On the Weakness of Sharply Bounded Polynomial
Induction

Jan Johannsen
Friedrich-Alexander-Universität Erlangen-Nürnberg

May 4, 1994

Abstract

We shall show that if the theory S_0^2 of sharply bounded polynomial induction is extended
by symbols for certain functions and their defining axioms, it is still far weaker than T_0^2,
which has ordinary sharply bounded induction. Furthermore, we show that this extended
system S_0^2 cannot Σ^b_1-define every function in AC^0, the class of functions computable by
polynomial size constant depth circuits.

1 Introduction

The theory S_2 of bounded arithmetic and its fragments S_i^2 and T_i^2 ($i \geq 0$) were defined in
[Bu]. The language of these theories comprises the usual language of arithmetic plus additional
symbols for the functions $\lfloor x/2 \rfloor$, $|x| := \lceil \log_2(x + 1) \rceil$ and $x \# y := 2^{|x||y|}$. Quantifiers of the form
$\forall x \leq t, \exists x \leq t$ are called bounded quantifiers. If the bounding term t is furthermore of the form
$|s|$, the quantifier is called sharply bounded. The classes Σ^b_i and Π^b_i of the bounded arithmetic
hierarchy are defined in analogy to the classes of the usual arithmetical hierarchy, where the i
counts alternations of bounded quantifiers, ignoring the sharply bounded quantifiers.

S_2 is axiomatized by a finite set of open axioms (called BASIC) plus the schema of poly-
nomial induction ($PIND$) for Σ^b_i-formulae φ:

$\varphi(0) \land \forall x (\varphi[\lfloor x/2 \rfloor] \rightarrow \varphi(x)) \rightarrow \forall x \varphi(x)$

T_2^2 is the same with the ordinary induction scheme for Σ^b_i-formulae replacing $PIND$.

These theories have a close connection to the polynomial hierarchy of Complexity Theory: the
main theorem of [Bu] states that for $i \geq 1$, the Σ^b_i-definable functions of S_i^2 are exactly the
functions from Π^b_i, the class of functions computable in polynomial time using an oracle for a
set in the $i - 1$th level of this hierarchy. In that paper it is also shown that $T_2^2 \subseteq S_2^{i+1} \subseteq T_2^{i+1}$.
It is not known whether any of these inclusions is proper. The paper [K-P-T] shows that this
question is related to the separation problem for the polynomial hierarchy.

In [Ta], Takeuti has proved that $S_2^0 \neq T_2^0$ by showing that the former theory cannot define
the predecessor function, while the latter can. He uses an interpretation of S_2^0 in S_2 where
numbers are coded as descending sequences. We shall use a variant of Takeuti’s method to
strengthen his results in the following way:
We extend the language of bounded arithmetic by function symbols P and \sim for the predecessor and modified subtraction, as well as Count and MSP whose meaning is clear from the defining axioms below. Let $S^0_{2^*}$ be the theory in this extended language consisting of the BASIC axioms, the additional axioms

- $P0 = 0$, \quad $P(Sx) = x$, \quad $x > 0 \rightarrow S(Px) = x$

- $x \sim 0 = x$, \quad $x \sim Sy = P(x \sim y)$, \quad $x \geq y \rightarrow (x \sim y) + y = x$, \quad $x < y \rightarrow x \sim y = 0$

- $\text{Count}(0) = 0$, \quad $\text{Count}(2x) = \text{Count}(x)$, \quad $\text{Count}(S(2x)) = S(\text{Count}(x))$

- $\text{MSP}(x,0) = x$, \quad $\text{MSP}(x,Si) = \lfloor \frac{1}{2} \text{MSP}(x,i) \rfloor$

and the schema $\Sigma^b_0 - \text{PIND}$ (for sharply bounded formulae in the extended language).

We define w is a sequence of positive numbers (or "positive sequence" for short) by

$$ P\text{Seq}(w) :\leftrightarrow \text{Seq}(w) \land \forall i < \text{Len}(w) \beta(Si, w) \neq 0, $$

where the predicate Seq and the functions Len and β are those defined in chapter 2 of [Bu]. From now on, we shall use the functions and predicates defined there without further comment.

Natural numbers are coded by positive sequences as follows: 0 is coded by the empty sequence, and a positive number a is coded by a sequence $A = \langle a_1, \ldots, a_k \rangle$ with the following intended meaning: the binary representation of a consists of a block of a_1 ones followed by a block of a_2 zeros etc. E.g. the number 22 is 10110 in binary and is therefore coded by the sequence $(1, 1, 2, 1)$.

Let Code denote this bijection between natural numbers and positive sequences. We shall see that Code is polynomial time computable (p.t.c. for short) and hence Σ^b_1-definable in S^2_1.

We shall define an ordering \leq_C on positive sequences such that $\text{Code}(a) \leq_C \text{Code}(b)$ if and only if $a \leq b$.

For a function f, the code-version of f is the function C^f on positive sequences such that for all x_1, \ldots, x_n

$$ \text{Code}^{-1}(C^f(\text{Code}(x_1), \ldots, \text{Code}(x_n))) = f(x_1, \ldots, x_n). $$

The code-versions of the primitive functions $\lfloor . \rfloor, [\frac{1}{2}]$, S, P, $+$, \sim, \cdot, $\#$, Count and MSP can be Σ^b_1-defined in S^2_1.

Therefore we can interpret $S^0_{2^*}$ in S_2 via this encoding and use this to prove that integer division by three cannot be Σ^b_1-defined in $S^0_{2^*}$, whereas it can be defined in T^0_2 by use of induction for open formulae only.

Furthermore we show that $S^0_{2^*}$ cannot Σ^b_1-define every function in a very small complexity class, viz. the class AC^0 of functions computable by uniform families of polynomial size, constant depth unbounded fan-in circuits.
2 Coding Numbers by Sequences

We shall use the fact that S^1_2 can Σ^0_1-define functions by length bounded summation, i.e. let f be a Σ^0_1-defined function, then we can define $F(k) = \sum_{i=0}^{k-1} f(i)$. The existence and uniqueness conditions are easily proved in S^1_2 by use of sequence encoding. In particular we can define a function Σ such that

$$
\Sigma(w) = \begin{cases}
\sum_{i=1}^{\text{Len}(w)} \beta(i, w) & \text{if } \text{Seq}(w) \\
0 & \text{else}
\end{cases}.
$$

The function Code is p.t.c. and hence Σ^0_1-definable in S^1_2. To see this, define the functions f_1, f_2 and f as follows:

$$
f_1(a) := \mu i \leq |a| \ (\text{Bit}(|a| - S_i, a) = 0)$$

$$
f_2(a) := f_1((2^{|a|} - f_1(a) - 1) - \text{LSP}(|a| - f_1(a), a))$$

$$
f(a) := \begin{cases}
0 * f_1(a) * f_2(a) & \text{if } f_1(a) > 0 \text{ and } f_2(a) > 0 \\
0 * f_1(a) & \text{if } f_1(a) > 0 \text{ and } f_2(a) = 0 \\
0 & \text{else}
\end{cases}
$$

These are Σ^0_1-definable in S^1_2 by theorem 2.9 of [Bu] and hence p.t.c. Now Code can be defined by limited iteration from f:

$$
\tau(a, 0) := 0$$

$$
\tau(a, S_i) := \tau(a, i) * f(LSP(a, |a| - \Sigma(\tau(a, i))))
$$

Then $\text{Code}(a) := \tau(a, |a|)$ and for all $i \leq |a| : |\tau(a, i)| \leq |a| \cdot (2 |a| + 2)$. Note that Code^{-1} is not p.t.c. since $\text{Code}^{-1}((1, a)) = 2^a$ for $a \geq 1$.

For the rest of this section, let $A := \langle a_1, \ldots, a_k \rangle$ and $B := \langle b_1, \ldots, b_l \rangle$. The ordering \leq_C of positive sequences is defined by

$$
A <_C B \iff \Sigma(A) < \Sigma(B) \lor (\Sigma(A) = \Sigma(B) \land \exists i \leq \min(f, k)

(\forall j < i \ (a_j = b_j) \land (\text{Even}(i) \land a_i > b_i \lor \text{Odd}(i) \land a_i < b_i)),

A =_C B \iff k = f \land \forall i \leq k \ a_i = b_i,

A \leq_C B \iff A <_C B \lor A =_C B.
$$

These definitions are obviously Δ^b_1 w.r.t. S^1_2.

For some of the function symbols, the code-versions can easily be defined, viz.

$$
C^{\uparrow}(A) := \text{Code}(\Sigma(A))$$

$$
C^{\uparrow\uparrow}(A) := \begin{cases}
0 & \text{if } A = 0 \text{ or } A = \langle 1 \rangle \\
\langle a_1, \ldots, a_{k-1} \rangle & \text{if } a_k = 1 \\
\langle a_1, \ldots, a_k - 1 \rangle & \text{if } a_k > 1
\end{cases}
$$

$$
C^\#(A, B) := \langle 1, \Sigma(A) \cdot \Sigma(B) \rangle
$$
Since a twos complement and addition), we can define the following functions:

\[
C^S(A) := \begin{cases}
\langle 1 \rangle & \text{if } A = 0 \\
\langle 1, a_1 \rangle & \text{if } k = 1 \\
\langle a_1, \ldots, a_{k-1} - 1, 1, a_k \rangle & \text{if } k \geq 3 \text{ is odd and } a_{k-1} > 1 \\
\langle a_1, \ldots, a_{k-2} + 1, a_k \rangle & \text{if } k \geq 3 \text{ is odd and } a_{k-1} = 1 \\
\langle a_1, \ldots, a_k - 1, 1 \rangle & \text{if } k \text{ is even and } a_k > 1 \\
\langle a_1, \ldots, a_k + 1 \rangle & \text{if } k \text{ is even and } a_k = 1
\end{cases}
\]

\[
C^{\text{Count}}(A) := \text{Code} \left(\sum_{i \leq k} a_i \right)
\]

These are all obviously p.t.c. and can thus be \(\Sigma_3^p \)-definable in \(S_2^1 \). To obtain the code-version of addition, define the following functions:

\[
\begin{align*}
\text{Cut}(A, n) &:= \max\{i \leq k; \sum_{j=i}^h a_j \geq n\} \\
\text{Head}(A, n) &:= \begin{cases}
\langle a_1, \ldots, a_{m-1} \rangle & \text{if } h = 0 \\
\langle a_1, \ldots, a_{m-1}, h \rangle & \text{else}
\end{cases} \\
\text{Tail}(A, n) &:= \langle p, t, a_{m+1}, \ldots, a_k \rangle
\end{align*}
\]

where \(m := \text{Cut}(A, n) \), \(h := \sum_{j=m}^k a_j - n \), \(t := a_m - h \) and \(p := \text{Mod}2(m) + 1 \).

\[
\text{Merge}(A, B) := \begin{cases}
\langle a_1, \ldots, a_k, b_2, \ldots, b_t \rangle & \text{if } \text{Mod}2(k) = \text{Mod}2(b_1) \\
\langle a_1, \ldots, a_k + b_2, \ldots, b_t \rangle & \text{else}
\end{cases}
\]

Now we can define

\[
C^+(A, B) := \begin{cases}
\text{Add}(A, B) & \text{if } A \leq_C B \\
\text{Add}(B, A) & \text{else}
\end{cases}
\]

where \text{Add} is recursively defined by

\[
\text{Add}(A, B) := \begin{cases}
A & \text{if } B = \langle \rangle \\
\text{Merge}(\text{Add}(\text{Head}(A, b_1), \langle b_1, \ldots, b_{\ell-1} \rangle), \text{Tail}(A, b_1)) & \text{if } \ell \text{ is even} \\
\text{Add}(\text{Step}(A, B), \langle b_1, \ldots, b_{\ell-1} + b_\ell \rangle) & \text{if } \ell \text{ is odd}
\end{cases}
\]

and \(\text{Step}(A, B) = \text{Code}(\text{Code}^{-1}(A) + 2^{b_\ell} - 1) \) is given by Table 1.

Since the computation of \(\text{Add}(A, B) \) terminates after \(\ell \) recursions, and the space required to store intermediate values is bounded by a polynomial in \(|A|, \ell \) and \(\text{Size}(A) \), the recursive definition could be written as a limited iteration, and hence \text{Add} is p.t.c. and so is \(C^+ \).

We will now define the code-version of modified subtraction:

\[
C^-(A, B) := \begin{cases}
0 & \text{if } A \leq_C B \\
\text{Sub}(A, B) & \text{else}
\end{cases}
\]

Since \(a - b = C - ((C - a) + b) \), if we choose \(C = 2^{|a|+1} - 1 \) (i.e. do subtraction by taking the twos complement and addition), we can define

\[
\begin{align*}
\text{Red}(A) &:= \langle a_2, \ldots, a_k \rangle \\
\text{Sub}(A, B) &:= \text{Red}(\text{Add}(\langle 1 \rangle ** A, B))
\end{align*}
\]

4
Table 1: Definition of $Step(A, B)$. To decrease the number of cases, zero entries in a sequence are treated as if they were deleted and the entries left and right of them were added then.

<table>
<thead>
<tr>
<th>k even</th>
<th>m</th>
<th>h</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m=k$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m+1$</td>
<td>$h>0$</td>
<td>$(a_1, \ldots, a_{k-1}, a_k - b_h, b_h)$</td>
<td></td>
</tr>
<tr>
<td>$=k$</td>
<td>$h=0$</td>
<td>$(a_1, \ldots, a_{k-3}, h - 1, 1, l, a_{k-1} - 1, 1, a_k)$</td>
<td></td>
</tr>
<tr>
<td>$m+1$</td>
<td>$h>0$</td>
<td>$(a_1, \ldots, a_{k-5}, a_k - 1, 1, a_{k-3} + a_{k-2}, a_{k-1} - 1, 1, a_k)$</td>
<td></td>
</tr>
<tr>
<td>$<k$</td>
<td>$h=0$</td>
<td>$\langle 1, a_1 + a_2, a_3 - 1, 1, a_4 \rangle$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m</th>
<th>$=k$</th>
<th>$m=1$</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m+1$</td>
<td>$m \geq 3$</td>
<td>$(a_1, \ldots, a_{k-3}, a_k - 2 - 1, 1, h, t - 1, 1, a_k)$</td>
<td></td>
</tr>
<tr>
<td>$<k$</td>
<td>$m=1$</td>
<td>$\langle 1, h, t - 1, 1, a_2 \rangle$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>k odd</th>
<th>m</th>
<th>h</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m=k$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m+1$</td>
<td>$h \geq 1$</td>
<td>$(a_1, \ldots, a_{k-2}, h - 1, 1, l, a_k - 1, 1)$</td>
<td></td>
</tr>
<tr>
<td>$=k$</td>
<td>$h=0$</td>
<td>$(a_1, \ldots, a_{k-4}, a_k - 1, 1, a_{k-2} + a_{k-1}, a_k - 1, 1)$</td>
<td></td>
</tr>
<tr>
<td>$m+1$</td>
<td>$h \geq 1$</td>
<td>$(a_1, \ldots, a_{m-1}, h - 1, 1, l, a_{m+1}, \ldots, a_k - 1, 1)$</td>
<td></td>
</tr>
<tr>
<td>$<k$</td>
<td>$h=0$</td>
<td>$\langle 1, a_1 + a_2, a_3, \ldots, a_k - 1, 1 \rangle$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m</th>
<th>$=k$</th>
<th>$m=1$</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m<3$</td>
<td>$m=1$</td>
<td>$(1, h, t, a_2, \ldots, a_k - 1, 1)$</td>
<td></td>
</tr>
<tr>
<td>$=k$</td>
<td>$m \geq 3$</td>
<td>$(a_1, \ldots, a_{m-2}, a_{m-1} - 1, 1, h, t, a_{m+1}, \ldots, a_k - 1, 1)$</td>
<td></td>
</tr>
<tr>
<td>$m=k$</td>
<td>$k \geq 3$</td>
<td>$(a_1, \ldots, a_{k-3}, a_k - b_h, b_h - 1, 1)$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$k=1$</th>
<th>$m=k$</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$=k$</td>
<td>$m \geq 3$</td>
</tr>
</tbody>
</table>
$C^P(A)$ is then simply defined as $C^{-\langle A, (1) \rangle}$. Now for the code-version of multiplication: We use an iterated version of the so-called Russian Peasant Algorithm, i.e.:

\[
\begin{align*}
 x \cdot 0 & := 0 \\
 x \cdot 2^i y & := 2^i x \cdot y \quad \text{where y is odd} \\
 x \cdot t^{(i)}(y) & := 2^i x \cdot y + \sum_{j=0}^{i-1} 2^j x \quad \text{where y is even and $t(x) := 2x + 1$.}
\end{align*}
\]

An operation corresponding to multiplication by powers of two is easily defined by

\[
MPT(A,n) := \begin{cases}
0 & \text{if $A = 0$} \\
\langle a_1, \ldots, a_k + n \rangle & \text{if k is even} \\
\langle a_1, \ldots, a_k, n \rangle & \text{if k is odd}
\end{cases}.
\]

Then since $\sum_{j=0}^{i-1} 2^j x = (\sum_{j=0}^{i-1} 2^j) \cdot x = (2^i - 1) \cdot x = 2^i x - x$, C can be recursively defined by

\[
C(A,B) := \begin{cases}
0 & \text{if $B = 0$} \\
C(MPT(A,b_{\ell}), (b_1, \ldots, b_{\ell-1})) & \text{if ℓ is even} \\
C^+(C(MPT(A,b_{\ell}), (b_1, \ldots, b_{\ell-1})), \text{Sub}(MPT(A,b_{\ell}), A)) & \text{if ℓ is odd}
\end{cases}.
\]

Just as in the case of Add, the number of recursions used to compute $C(A,B)$ is ℓ, and the space required can be bounded by a polynomial in values that are bounded by lengths, thus C is computable in polynomial time.

To define the code-version of MSP, we need the possibility to decode sequences representing small numbers, i.e. numbers bounded by a length. So let

\[
\text{Decode}(A,B) := \begin{cases}
0 & \text{if $A > C \cdot \Sigma(B)$} \\
\text{Code}^{-1}(A) & \text{else}
\end{cases}.
\]

But this function is p.t.c. since in the case where it has to be computed (i.e. if $A \leq C \cdot \Sigma(B)$), we have $\text{Code}^{-1}(A) \leq \sum(B)$ and this can be computed as

\[
\text{Code}^{-1}(A) = \sum_{i=0}^{\lceil \Sigma(B) \rceil + 1} \text{Par}(B,i) \cdot 2^i
\]

where $\text{Par}(B,i) := \text{Cut}(A,i) \mod 2$, and exponentiation can be used since $i \leq \lceil \Sigma(B) \rceil + 1$ and therefore 2^i can be replaced by $2^{\min(i,\lceil 2 \Sigma(B) \rceil)}$. Hence the function Decode is Σ^0_1-definable in S_2^1, and we can define

\[
C^{MSP}(A,B) := \begin{cases}
0 & \text{if $B \geq C \cdot \Sigma(B)$} \\
\text{Head}(A, \text{Decode}(B,A)) & \text{else}
\end{cases}.
\]

3 Interpretation of $S_{2^+}^0$ in S_2

We shall now use the coding defined above to interpret $S_{2^+}^0$ in S_2. For a term t, the interpretation t^C is defined as follows:

- If t is 0 or a variable, then $t^C := t$.

6
• If t is $f(s)$, where $f \in \{|., \lfloor \cdot \rfloor, S, P, \text{Count}\}$, then $t^C := C^f(s^C)$.
• If t is $s_1 \circ s_2$, where $\circ \in \{+, -, \cdot, \#, \text{MSP}\}$, then $t^C := C^\circ(s_1^C, s_2^C)$.

For a formula φ, the interpretation φ^C is defined by:
• If φ is $s = t$ or $s \leq t$, then $\varphi^C := s^C = t^C$ or $s^C \leq t^C$ respectively.
• The interpretation commutes with the logical connectives as usual.
• If φ is $\exists \psi$ or $\forall \psi$, then $\varphi^C := \exists x (PSeq(x) \land \psi^C)$ or $\forall x (PSeq(x) \to \psi^C)$ respectively.
• If φ is $\exists x \leq t \psi$ or $\forall x \leq t \psi$, then φ^C is defined as $\exists x (PSeq(x) \land x \leq t^C \to \psi^C)$ or $\forall x (PSeq(x) \land x \leq t^C \land \psi^C)$ respectively.

Note that the interpretation of a bounded formula is not necessarily equivalent to a bounded formula. Nevertheless, the interpretation of a sharply bounded formula is equivalent to a bounded formula since we can prove

$$PSeq(x) \land x \leq_C C^1(t^C) \to x \leq SqBd(|\Sigma(t^C)|, \Sigma(t^C)) .$$

Theorem 1 If $\varphi(a_1, \ldots, a_n)$ is provable in S^b_2, then

$$PSeq(a_1) \land \ldots \land PSeq(a_n) \to \varphi^C(a_1, \ldots, a_n)$$

can be proved in S_2.

Proof: It suffices to prove the interpretations of the non-logical axioms of S^b_2 in S_2. The axioms from BASIC and the additional axioms for the function symbols P, \cdot, Count and MSP are all verified by long but straightforward computations. It remains to show that the interpretation of every instance of $\Sigma^b_0 - PIND$ can be proved, or more general

$$S_2 \vdash \varphi(0) \land \forall x (PSeq(x) \land \varphi(C_{\lfloor \cdot \rfloor}^1(x)) \to \varphi(x)) \to \forall x (PSeq(x) \to \varphi(x))$$

where $\varphi(x)$ is a bounded formula. So suppose

$$\varphi(0) \land \forall x (PSeq(x) \land \varphi(C_{\lfloor \cdot \rfloor}^1(x)) \to \varphi(x)) .$$

Suppose furthermore that $\exists x (PSeq(x) \land \neg \varphi(x))$. Then by $M1N$, which is provable in S_2 by Thm. 2.20 of [Bu], we have

$$\exists x (PSeq(x) \land \neg \varphi(x) \land \forall y < x (PSeq(y) \to \varphi(y))) .$$

Let this minimal x be a, then since $PSeq(a)$, we also have $PSeq(C_{\lfloor \cdot \rfloor}^1(a))$, and $C_{\lfloor \cdot \rfloor}^1(a) < a$, hence $\varphi(C_{\lfloor \cdot \rfloor}^1(a))$, and the first assumption leads to a contradiction. \hfill \Box \hfill \Box

Let $f(x)$ denote the function $\lfloor \frac{1}{2} x \rfloor$. f can be defined by the open formula

$$b = f(a) := 3b = a \lor 3b + 1 = a \lor 3b + 2 = a .$$

In T^0_2, integer division $\lfloor \frac{a}{b} \rfloor$ can be defined: to prove the existence, use the induction axiom for the quantifier free formula $b \cdot x > Sa$. 7
Theorem 2 \ ∀x \ ∃y \ y = f(x) cannot be proved in \(S^0_{2^+} \).

Proof: Suppose \(S^0_{2^+} \) ⊢ \∀x \ ∃y \ y = f(x) \), then by Theorem 1
\[
S_2 \vdash \forall x \ PSeq(x) \rightarrow \exists y \ (PSeq(y) \land y = C^f(x)) .
\]

Then by Parikh’s Theorem it follows that there is a term \(t(x) \) in the language of bounded arithmetic s.t. in particular
\[
S_2 \vdash \exists y \leq t(a) \ (PSeq(y) \land y = C^f(a + 1)) .
\]

But \(a + 1 = Code(2^{a+1} - 1) \), and one easily sees that \(f(2^{a+1} - 1) \) is such that \(y \) must be of the form \(y = (1, \ldots, 1) \) with \(a \) ones, hence \(Len(y) = a, \) so \(y > 2^a \).

Hence \(T^0_2 \) is not \(\forall \exists \Sigma^b_1 \)-conservative over \(S^0_{2^+} \), and Parikh’s Theorem immediately yields

Corollary 3 \(T^0_2 \) is not \(\forall \Sigma^b_1 \)-conservative over \(S^0_{2^+} \).

We conjecture that for any number \(k \) that is not a power of two, \(S^0_{2^+} \) cannot define the function \(\lfloor \frac{1}{2}x \rfloor \). Clearly it would suffice to prove this for \(k \) an odd prime number.

\(S^0_{2^+} \) and Circuit Complexity

\(AC^0 \) denotes the class of functions computable by uniform families of polynomial size constant depth unbounded fan-in circuits. In [Cl], Clote shows that it is reasonable to consider this class to be equal to Immerman’s class \(FO \), which is known to be equal to the alternating logarithmic time hierarchy \(LH \) (cf. [B-I-S]).

Theorem 4 \(S^0_{2^+} \) cannot \(\Sigma^b_1 \)-define every function in \(AC^0 \).

Proof: According to Clote [Cl], \(AC^0 \) is the smallest class containing the initial functions 0, 2x, 2x + 1, projections, \(|x| \), # and \(Bit \) and closed under composition and CRN, which is the following scheme: \(f \) is defined by CRN from \(g, h_0, h_1 \) if \(h_i(x, y) \leq 1 \) for \(i = 0, 1 \) and every \(x, y \), and
\[
\begin{align*}
f(x, 0) &= g(x) \\
f(x, 2y) &= 2f(x, y) + h_0(x, y) \quad \text{for } y > 0 \\
f(x, 2y + 1) &= 2f(x, y) + h_1(x, y) .
\end{align*}
\]

Consider the function \(f(x) := \lfloor \frac{1}{2}P(1\#x) \rfloor \). \(P(1\#x) = 2^{|x|} - 1 \) is the number of length \(|x| \) where every bit is 1. Thus \(f(x) \) is a number of length \(|x| - 1 \) with every second bit set 1, the remaining bits set 0.

Now this function \(f \) can be defined by CRN from \(g(x) = 0 \) and \(h_0(x) = h_1(x) = |x| \mod 2 = Bit(|x|, 0) \):
\[
\begin{align*}
f(0) &= 0 \\
f(x) &= 2f(\lfloor \frac{1}{2}x \rfloor) + |\lfloor \frac{1}{2}x \rfloor| \mod 2 \quad \text{for } x > 0
\end{align*}
\]

We conjecture that for any number \(k \) that is not a power of two, \(S^0_{2^+} \) cannot define the function \(\lfloor \frac{1}{2}x \rfloor \). Clearly it would suffice to prove this for \(k \) an odd prime number.
The same argument as in the proof of Theorem 2 shows that this function \(f \) cannot be \(\Sigma_1^b \) defined in \(S_{0^2}^0 \), since for the crucial numbers \(b \) with \(\text{Code}(b) = (a + 1) \) for some \(a \) we have \(f(b) = \lfloor \frac{1}{3} b \rfloor \).

On the other hand, multiplication does not belong to \(AC^0 \) (cf. [Cl]). Hence the \(\Sigma_1^b \)-definable functions of \(S_{0^2}^0 \) seem to correspond to no reasonable complexity class.

References

