of the counting axiom. \(\square\)

This implies also that every predicate in $CA^d(2^{\alpha(n)})$ is $\Delta_1^{1,b}$ in D_k^0.

6 A Witnessing Argument

The following closure properties of $\Delta_1^{1,b}$ formulas in D_k^0 are easily verified.

Lemma 11. The class of $\Delta_1^{1,b}$-formulas in D_k^0 is closed under boolean combinations, bounded first-order quantification, substitution of $\Delta_1^{1,b}$-abstracts for free predicate variables and substitution of terms containing $\Sigma_1^{1,b}$-defined functions for free first-order variables.

Let $\Sigma_1^{1,b}$ be the class consisting of formulas of the form $\exists x \leq t \exists \alpha A$ or of the form $\forall x \leq t \exists \alpha A$ where A is Σ_0^b-. Suppose D_k^0 defines some function f by proving $\forall x \exists y \exists \alpha A$ where A is in Σ_0^b. Then by Parikh’s Theorem, D_k^0 proves $\exists y \leq t \exists \alpha A$ and given the form of D_k^0’s axioms and rules of inference, by cut-elimination we can assume all sequents in this proof contain only $\Sigma_1^{1,b}$-formulas. We define a witnessing predicate for $\Sigma_1^{1,b}$-formulas as follows:

1. If $A(\bar{a}, \bar{a}) \in \Sigma_0^b$, then $\text{Wit2}_{A}(\gamma^t, \bar{a}, \bar{a}) := A(\bar{a}, \bar{a})$.

2. If $A(\bar{a}, \bar{a})$ is of the form $\exists \alpha^t B$ where $B \in \Sigma_0^b$, then

$$\text{Wit2}_{A}(\gamma^t, \bar{a}, \bar{a}) := \text{B}(\gamma^t, \bar{a}, \bar{a}).$$

3. If $A(\bar{a}, \bar{a})$ is of the form $\exists x \leq s \exists \alpha^t B$ where $B \in \Sigma_0^b$, then

$$\text{Wit2}_{A}(\gamma^t, \bar{a}, \bar{a}) := \exists x \leq s \exists \alpha^t B(\gamma^t, x, \bar{a}, \bar{a})$$

4. If $A(\bar{a}, \bar{a})$ is of the form $\forall x \leq s \exists \alpha^t B$ where $B \in \Sigma_0^b$, then $\text{Wit2}_{A}(\gamma^t, \bar{a}, \bar{a})$ is

$$\forall x \leq s \exists \alpha^t B(\beta(x + 1, \gamma^t, x, \bar{a}, \bar{a}).$$

Lemma 12. Let $A(\bar{a}, \bar{a})$ be a $\Sigma_1^{1,b}$-formula. Then D_k^0 proves

$$A(\bar{a}, \bar{a}) \leftrightarrow \exists \psi^t \text{Wit2}_{A}(\psi^t, \bar{a}, \bar{a})$$

The statement is trivial if A falls under the first three cases listed above. For the fourth case it follows by $\Sigma_1^{1,b}$-AC.

Lemma 13. Any $\Sigma_1^{1,b}$-formula with free variables among γ^t is in $CA^{\gamma^t}(2^{\alpha(n)})$. In particular, for a $\Sigma_1^{1,b}$-formula $A(\bar{a}, \bar{a})$, $\text{Wit2}_{A}(\gamma^t, \bar{a}, \bar{a})$ is a predicate in $CA^{\gamma^t}(2^{\alpha(n)})$.

For a cedent of $\Sigma_1^{1,b}$-formulas $\Gamma = A_s, \ldots, A_n$ we define $\text{Wit2}_{A\Gamma}(\gamma^t, \bar{a}, \bar{a})$ to be

$$\bigwedge_i \text{Wit2}_{A_i}(\beta(i, \gamma^t), \bar{a}, \bar{a}),$$
where $t_\Gamma := bd(n, \max(t_1, \ldots, t_n))$ and t_i is the bound on the witnessing predicate for A_i. Likewise, we define $\text{Wit}_2(\gamma^r, \bar{a}, \bar{d})$ to be

$$\bigvee_i \text{Wit}_2(\beta(i, \gamma^r), \bar{a}, \bar{d}).$$

Theorem 14. Suppose $D^0_k \vdash \Gamma \Rightarrow \Delta$ where Γ and Δ are cedents of $\Sigma_1^{1,6}$-formulas having free variables among $\bar{c}, \bar{\gamma}$. Then there is a predicate M^r in $CA^{0,r}(2^\tau(n))$ which is $\Delta_1^{1,6}$ in D^0_k such that:

$$D^0_k \vdash \text{Wit}_2(\Delta, \bar{c}, \bar{\gamma}) \to \text{Wit}_2(\Delta, \{x\} M^r(\bar{c}, \bar{\gamma}), \bar{c}, \bar{\gamma}).$$

Proof. We can assume that any D^0_k proof of a sequent of $\Sigma_1^{1,6}$-formulas contains only $\Sigma_1^{1,6}$-formulas. Also, we can assume that no predicate variable on the right hand side of a sequent in the proof is eliminated by an second-order existential introduction or open-BCR inference, because otherwise we could replace it everywhere by the abstract $\{x\} (1 = 1)$ and add some weakenings to make the resulting figure a valid proof.

The proof proceeds by induction on a D^0_k sequent calculus proof of $\Gamma \Rightarrow \Delta$. The induction base is trivial for the logical, $BASIC$ and boundedness axioms since these consist of $\Sigma_0^{1,6}$-formulas. For the counting axiom, note that the predicate $C^{\bar{b}d(\bar{t}; \bar{\gamma})}(x, \alpha^r)$ defined by

$$\text{Bit}(\sum_{j=0}^{2} \alpha^r(j), (x)_2) = 1$$

in $CA^{0,r}(2^\tau(n))$ and hence $\Delta_1^{1,6}$ in D^0_k and that $C^{\bar{b}d(\bar{t}; \bar{\gamma})}(x, \alpha^r)$ witnesses the counting axiom. For the induction step, we only treat the cases where the last inference is a right bounded-universal introduction, open-BCR, open-JND or $\Sigma_0^{1,6}$-ACR. For sake of readability we also do not display the free variables $\bar{c}, \bar{\gamma}$.

Suppose the last inference is

$$b \leq t, \Gamma \Rightarrow A(b), \Delta$$

$$\Gamma \Rightarrow \exists \bar{x} \leq t \ A(x), \Delta.$$

By the hypothesis there is a $\Sigma_1^{1,6}$-abstract $M_1^{t,A,\Delta}$ in $CA^{0}(2^\tau(n))$ such that

$$D^0_k \vdash \text{Wit}_2(\Delta, b) \to \text{Wit}_2(\Delta, \{x\} M_1^{t,A,\Delta}(x, b), b).$$

where r is t_Γ. Now either A is in $\Sigma_1^{1,6}$ or A is of the form $\exists \bar{p} \ B$ where B is $\Sigma_0^{1,6}$. In both cases let $\alpha^r := \{x\} \alpha^r(((x)_1 \to 1, (x)_2))$, and let $g(x) = \mu y \leq t \neg \text{Wit}_2(\beta(1, \{x\} M_1(x, y, \alpha^r)), y)$, which is in $FCA^{0,r}(2^\tau(n))$ by Lemma 6. In the first case, we define $M^s(x, \alpha^r) := M_1(x, g(x), \alpha^r)$

where $s = t_{\forall x \leq t} A(x, \bar{c}) \Delta$. If $g(x) < t + 1$ this abstract will provide a witness to Δ. Otherwise, notice that $\forall x \leq t A$ is a true $\Sigma_0^{1,6}$-formula so any $\Delta_1^{1,6}$-abstract in $CA^{0,r}(2^\tau(n))$ witnesses the succedent. So

$$D^0_k \vdash \text{Wit}_2(\Delta, \bar{c}) \to \text{Wit}_2(\Delta, \{x\} M^s(x, \alpha^r)).$$

In the second case, A is of the form $\exists \bar{p} \ B$ where $B \in \Sigma_0^{1,6}$. Let m be the number of formulas in the lower succedent. We define $M^s(x, \alpha^r)$ where s is as before to be

$$((x)_1 = 1 \land M_1((1, ((x)_2), (x)_2), \alpha^r), (x)_2) \lor (2 \leq (x)_1 \leq m \land M_1(x, g(x), \alpha^r)))$$

Now either $\forall x \leq t \ A(x)$ holds or there is some $b \leq t$ that $\neg A(b)$. In the first case, the $\beta(1, M^s)$ witnesses $\forall x \leq t \ A(x)$. Otherwise Δ is witnessed by the rest of M^s.

$$D^0_k \vdash \text{Wit}_2(\Delta, \bar{c}) \to \text{Wit}_2(\Delta, \{x\} M^s(x, \alpha^r)).$$

Suppose the final inference is an open-BCR

$$\Gamma \Rightarrow A(V_\gamma), \Delta$$

$$\Gamma \Rightarrow \exists \bar{\rho} A(\bar{p}), \Delta$$

where V_γ is an open-abstract. By hypothesis there is a $\Delta_1^{1,6}$-abstract $M_1^{t,A,\Delta}$ in $CA^{0}(2^\tau(n))$ such that

$$D^0_k \vdash \text{Wit}_2(\Delta, \bar{c}) \to \text{Wit}_2(\Delta, \{x\} M_1^{t,A,\Delta}(x, \alpha^r)).$$

where r is t_Γ. Let $M^s(x, \alpha^r)$ be

$$((x)_1 = 1 \land V_\gamma((x)_2) \lor (x)_1 > 1 \land M_1^{t,A,\Delta}(x, \alpha^r))$$

where $s := bd(m + 1, \max(t, t_\Delta))$. It is now easy to see that

$$D^0_k \vdash \text{Wit}_2(\Delta, \bar{c}) \to \text{Wit}_2(\Delta, \{x\} M^s(x, \alpha^r)).$$

Suppose the final inference is an open-JND:

$$A(\bar{y}), \Gamma \Rightarrow A(\bar{p}), \Delta$$

$$A(0), \Gamma \Rightarrow A(t), \Delta$$
By induction there is a $\Delta_{1,0}^{\omega}$-predicate $M^* \in CA^\omega(2^{\omega(n)})$ such that

$$D_k^0 \vdash \text{With}_2(A(y), x, r, y) \vdash \text{With}_2(A(y), x, \Delta, y) \vdash \{x, y, M^*_1(x, y, \alpha^*), y\}.$$

where $r = t_{A(y), r}$ and $s = t_{A(Sy), \Delta}$. Since $A(y)$ is open, we can define a function $g(x; \alpha^*) = my < t - A(Sy)$, so that $g \in FCA^\omega(2^{\omega(n)})$ by Lemma 6. Now define M to be

$$M := M^*_1(x, g(x; \alpha^*), \alpha^*).$$

By $\Sigma_{1,0}^{\omega}$-IND either $A(t)$ holds or $\neg A(0)$ holds or g returns a value such that $A(y)$ and $\neg A(Sy)$. In the first two cases, M^* trivially witnesses the succedent. In the last case, by the induction hypothesis M^* will produce a witness for some formula in Δ.

For the case where the final inference is $\Sigma_{1,0}^{\omega}$-ACR, note that $\text{With}_2(\exists y \forall z \exists y A(x, \beta(x, y)))$ and $\text{With}_2(\exists y \exists z \exists y A(x, y))$ are the same predicate, so any abstract witnessing the upper sequent will also witness the lower sequent.

From the witnessing theorem we get the following result immediately.

Theorem 15. Suppose $A(x, y)$ is a $\Sigma_{1,0}^{\omega}$-formula where x, y are all the free variables of A such that $D_k^0 \vdash \forall x \forall y A(x, y)$. Then there is a $\Sigma_{1,0}^{\omega}$-formula $B(x, y, t)$, a term t and a function $f \in FCA^\omega(2^{\omega(n)})$ so that

1. $D_k^0 \vdash \forall x \forall y B(x, y) \rightarrow A(x, y)$
2. $D_k^0 \vdash \forall x \forall y \exists y B(x, y)$
3. For all $i, n \models B(i, y, f(n))$.

In particular, this implies that any $\Sigma_{1,0}^{\omega}$-definable function of D_k^0 is in $FCA^\omega(2^{\omega(n)})$. Together with Theorem 10, this gives the characterization of the $\Sigma_{1,0}^{\omega}$-definable functions in D_k^0.

7 RSUV-isomorphism

First we define a translation mapping every L_{k+1}-formula A to a L_k-formula A^H. The translation is essentially the same as the one defined in [15, 16].

Inductively, we define for each L_{k+1}-term t a $\Delta_{1,0}^{\omega}$-formula $A_t(x)$ and a L_k-term T_t. Then t^H is the abstract $\{x\}|x \leq T_t | A_t(x)|$. The idea is that the value of t is $\sum_{i=0}^{T_t} A_t(i)2^i$, i.e. A_t codes t in binary.

First, $T_0 := 0$ and $A_0 = 0 = 1$. For a variable a, $T_a := a$ and A_a is a second-order variable a^a. Then for each function symbol f, $T_{f(t)}$ and $A_{f(t)}$ are defined according to the computation of the bits of $f(i)$ from the bits of i. E.g $T_{f(t)} := T_t + 1$ and $A_{f(t)}(x) := A_t(x + 1)$. Let $T_{ST} := T_t + 1$ and

$$A_{ST}(x) := A_t(x) \leftrightarrow 9y \leq x - A_t(y).$$

The most intriguing case is multiplication. First let $2^n(a(x))$ be $x \geq y \land a(x \cdot y)$, and let $(a + \beta)$ be an abstract such that $A_{a + \beta}(x) = (s^H + t^H)(x)$. Now we define $T_{a + \beta} := T_a + T_\beta$, and $A_{a + \beta}$, as

$$\exists^m Table(s^H, t^H, \gamma_m, T_s) \wedge \beta(T_s + 1, \gamma^m)(x).$$

where $m := bd(T_a + 1, T_{\beta}^\omega)$ and the formula $Table(s^H, t^H, \gamma, \alpha)$ is defined as

$$\forall y \leq T_s \rightarrow \beta(0, \gamma)(y) \wedge \forall y < a \left((s^H(y) \wedge \beta(Sy, \gamma) \equiv \beta(r, \beta(y, \gamma)) \vee (s^H(y) \wedge \beta(Sy, \gamma) \equiv \beta(r, \beta(y, \gamma) + \lambda H^m)) \right)$$

i.e. γ codes the computation of $s \cdot t$ as the sum of the vector of numbers $t \cdot Bit(s, i) \cdot 2^i$ for $i < |a|$.

To see that $A_{a + \beta}$ is $\Delta_{1,0}^{\omega}$ we need to prove in D_k^0 that given s^H, t^H, and $a \leq T_{\gamma} + 1$, there is a unique predicate $\beta(s^H, t^H, \gamma, \alpha)$ holds. Then the $\Sigma_{1,0}^{\omega}$-formula $A_{a + \beta}$ is equivalent to the $\Pi_{1,0}^{\omega}$-formula

$$\forall \gamma_m Table(s^H, t^H, \gamma^m, T_s) \rightarrow \beta(T_s + 1, \gamma^m)(x).$$

Now the existence of γ is proved from the counting axiom by formalizing in D_k^0 a reduction of vector summation to counting such as the one in [6], and the uniqueness follows from extensionality.

The definitions for the other function symbols can be found in [15, 16]. To define A^H for a formula A first $(s \leq t)^H$ is defined as $s^H \leq t^H$, where s^H expresses the lexicographic ordering of predicates. Then $(s = t)^H$ is $(s \leq t^H) \land (t \leq s^H)$. The translation commutes with the propositional connectives. For quantified formulas note that $B(a)^H$ is of the form $B^H(a, \alpha^a)$. Now $(\exists x < t B(x)^H)$ is

$$\exists x \leq T_1 \exists \varphi^x \left(s^H \leq H \wedge B^H(x, \varphi^x) \right)$$

and $(\forall x \leq t B(x)^H)$ is

$$\forall x \leq T_i \forall \varphi^x \left(s^H \leq H \rightarrow B^H(x, \varphi^x) \right),$$

where A_x is φ^x. Finally define $(\exists x B(x)^H)$ as $(\exists x \forall \varphi^x B^H(x, \varphi^x)$ and $(\forall x B(x)^H)$ as $(\forall x \forall \varphi^x B^H(x, \varphi^x)$.

Theorem 16. If $C_{k+1}^0 = A$, then $D_k^0 \vdash A^H$. For every L_{k+1}-formula A.

Proof. By induction on the length of a proof of \(A \) in \(C^0_{k+1} \). The translations of BASIC axioms can all be proved in \(D^0_k \) by use of \(\Delta^{1,0}_{k+1} \)-IND, where for those axioms concerning multiplication the counting axiom has to be applied. The translation of open-IND are proved by \(\Delta^{1,0}_{k+1} \)-IND, and the translation of \(BBSigma^0_0 \) is proved by use of \(\Sigma^{1,0}_{k+1} \)-AC.

Next we define a translation mapping a \(L_k \)-formula \(B \) to a \(L_{k+1} \)-formula \(B^L \). The translation is the same used in [16].

For a term \(t \), \(t^L \) is constructed by replacing every variable \(a \) in \(t \) by \(\| a \| \). Then \((s = t)^L = s^L = t^L \) and \((s \leq t)^L = s^L \leq t^L \). For \(A = \alpha^t(s) \), \(A^L \) is defined as \(s^L \leq t^L \land Bt(a, s^L) = 1 \). The translation commutes with the propositional connectives. For the quantifiers, we have three cases:

- If \(A \) is \(\forall x \ B \) or \(\exists x \ B \), then \(A^L \) is simply \(\forall x \ B^L \) resp. \(\exists x \ B^L \).
- If \(A \) is \(\forall \phi^t \ B(\phi^t) \) or \(\exists \phi^t \ B(\phi^t) \), then \(A^L \) is \(\forall x < 2^{k+1} B^L(x) \) resp. \(\exists x < 2^{k+1} B^L(x) \).
- If \(A \) is \(\forall x \leq t \ B \) or \(\exists x \leq t \ B \) and \(B^L = B(\| x \|) \), then \(A^L \) is \(\forall x \leq t^L B(x) \) resp. \(\exists x \leq t^L B(x) \).

Note that due to the presence of the function \#\(_{k+1} \) every term of the form \(t^L \) for \(L_k \)-term \(t \) can be written in the form \(s^L \) for some \(L_{k+1} \)-term \(s \). Hence the bound \(2^{k+1} \) can be expressed by a term, and the translations of first-order bounded quantifiers are sharply bounded, which gives the following crucial property of the translation.

Lemma 17. If \(B \) is a \(\Sigma^{1,1}_{k+1} \)-formula, then \(A^L \) is equivalent to a \(\Sigma^{1,0}_{k+1} \)-formula in \(C^0_{k+1} \).

Theorem 18. If \(D^0_k \vdash B \), then \(C^0_{k+1} \vdash B^L \), for every \(L_k \)-formula \(B \).

Proof. By induction on the length of a proof of \(B \) in \(D^0_k \). Note that BASIC axioms are translated to instances of BASIC axioms and the translation of the boundedness axiom is tautological. Applications of open-IND and open-BCA are provable by open-IND and open-COMP respectively, where the latter is provable in \(C^0_{k+1} \) by Lemma 3. The translation of \(\Sigma^{1,0}_{k+1} \)-AC is provable by use of \(BBSigma^0_0 \). Finally the translation of the counting axiom can be proved in \(C^0_{k+1} \) by use of the reduction of counting to multiplication in [6].

Finally, we show that the translations \(^H \) and \(^L \) are inverse to each other. There are very easy translations * from \(L_{k+1} \) to itself and \(^\Xi \) from \(L_k \) to itself such that the following holds.

Theorem 19. 1. \(C^0_{k+1} \vdash A \leftrightarrow A^{^HL^\Xi} \) for every \(L_{k+1} \)-formula \(A \).

2. \(D^0_k \vdash B \leftrightarrow B^{^L^\Xi} \), for every bounded \(L_k \)-formula \(B \).

Proof. For both statements, one direction follows by applying Theorems 16 and 18 in succession. The other direction is by induction on the complexity of \(A \) or \(B \). The proof is the same as in [16].

This together with Theorems 16 and 18 immediately yields the following.

Corollary 20. 1. For every \(L_{k+1} \)-formula \(A \), \(C^0_{k+1} \vdash A \iff D^0_k \vdash A^H \).

2. For every bounded \(L_k \)-formula \(B \), \(D^0_k \vdash B \iff C^0_{k+1} \vdash B^L \).

Acknowledgments

We would like to thank the following people: Jan Krajíček and an anonymous referee for the paper [10] suggested that \(\tilde{D}^0_k = C^0_2 \) might be RSUV-isomorphic to a certain subtheory of \(D^0_k \), which was the starting point of this paper. Peter Clote brought [18] to our attention, and Eric Allender referred us to the concept of Threshold Turing Machines and his [2].

References

