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Abstract

Static analysis is indispensable in modern computer science, as it provides a powerful
instrument to optimize code and verify its safety. Generic solvers translate problem
statements to systems of equations, which are then solved by means of a fixpoint
engine. With regard to termination properties, certain problem domains necessitate an
acceleration of the fixpoint iteration through widening and narrowing. Corresponding
implementations, however, either guarantee partial correctness of results or termination.
Fulfilling both qualities in a single algorithm is non-trivial. The plethora of concepts and
ongoing discussion about their advantages and disadvantages reduces confidence in
static analysis tools implementing widening and narrowing. In this thesis, we therefore
provide a machine-checked verification of the partial correctness of the warrowing TD.

The top-down solver TD is a local generic fixpoint engine. It is characterized by
a recursive evaluation strategy in which right-hand sides are considered as black
boxes. The state of the solver is administered on the fly. This includes the tracking of
dependencies between unknowns, but likewise the identification of suitable iterations
for an application of widening and narrowing. Our work extends the verification of
the top-down solver by Stade, Tilscher, and Seidl [44]. First, we adapt the fixpoint
engine such that the warrowing operator is applied to a dynamically computed subset
of fixpoint iterations. Warrowing combines the techniques of both widening and
narrowing into a single update operator. We continue by identifying relevant properties
of the warrowing operator. Ultimately, we proof that the warrowing TD is sound, i.e.,
on termination, the solver computes partial post-solutions. Our verification is generic
in that it does not impose any constraints on the monotonicity of right-hand sides. The
proof is written using Isabelle/HOL and is available online [18].
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1 Introduction

Static analysis is omnipresent in modern software engineering [45]. Linters detect errors
in syntax or program logic, enforce coding standards and conventions, and reveal
vulnerabilities. Compilers perform extensive optimizations such as constant propaga-
tion and dead-code elimination, hence significantly improving the performance of the
resulting executables. Due to its key role in software development, it is essential that
static analysis provides reliable, i.e., correct results. Simultaneously, the analysis should
be performant and compute precise results in a finite, preferably small amount of time.

A formal approach to static analysis is abstract interpretation, a mathematical concept
coined by P. Cousot and R. Cousot [14]. Instead of addressing problem statements in
the concrete domain of a programming language specification, they are abstracted, i.e.,
mapped to an abstract domain. If chosen appropriately, abstract interpretation can yield
sufficiently accurate results while considerably reducing computational effort. A short
motivational example is adapted from Sintzoff [43]:

Example 1: Let D, = Z be the concrete domain of integers and D, = {(—), (+), (£)}
an abstract domain of signs. Then a: D, — D, is an abstraction function identifying
the sign of an integer i € ID.. Arithmetic operations on values a,b € ID, are intuitively
defined according to the rule of signs:

(+) ifa=banda# (+)#b (+) ifa=b=(+)
axb=<((—) ifa#banda# (+)#b and a+b=<(—) ifa=b=(—)
(+) otherwise (+) otherwise

Consider a function f: ID. — D, where f(x) = x?> + 1 and a conditional code segment
if f(c) <0 {...}. Assume ¢ € Z is a constant supplied by the user and therefore
unknown at compile time. Still, the compiler may identify the code block as dead code,
as f(c) > 0 holds: For both a(c) = (+) and a(c) = (—), respectively, above calculation
simplifies to a(c) xa(c) + (+) = (+) + (+) = (+). The abstract interpretation of a
function g: D, — D, defined by ¢(x) = x* — 1, on the other hand, yields the inconclu-
sive result a(c) xa(c) + (—) = (+) + (=) = (£).
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In a static program analysis based on abstract interpretation, problem statements can be
modeled by means of constraints [15]: Based on the properties of interest, an abstract
domain is chosen such that it adequately describes the state of a program execution
(value) at relevant program points. The state or value of a concrete program point x
is generally unknown, but can be derived by considering the state at a subset of other
program points. See, e.g., Example 1: The sign of an integer expression can be computed
with respect to the sign of its subexpressions. When regarding the derivation rules
thus obtained as right-hand sides f,, the static analysis is reduced to solving a system of
equations x = f,. This approach abstracts the analysis from details such as the concrete
program syntax. Corresponding tools are therefore referred to as generic solvers.

Solutions of equation systems are commonly obtained by applying a fixpoint engine
that iteratively approximates a solution. The thesis at hand focuses on a current imple-
mentation [46, 44] of the top-down solver TD [10, 32], a fixpoint engine that is at the
heart of static program analysis tools such as GosLINT [48] and C1ao0 [21, 23]. Origi-
nally targeted at PRoLOG [33, 31], the solver was later adapted to other programming
languages and paradigms [22, 20, 29, 48, 41]. In comparison to fixpoint algorithms like
round-robin [19] and worklist iteration [27], the top-down solver TD is a local solver [16].
Instead of determining dependencies through a global, preliminary analysis, they are
detected on-the-fly [42, 46]. In consequence, the solver only evaluates right-hand sides
of unknowns that contribute to the overall query [16].

A fixpoint iteration is guaranteed to terminate iff Kleene’s sequence is finite [28, 14].
However, this proposition does not apply to a number of abstract domains used in
static analysis, as they span possibly infinite ascending or descending chains. Examples
of such domains include intervals [14] and octagons [30]. This deficiency was already
identified in the early days of abstract interpretation and addressed by P. Cousot and
R. Cousot with the introduction of widening and narrowing [14, 13]. Conceptually, the
solving stage is now divided into two seperate fixpoint iterations [12, 13]: In a first
phase, the solver computes a post-solution! by means of an accelerated ascending
Kleene fixpoint iteration. Here, precision of results is deliberately traded for an increase
of performance and guaranteed termination. In an attempt to recover some of the
precision lost, a widening phase is usually complemented with a subsequent narrowing
phase. This additional fixpoint iteration covers a descending chain of post-solutions —
and is hence optional as it only improves results already valid.

Targeted at solvers within GOBLINT, Apinis et al. [3, 2] and Amato et al. [1] later propose
a refinement of the previously global switch from widening to narrowing phase. True
to the concept of a local solver, their algorithms determine the appropriate phase on a

IThat is, an overapproximation of the least fixpoint




1 Introduction

local, per-variable basis. Additionally, the acceleration mechanism is only applied at a
minimal subset of program points, resulting in an improvement of precision [6].

Whereas the above mentioned implementations can guarantee both termination? and
partial correctness for monotonic systems of equations [36, 1, 2], this is not necessarily
the case for non-monotonic right-hand sides. Corresponding systems of equations
occur in a variety of analyses, including interprocedural analysis [15]. We observe that
appropriate solution strategies can be divided into two general types of approaches,
each with a different focus: By combining widening and narrowing in a dynamic
warrowing operator, fixpoint engines like the top-down solver TD compute sound
results [3, 1, 2], but may not terminate even in the presence of seemingly simple
systems of equations [42]. In contrast, an algorithm enforcing a strict succession of
single widening by single narrowing phases guarantees termination, but may return
results that are not a post-solution. Instead, computed assignments provide a post-
solution of the lower monotonization of the system [40, 42] — a slightly weaker claim.

The plethora of concepts and ongoing discussion about their advantages and disadvan-
tages reduces confidence in static analysis tools implementing widening and narrowing.
To encourage the use of efficient fixpoint engines even in safety-critical applications, we
therefore provide a machine-checked verification of the TD extended by widening and
narrowing. With a focus on soundness [3, 1, 2], we settle on an implementation based
on warrowing and prove its partial correctness. Our proof builds on the verification of
the solver TD by Stade et al. [44] and is conducted using Isabelle/HOL [37].

The thesis is structured as follows: In Section 2.1, we start by defining systems of
equations and their (post-)solutions, as well as the dependency relation and partial
correctness of assignments. We then continue by presenting adequate data structures
and the algorithm that constitutes a minimal (plain) version of the TD in Section 2.2
and 2.3. In preparation for the upcoming inductive proof, Section 2.4 establishes the
notion of a computation trace. Section 2.5 focuses on an extension of the plain TD with
memoization. The background chapter concludes with an extensive introduction to
widening and narrowing in Section 2.6. The core of our work is located in Chapter 3:
There, we first provide an implementation of the warrowing TD, accompanied by a de-
tailed explanation of the dynamic management of potential warrowing points. Section
3.1 covers the derivation of an invariant and an update relation that both characterize
the solver TD. We proceed by analyzing the warrowing operator in Section 3.2 and
highlight some of its properties. Ultimately, key aspects of our proof implemented in
Isabelle/HOL [18] are outlined in Section 3.3. Our results are then critically discussed
in Section 3.4 and compared to related work in Chapter 4.

2 Assuming ascending and descending chains are finite and only finitely many unknowns are encountered.




2 Background

Let S, T be partially ordered sets. Given arbitrary mappings f: X — Y, ¢: S — T and
h: Z — P(Z) where P(M) is the powerset of a set M, we introduce the following
definitions and notations:
purity ..... A function f is pure if its evaluation is without side effects
and the result solely depends on f’s input arguments.
monotonicity ..... g is monotonic if for arbitrary x,y € S: x <y = gx < gy
Tg e Top, a value Tg € S wherex < Tgforallx € S
dg ... Bottom, a value L.g € S where Lg < xforallx € S
x Uy ... Pairwise supremum or join of two values x and y, x,y,z € S, where
x<xUy, y<xUy and Vx.y<x —= z<x = yUz<x
xMy ... Pairwise infimum or meet of two values x and y, x,y,z € S, where
xMy<x, xMNy<yand Vx.x <y —= x<z = x<yllz
ht: Z — P(Z) ..... The transitive closure of h maps arbitrary x € Z to the minimal set
h*x, for which both hx C h™x and Vy € h*x. hy C h™x holds.
h*: Z — P(Z) ..... The transitive and reflexive closure, defined as h*x := {x} U h'x
f @ {x—y} ... An updated mapping, where (f & {x — y}) x = y and
VX' £ x. (fe{x—y})x =fx
g0 ... The empty mapping go: X — T, defined by x — Lt forall x € X

When analyzing programs, a certain ambiguity arises regarding the word variable. A
variable can be a variable of the program — called program variable — or a variable in the
context of equations. To avoid confusion, we refer to the latter as unknowns.

2.1 Systems of Equations

Following the idea of a generic solver, datatypes are chosen as unrestricted as possible.
Assume that ID is a domain of (abstract) values. A system of equations is commonly
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defined as a collection of equations

x:fx (x1,x2,...,xn), (1)

where f, is called the right-hand side to an unknown x € D and x; € ID are parameters
the computation of f; depends on. Our technical approach, however, makes it necessary
to distinguish between the concepts of unknowns and their values. We therefore introduce
U as the set of unknowns and a complementary assignment o: U — 1D, which maps
unknowns x € U to a value d, € ID. Equations as presented above are now rephrased:

X = fx (2)

In this notation, a system of equations is considered to be a function mapping unknowns
x € U to their right-hand side fy : ({ — ID) — ID. The functional fy expects a single
parameter of type ¢/ — ID. By taking an assignment ¢ as input, fy is able to represent
complex dependencies between different unknowns and their currently assigned values.
From here on, we assume equation systems to comply with the notation in (2). Yet for
the sake of readability, examples will be supplied in the more familiar style of (1).

Conceptually, right-hand sides f; of an equation are considered black boxes. Given
an assignment o, f, may always be evaluated. Further meta information such as the
equations’ exact definition, on the other hand, is not assumed to be available to the
solver. Motivated by the findings of Hofmann et al. [25], we require functionals f, to be
pure (see also Section 2.2). But whereas this is quite common for other solvers applying
widening and narrowing, no restriction is made with respect to monotonicity.

Example 2: Let D = INp and U = {x,y}. Then the system of equations defined by

x = (if x < 100 then y else 100)
y=x+1

is pure and monotonic. Intuitively, both equations are satisfied for x = 100 and y = 101.

Systems of equations usually encode constraints and dependencies between the various
unknowns of the system. In an analysis using equation systems, a solution is therefore
of great interest as it fulfills all the requirements specified. Formally, an assignment
0*: U — DD is considered a total solution, if for all unknowns x € U:

feo* =0"x (3)

This renders o* a fixpoint of the equation system — remember that equations f, are
defined as functionals depending on ¢*. However, such a fixpoint or solution might
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not always exist. Take, for example, a system that consists of the single equation
x = x+ 1. In this case, there is no value for x in D = N that ever satisfies the
equation’s constraints. Given such a system of equations, the solver TD and equivalent
solvers do not terminate.

In essence, though, abstract interpretation performs an overapproximation of a pro-
gram’s state at (possibly abstract) program points. This raises the idea of overapprox-
imating solutions as well. Consequently, we introduce the notion of a post-solution:
Given a system of equations x — f, for unknowns x € Y. Then, if for each x € U

fr0* <0"x 4)

holds, an assignment ¢* constitutes a post-solution. By choosing ID such that there
exists a top element Tp € D, every equation system admits at least one post-solution,
namely the trivial post-solution Vx. x — Tp.

Let U be infinite. Naturally, a solver trying to compute a total solution for such a
system can never terminate. However, due to locality of reference in typical computer
programs, it often suffices to determine a partial solution. Therefore, Stade et al. [44]
start by defining the concept of dependencies: For an unknown x € ¢/ and a mapping
0: U — D, let the function dep x ¢ return the set of all unknowns whose value is
effectively looked up in ¢ during the evaluation of f, ¢. All unknowns y € dep xo C U
thus denote direct dependencies of x.

Example 2 (continued): Let o9 = {x — 0, y — 0} and 0 = {x — 100, y — 0}. Then

dep x o1 = {x,y}
dep x 0p = {x}

are the direct dependencies of unknown x € U considering o7 and 0, respectively.

Based on this definition, an equation system is characterized as recursive with respect
to o if x € dep™ x o for any unknown x € U. In other words: There exists a direct or
indirect circular dependency within the system.

Ultimately, a mapping 0;: U — D is referred to as partial solution for a sets C U, if:

Vx €s.dep*xo, CsAfro, =0,x 5)

A partial post-solution is defined analogously. Trivially, a solution ¢* is likewise a partial
solution ¢} for any chosen set s.
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Example 2 (continued): Due to the first equation, the system is always recursive regardless
of the chosen assignment. Whereas 07 is a partial solution for s = {x}, this is not the
case for any set s containing y. Mapping o is neither a partial nor total (post-)solution.

By the introduction of a post-solution, the choice of a suitable domain is inevitably
restricted, as ID needs to be partially ordered. Additionally, D is required to provide
a special element 1, used as initial value for TD’s fixpoint iteration. Even though
an arbitrary choice of | guarantees valid results [44], the solver will not necessarily
compute a least solution [10]. In preparation for future verification, we therefore choose
1 = 1p,ie, L tobe the least element of ID. With regard to the definition of widening
and narrowing operators in Section 2.6, the final constraint on the domain is the
existence of a pairwise supremum operator Ll and infimum operator . Consequently
and in accordance with previous work [3, 2, 42], we assume ID to be a complete lattice.

2.2 Representation as Strategy Trees

So far, the right-hand sides of equations where presented as pure black-box functionals
fx: (U - D) — D. Although gratifyingly general, this approach lacks structure on
which to reason upon. We thus aim to specify equations in a fixed, that is, canonical
form. In their work, Hofmann et al. [25] introduce the concept of strategy trees and
prove the existence of an equivalent query-answer strategy for any pure functional.
From now on, we assume right-hand sides of equations to be given as just such strategy
trees (also called query-answer trees):

datatype (’x, ’d) query_answer_tree =
Answer °’d
| Query ’x ’d = (°x , ’d) query_answer_tree

Assume that, given the latest assignment ¢’, there is some appropriate way to query
the current value dy of an unknown y. Then Query nodes Queryy g implement the
strategy of query-answer trees: After computing the value dy, it is used to determine
the child node that should be evaluated next. This is done by applying the strategy
function g, which returns a node (g dy). Answer nodes Answer d, on the other hand,
encode constant values d € ID. They serve as leaf nodes, i.e., result values of a strategy
tree evaluated with the original state ¢.

In graphical representations, we abbreviate Query nodes with the letter Q and Answer
nodes with A. As will be seen below, repeated queries Q x of an unknown x € U
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are not necessarily bound to return the exact same value. In concrete instances of
query-answer trees, values are therefore referred to as d;, where i is a unique identifier.

Example 2 (continued): The if-clause of T x y
right-hand side f, is realized by two

complementary strategies. Technically, Qx Qx
there are |D| mappings or edges leav- dy <100 / N\ > 100 ds
ing a Query node‘. But generally, thc?y Qy  A100 Ady+1
can be parameterized and grouped in

equivalence classes — see also d3 in un- ‘ 42

known y’s strategy tree. A dy

We continue by concretizing the definition of equation systems (see Section 2.1) with
regard to strategy trees and fix a system of equations T as a forest, that is, a function
T: U — (U, D) query-answer tree. For each unknown x € U, the function 7 maps
an unknown x to its right-hand side f. As will become apparent in Section 3.3, the
recursive nature of query-answer trees allows for a convenient proof by induction.

With equation systems represented as a forest of strategy trees, the computation of a
solution to the system can now be automated. The next section provides a first minimal
implementation of the top-down solver TD.

2.3 The Top-Down Solver TD

In the following, we present the plain TD as introduced by Tilscher, Stade, et al. [46, 44].
Originating in the universal top-down fixpoint algorithm first described by Charlier and
Van Hentenryck in 1992 [10], the solver TD has been frequently adapted and extended
over time [16, 2, 42]. The plain TD in [44] is implemented by three mutually recursive
functions: eval, query and iterate.

In the listings below, opaque code represents the core functionality of the solver.
Efficiency is added by deploying memoization, displayed transparently. The basic
idea behind this optimization can be summarized as follows: Already computed
values dx € ID do not need to be recalculated iff they are still considered stable, i.e.,
x € stable C Y. An unknown remains stable as long as it only depends on values
dy which did not change since dx was last computed. In other words: It was not
destabilized by a call to destaby. The dependency of unknowns on each other is
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dynamically tracked in a mapping infl: &/ — P (U). In Section 2.5, the memoization
technique is discussed in more detail. For now, we focus on the core of the algorithm.

To begin with, function eval performs the evaluation of query-answer trees as discussed
in Section 2.2. Given an unknown x € U, (parts of) its right-hand side f, represented
as strategy tree t and the present assignment ¢ of values to unknowns. Additionally,
let ¢ be a set of already called values, ¢ C U. Then, in case tree t is of type Answerd,
function eval behaves as expected: The traversal of the query-answer tree terminates
and the computed value is returned, as well as the current assignment ¢. Otherwise,
tree t is of type Queryy g. At first, function eval queries a suitable approximation of
value dy by providing parameter ¢ as the mapping of preliminarily computed values for
already queried unknowns. This value is then used to determine the subtree g dy (that
is, the subexpression of fy) to be evaluated next. Note that the mutually recursive call
to eval is performed using an updated version of ¢. Potential changes on c occuring in
queryy c o, on the other hand, are discarded — a behavior that is common to all three
of the mutually recursive functions.

1 eval x t ¢ infl stable ¢ = case t of

2 Answer d = (4, infl, stable, 0)

3 | Query y g =

4 let (dy, infl, stable, 0) = query x y ¢ infl stable ¢ in
5 eval x (g dy) ¢ infl stable o

The implementation of query again differentiates two cases. Assume unknown x does
not occur in the call stack so far, i.e., x € c. To determine an appropriate value dy with
respect to assignment ¢, the solver TD starts a fixpoint iteration on x. Before descending
into the iteration, x is explicitly added to the call stack. Alternatively, if x already is
in the set of called unknowns c, query detects a circular dependency on x. A further
descend into additional recursive calls would thus never terminate. To prevent such a
behavior, the execution tree is pruned and the value of x is looked up in ¢ instead:

1 query y X ¢ infl stable o =
2 let (dy, infl, stable, o) =

3 if X € ¢ then

4 (o x, infl, stable, o)

5 else

6 iterate x (¢ U {x}) infl stable ¢

7 in (dx, infl & {x +— infl x U y}, stable, 0)

The actual solving takes place in iterate: Starting with a call to eval, the solver first
determines the latest value dy of the right-hand side 7 x. Internally, the TD evaluates
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the equation system using the given assignment ¢. Observe that in the basic version
of eval, there is no need to explicitly pass x as parameter. If no change is found, that
is, the evaluation of the unknown returned the same value as already stored in ¢, TD
reached a fixpoint and the value along with the associated mapping is returned. Else,
assignment ¢ is updated such that it maps x to dyx and the iteration is resumed.

1 iterate X ¢ infl stable o =

2 X ¢ stable

3 let (dy, infl, stable, o)

4 = eval x (T x) ¢ infl (stable U {x}) o in
5 if ¢ X = dy then

6 (o x, infl, stable, o)

7 else

8 (infl, stable) = destab x infl stable

9 iterate x ¢ infl stable (¢ @ {x — dy})

10

1 (o x, infl, stable, 0)

Lastly, function solve implements the top-level interface to the top-down solver. A
call solve x solves the system of equations for an unknown x € U/, assuming execution
terminates. In case depx o, C U, the returned assignment o, is only guaranteed to
be a partial solution for unknowns y € s C U. The set s (see also Equation 5) is
implicitly computed by the plain TD on-the-fly. It includes at least all of unknown x’s
dependencies: depx o; C s [44]. If memoization is enabled, then ¢; is a partial solution
for unknowns in stable— a stronger proposition, as s C stable holds [44].

Remember that op: U — DD is the empty mapping, i.e., the assignment oy that maps
every unknown in U/ to Lp. The set of called unknowns c is initially empty but x. For
completeness, we also introduce inflg: U — P (U) as the empty influence mapping
where Lp) = {}. Ultimately, solve initializes a fixpoint iteration on x as follows:

1 solve x = (let (d, _, _, o) = iterate x {x} infly {} op in (d, o))

2.4 Computation Trace

To investigate the mechanisms that characterize the top-down solver, we will concentrate
on its execution in more detail. A run of the solver TD is always deterministic. Given a
system of equations as query-answer trees 7 and an unknown for which the equation
system is to be (partially) solved. The execution of the solver with this specific input

10
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can then be described by a computation trace. A computation trace is a tree that models
the mutual recursion. Each function call is represented as a node. Direct recursive
calls are interpreted as iterations; accordingly, they are positioned in a horizontal row.
Mutual calls, on the other hand, are placed on a new layer of the computation trace.

For the sake of visual clarity, some steps are abstracted: The actual strategy of in-
dividual equations is only implied by the solver’s choice of queries. Function calls
eval (Answer d) are omitted; instead, evaluation results are attributed to the parent
node (i.e., the latest call of) iterate. This allows for a complete removal of all layers
of eval nodes. Instead, query nodes! are appended directly to the preceding iteration.
Additionally, we abbreviate iterate nodes with the letter I and query nodes with Q.

Recall Example 2. Calling solve x yields the computation trace below:

solve X
L} L} I L} 1
Ix=1 Ix=2 Ix =100 Ix =100
Qx=0 Qy=1 QAx =99 Qy =100 Qx =100
—l— —lL
Iy=1 Iy=1 Iy=100 Iy =100
I I I I
Qx=0 Qx=0 Qx =99 Qx =99

Beware of a few aspects: Even though the computed solution o7 = {x — 100, y — 100}
fulfills equation fy, this is not the case for fy. That is due to the fact that in the final
iteration, x does not depend on y. Or, more precisely: depx 07 = {x}. Results should
thus always be interpreted with care and in compliance with dependencies reflected in
the returned assignment. Moreover, the example’s trace exposes a serious inefficiency
of the plain TD: Even though non of the queried values below unknown y change
(that is, the value of x), the solver constantly iterates y twice before recognizing its
stabilization. In the next section, we therefore improve the performance of the plain TD
by means of memoization.

INot to be confused with Query nodes of query-answer trees.

11
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2.5 Memoization

Memoization describes an algorithm’s ability to cache already computed values. Pro-
vided that none of the input values changed, partial results can be looked up, saving
resource-intensive recalculations. A prime example of application is the calculation of
recurrence relations like the Fibonacci sequence:

Example 3: Consider a system of equations where D = N and & = {F, | n € Np}.
With i € Ny — {0, 1}, the collection of equations is defined as:

F=0
F=1
F=F_1+F

Note that the number of unknowns as well as their defining right-hand sides is
infinite.? In contrast to Example 2, the system is not recursive as there are no circular
dependencies. Let s = {Fy, Fi, F,, F3, F4, F5}. Then 0';; ={Fh—0FFK—1F—
2, Fy — 3, F5 — 5} is the system’s unique partial solution for s. A call to solve F3, on
the other hand, triggers the following computation:

solve F3
1
L} 1
IF=2 IFR=2
T ! 1 —_—
QK =1 QF =1 QK =1 QF =1
L} I 1 I I I
I =1 IKL=1 IF = IKL=1 IF=1
—l— —L— Answer —L— Answer
QF =1 QF =0 QF =1 QF =0 QF =1 QF =0
—L— | | | | |
IF=1 IF=1 IFK=0 IF=1 IFR=0 IF =1 IFR=0
Answer Answer Answer Answer Answer Answer Answer

Redundant iterations and their sub-computations are marked in gray. For the problem
statement at hand, the runtime of the plain top-down solver TD is exponential. Elimi-
nating superfluous computations reduces the solver’s performance to a linear runtime

in O(n).

2There exists a closed form expression, known as Binet’s formula. Nonetheless, the solver TD is unable to
compute such an infinite solution: First, there is no initial largest unknown Fy, to solve for, for which
the returned partial solution includes all possible F;, n € INg. And secondly, each unknown in s has to
be iterated at least once — an infinite computation that never terminates.
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2 Background

The introduction of an memoization mechanism is conducted with a few adjustments:
To administer already calculated values, we establish a set stable. Upon initial
evaluation of its strategy tree 7X, an unknown x is optimistically added to stable. If
an unknown is then queried again later and found in stable, it is still valid — the value
can therefore simply be looked up in in the provided assignment ¢. The functionality
described is implemented in iterate, see Listing iterate (Il. 2, 4, 10f.) above.

This economical approach is met with an active and comprehensive invalidation strategy.
Assume that during iteration of an arbitrary unknown x, the memorized value ¢ x does
not match the computed value dy, i.e., the value dy does not constitute a fixpoint yet.
We call this case the Continue Case. Before resuming iteration on x, the assignment o
is updated to reflect the unknown’s recalculated value. However, the change of state
must now also be propagated to stable, which is done in a helper function destab (c.f.
Listing iterate, 1. 8):

destab x infl stable =
let £ y (infl, stable) = destab y infl (stable — {y}) in
fold £ (infl @& {x — {}}, stable) (infl x)

The algorithm removes every unknown from stable whose value was calculated based
on the value ¢ x, whether directly or transitively. To ascertain the exact interdependence,
the influence of unknowns on each other is recorded whenever arising, namely in the
function query: We introduce a mapping infl: U — P (U). For each value d, queried
during the evaluation of a right-hand side 7 y, unknown y is added to the set of
unknowns influenced by z (Listing query, 1. 7). Yet recomputations are expensive; we
thus strive to keep the effect of (future) destabilization as limited as possible. For this
reason, function destab also manages the mapping infl and resets all assignments
infl z to the empty set whenever an unknown z is removed from stable.

An elementary characteristic of the destabilization strategy outlined above is its passiv-
ity: Unknowns are removed from stable, but not reevaluated directly. Unlike solvers
like the RLD [24], the TD pursues a demand driven approach where values are only
evaluated when queried. In this context, it is especially important to note that x is only
removed from stable in case of a circular dependency; i.e., x (transitively) influences x.
If none of the input values of right-hand side 7 x change, reevaluation is not necessary.
Subsequently, the iteration terminates with x € stable.

In their work, Stade et al. [44] show the equivalence of the plain TD and its extension
with the non-local destabilization mechanism. Partial correctness of both algorithms
follows as corollary [44]. From here on, the top-down solver extended by memoization
is also referred to as vanilla TD.
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2.6 An Introduction to Widening and Narrowing

Recall Example 2 once again. Memoization is able to prune redundant subtrees below
nodes iterate x. However, the actual performance problem persists: The sequence of
values o x is only slowly increasing, so it takes many iterations for the algorithm to
converge. Although memoization can skip superfluous calculations, it cannot accelerate
essential iterations that inevitably arise with a recursive system of equations. At worst,
the solver will not terminate: Once more, have a look at the minimal example x = x 4 1.
The sequence (x;);cn, where x; corresponds to the unknowns'’s value o x after the i-th
iteration, is infinite. The resulting loss of potential was already recognized in the early
days of abstract interpretation. P. Cousot and R. Cousot [14, 13] first proposed the
widening technique as viable remedy.

In this work, we aim to verify the vanilla TD extended by widening and narrowing.
The remainder of this chapter is dedicated to an introduction to the concept and a
formal definition of both operators. Detailed examples are provided to demonstrate the
principle of function and motivate the techniques used. For an exact implementation of
the solver with widening and narrowing, please consult Chapter 3.

We start by introducing a widening operator V: ID x ID — D that takes two values a
and b in ID. This binary operator is largely free to choose, but must comply with the
following lower bounds [14, 12, 42]:

a,b<aVb (6)

Above definition is sound in case the pairwise supremum is defined. The constraint
is thus synonymous with inequality allb < aVb. Given an old value a (in our
implementation ¢ x) and a new value b (dx). Then the widening operator should
(over-)approximate a combination of the two values a2 and b. Instead of proceeding
with value dy in the Continue Case (function iterate), the solver now uses the widened
value. Observing both values at the same time allows a prediction of the evolution of
the overall value sequence. A well-chosen widening operator considerably speeds up
calculations without sacrificing more accuracy than necessary.

Example 4: In the context of an interval analysis, let D’ = TU L. We fix L = [], where
[] denotes the empty interval. Non-empty intervals of integers are specified by:

I= {[l,u] |l € {—0}UZ, uecZU{+oo}, I Su}

14



2 Background

A partial ordering of intervals < is intuitively defined as inclusion, more specifically

Vdel.[]<d
h,ui] < [up] <= L <l Aug < up.

Assume 4,b € ID’. The union of two intervals a LI b is then given as [|Ud =dU[] =d
for arbitrary d € ID'. Else, both operands are non-empty intervals and

(I, u1] U [lo, up] = [l Mo, ug Uuy],

where x Uy := max(x,y) and x My := min(x,y) for x,y € Z U {—o0,c0}. Ultimately,
widening is defined with respect to the intervals” endpoints. In case of empty in-
terval operands, the widening operator behaves exactly as the union operator above.
Otherwise [I1, u1] V [, up] = [I, u] with

ll if ll < lz uq if Uy < uq
I = i and U= }
—oo otherwise oo otherwise

Note that a widening operator is not necessarily commutative. Due to the underlying
intention to accelerate ascending chains, a special focus is often placed on situations
where the new value b is greater than the old value a.

A solver that applies widening to its value iteration can be shown to return partially
correct post-solutions in case of termination[14, 3, 12]. However, these results are
potentially very imprecise. Therefore, widening is often followed by or, more generally,
complemented with a narrowing phase that recovers some precision. This in turn
narrows the result decrementally. A narrowing operator A: ID x ID — ID should always
be selected in such a way that it continues to guarantee (partial) correctness after each
application. As narrowing only ever improves an existing result, termination can be
enforced reliably by limiting the amount of descending iterations. The aforementioned
properties are commonly ensured by [14, 12, 42]:

anb<aAb<a (7)

Initially, widening and narrowing were applied in two separate fixpoint iterations, each
returning their own post-solution [14, 13]. Yet this approach has two limitations. For
one, information and hence precision may be lost due to the strict independence of both
phases. But even worse, pure narrowing can only be used at the expense of a severe re-
striction: Right-hand sides of the equation system must be monotonic [2, 42]. Apinis et
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al. [3] address these problems by establishing the warrowing operator [1: ID x ID — ID:

Ab ifb <
adp =727 HU=A )
aVb otherwise

As with widening and narrowing, the warrowing operator can overapproximate the new
value calculated in iterate and thus speed up computations. However, warrowing no
longer strictly distinguishes between (global) widening and narrowing phases. Instead,
the appropriate operator is selected depending on the current development of the
unknown’s value. As a result, a single pass suffices to compute a post-solution —
provided the solver terminates.

Example 4 (continued): In accordance with the definitions above, we supply an intersec-
tion operator on intervals. It is defined by [[Md =d M [] =[], d € D' and

[ll |_|lz,1/l1 M 1/[2] if l1 L 12 S uiMNuyp
[] otherwise

[ll, ul] M [12, uz] = {

in any other case. We also describe a compatible narrowing function that fulfills afore-
mentioned constraints. Again, [ Ad =d A[] =[] foralld in D" and [l, u1] A [lo, up] =
[, u] where

lzyzﬁh:—w T u:{w if u; = o0

Iy otherwise U1 otherwise

Careful readers may already notice that an iteration trivially terminates if dy < o x =
[I1, u1], but neither I; = —oco nor u; = co. Such a constellation may occur if the preceding
iteration did not apply widening. Analogous to the literature [14, 42, 46], we now use
the operators previously defined to perform an interval analysis on code variables:

Given the code snippet to the left, we start by establishing a
system of constraints. This first approximation is then used
to set up an equation system, which in turn describes the
solution of our analysis. In this exercise, we are interested in
abstract variable assignments ID.?> For each program point,
they map variables to a valid interval of possible values.

i=0; sum = 0;
while (i < 100) {
sum += i,
i++;
}
Consider the program’s control flow graph below. Reasonable constraints arise from
the semantics of individual statements. For example, the initialization of variables with

3Due to the simplicity of the chosen example, it would even be possible to calculate exact results using
constant propagation.
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constant ¢ is implemented by remapping affected variables to a single value interval
[c, c]. Particularly noteworthy is the effect of the loop head and its condition: Depending
on the chosen branch, affected values are filtered according to the condition’s effect.
All other changes are expressed by means of interval arithmetic.*

1
l p2 > pro (i [0,0]}
i p @ {sum — [0,0]}
/i[i<100] p2 = pa®{ir psi+[1,1]}
3 ps > p2 ®{i— p2iM[—o0,99]}
isum+=i ps > p3 @ {sum — p3sum+ p3 i}
4 ps > p2 @ {i+— p2iM[100, 0]}

Where there are several constraints for a program point, these can be combined into
one right-hand side by using unification. In the ensuing analysis, particular attention is
paid to the loop head. This is due to the fact that if we are interested in the abstract
values of the variables i and sum at the end of the program, recursive queries occur at
program point p,. Without going into the reasons, we additionally apply warrowing
to only a few selected iteration steps.® In Figure 1, they are marked with the operator
effectively used (V for widening vs. A for narrowing).

The resulting computation trace shows considerable speed up. As intended, the solver
terminates after just a few iteration steps and can therefore significantly improve its
runtime. However, it is important to emphasize that by applying the widening operator,
some information may be permanently lost. That is the case for the variable sum:
Whereas i’s value is accurately determined as 100, all that is known about the sum is
that it is non-negative. Depending on the exact question, this result may suffice — or
necessitate a refinement of operators or the equation system.

4For completeness: Interval addition is defined by [I1,u1] + [lo, ua] = [Iy + I, u1 + up] for non-empty
intervals and [] if there is at least one empty interval operand.
5For the underlying logic, refer to the implementation in Chapter 3.
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solve ps
) I 1
pe { i — [100,100] - { i+ [100,100]
Y= [0,00] L= [0,00]
I
sz:{ i [0,100]
L+ [0,00]
; . L | mmm e mmmmmm——m i m
Im:{i»—>[0,0] Im:{iH[O,oo] Im:{i»—)[o,oo]
L+ [0,0] .+ [0,0] L [0, 0]
aph = apy = Qpi = apy = aph = Qpy =
i [0,0] i [] i [0,0] i [1,1] i [0,0] i+ [1,100]
{ZH[O,O] =] {ZH[0,0] L+ [0,0] {ZH[O,O] L+ [0,00]
sz_{iHH sz_{ii—)[0,0] sz_{i»—>[0,oo}
=] L+ [0,0] X+ [0,0]
Ipz={ i [0,100] Ipzz{ i+ [0,100]
Y. — [0, 00] Y. — [0, 00]
I_I_I I_I_I
ap; = apy = ap; = Qpy =
i [0,0] i~ [1,100] i [0,0] i~ [1,100]
{):H[O,O] ¥+ [0, 0] {ZH[O,O] ¥+ [0, 00]
i [0, 00] i+ [0,100]
Q”Z‘{zmo,oq sz_{w[o,oo}

Figure 1: The computation trace of a call to solve p5s in Example 4. In the first
iteration, the solver detects a circular dependency on the loop head p,. Consequently,
warrowing is applied from the second iteration onwards. To clearly separate the effect
of the warrowing operator applications and the assignments along the edges of the
control flow graph, we introduce additional points pj and pjj. They mirror the value
of program point p; where the effect of 1 =0, sum=0 has already been applied or p4
combined with the increment i +=1, respectively.
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The warrowing TD improves the vanilla TD [44] by including widening and narrowing
in the iteration phase. Following Tilscher et al. [46], we implement the solver such
that warrowing is applied as rarely as possible. This ensures that results remain pre-
cise, while the performance benefits from the efficiency supplied by widening. The
additional mechanism is realized as follows:

¢ We introduce a new set point. It is used to dynamically track suitable warrowing
points, thereby achieving that warrowing is only applied to one unknown per loop.

* Once the iteration on an unknown x is completed, x is removed from point. As
shown by Tilscher et al. [46], this additional step can prevent loss of information
when analyzing a system of equations with nested loops.

Starting from the implementation of the vanilla TD (see the Listings in Section 2.3),
warrowing is included by two minor but effective changes. The function eval remains
unchanged, except for the additional passing of parameter point, abbreviated with p:

1 eval X t ¢ infl stable p 0 = case t of

2 Answer d = (d, infl, stable, p, 0)

3 | Query y g =

4 let (dy, infl, stable, p, 0) = query x y c¢ infl stable p ¢ in
5 eval x (g dy) ¢ infl stable p o

Remember that a cyclic dependency on an unknown x is detected in function query,
where the condition x € c causes an end of vertical recursion. Accordingly, the warrow-
ing TD classifies x as a suitable candidate for warrowing. In consequence, the unknown
x is added to the set of potential warrowing points point:

1 query y X ¢ infl stable p 0 =
2 let (dyx, infl, stable, p, 0) =

3 if x € ¢ then

4 (0 x, infl, stable, p U {x}, o)

5 else

6 iterate x (¢ U {x}) infl stable p o

7 in (dx, infl @ {x ~ infl x U y}, stable, p, 0)
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3 Verification of the Warrowing TD

The information gained through the refined self-observation in query is then used in
function iterate. Relevant changes occur at three lines of code:

1 iterate X ¢ infl stable p 0 =
2 if x € stable then

3 let (‘dy, infl, stable, p’, 0)

4 = eval x (T x) ¢ infl (stable U {x}) p ¢ in
5 let dy = if x € p then 'dy else 0 x 1 'dy in

6 if 0 x = dyx then

7 (0 x, infl, stable, p’ — {x}, o)

8 else

9 let (infl, stable) = destab x infl stable in

10 iterate X ¢ infl stable p’ (0 & {x — dy})

11 else

12 (0 x, infl, stable, p — {x}, o)

For an unknown x that is not in point at the beginning of a function call iterate, the
execution does not differ from that of the vanilla TD. In case x ¢ stable and x € point,
on the other hand, the warrowing TD applies the warrowing operator. At first, right
hand side 7 x is evaluated. The result value 'd, is then combined with the outdated
value stored in the returned assignment ¢ as follows: let dy = o x J 'dy. Computations
are subsequently resumed using the widened or narrowed value dy instead of the
previous evaluation’s exact result 'dy.

An unknown x once added to point will only remain in the set of warrowing points
until iteration on x terminates. Whereas this step could be omitted, it would possibly
cause the solver to calculate a less precise post-solution by over-eagerly applying
widening. To prevent such cases, we remove x from the set of warrowing points as soon
as a fixpoint of the iteration is reached. Find that these fixpoints can also be reached
implicitly (c.f. line 12): Assume that x € point but the self-reference is outdated, i.e.,
x ¢ depx o, where ¢ is the assignment returned by the call to eval. Then possibly
0 X # dy, but the call to destab will not remove x from the set of stable unknowns.
Iteration will hence terminate in the next iteration step due as unknown x is in stable.

Finally, the function solve is adapted such that the set point is initialized with the
empty set. The return values remain the same, as point is only used to pass on
information internally. Due to the removal of unknowns from point after a completed
iteration, it will be empty again once the first call to iterate terminates:

solve x = let (_, _, stable’, _, o) = iterate x {x} infly {} {} 0p in
(stable!, o)
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3.1 Preliminaries

Our main objective in this thesis is to verify soundness of the solver TD extended
by warrowing. A solver is sound if it returns correct results in case a call solve x
terminates. In turn, a result of the warrowing TD is correct if it returns a partial
post-solution ¢’ for all unknowns in the computed set stable’ and x € stable’ holds.
Along the lines of Stade, Tilscher, and Seidl [44], we conduct the proof by a mutual
induction on the mutually recursive definition of functions eval, iterate and query.
The induction scheme is supported by an invariant; it needs to apply to all steps along
a computation trace of terminating executions. For an appropriate choice of invariant,
soundness follows as corollary.

The invariant we propose for the warrowing TD is almost equivalent to that of Stade
et al. [44], except for one significant difference: It is no longer possible to show that
the calculated assignment ¢’ is a partial solution of the equation system. Due to the
overapproximating nature of widening, precision may be lost permanently. However,
the constraints on the choice of a widening and narrowing operator allow for a slightly
weaker conclusion: Fixpoints computed by the warrowing TD still provide a valid
(partial) post-solution. The core statement of our invariant thus is:

Vx € stable—c. T ox<ox

Remember that the called set c collects all unknowns currently under evaluation. By
design of the solver, their values are enforced to remain unchanged even during re-
evaluation. Set stable — c therefore represents the subset of truly stable unknowns, i.e.,
those that truly reached a fixpoint.

Additional statements support the core invariant in the ensuing inductive proof. For
this, we collect observations on the interaction of parameters at various points in a
computation trace. The current assignment of parameters is also referred to as state of
the solver; it is considered wvalid if such a state can result from an initial call to solve.
Sufficient conditions for a valid state are:

¢ For all truly stable unknowns y € stable — ¢, the influence relation inf1 is complete.
Let D := dep oy be the set of unknowns a truly stable unknown y depends on.
Then y is influenced by every x in D. This correlation must be represented in inf1:
Vy € stable —c. Vx € depoy.y € infl x.

e {xeU|inflx # {}} C stable, i.e, the infl mapping is minimal in that it only
contains influences of stable unknowns on other u € Y. For any x ¢ stable,
either x was not queried before and thus no influences were collected yet. Or, it
was destabilized and hence removed from stable. In that case, we expect destab
to exhaustively remove all influenced unknowns from infl x.
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* Anunknown x € U on the call stack is optimistically added to the stable set before
evaluation of x begins. Accordingly, x € c implies x € stable which corresponds to
c C stable.!

All of the aforementioned constraints are aggregated in a predicate valid. We adopt the
formulation of Stade et al. [44], but adjust condition (ii) by relaxing it to a post-solution
criterion for all truly stable unknowns u € stable —c:

Definition 1 (Warrowing TD Invariant [44]). With a solver state described by c, stable C
U,c:U — Dand infl: U — P (U) the predicate valid ¢ ¢ infl stable is satisfied if:

(i) ¢ C stable
(ii) Yu € stable—c.Tuoc<cu
(iii)) {x €U | inflx # {}} C stable
(iv) Vy € stable —c.Vx € depry.y € inflx

Interestingly enough, the set of potentially warrowing points point is never mentioned
in this definition. We conclude that the solver TD with memoization shows correct
behavior regardless of how set point is handled. Conceptually, two extremes can be
differentiated: One is that the solver never adds any unknowns to set point —in that
case, the warrowing TD is equivalent to the vanilla TD. As shown by Stade et al. [44],
such a solver is partially correct. Apart from this scenario, we also consider the case
that every unknown encountered is added to point. In consequence, warrowing is
applied to all unknowns iterated upon. Again, the warrowing TD produces sound
results [3] — but trades precision for improved runtime characteristics. All in all, if we
demand post-solutions instead of solutions, the solver’s handling of the set point only
ever influences its termination characteristics, but not its correctness.

Further propositions regarding the memoization mechanism are specified in a predicate
update. Let fun € {queryxy, iteratex, evalx}. For a function call fun stable
infl point o = (d,infl/, stable’,point’,¢’), the predicate update relates the input
solver state in stable, infl to the output solver state in stable’, infl’. We adopt the
definition by Stade et al. without modifications:

Definition 2 (Update Relation [44]). For x € U, stable, stable’ C U and infl, infl’:
U — P (U) the predicate update x infl stable infl’ stable’ is satisfied if

(i) stable C stable’, i.e., the solver only increases the set of (pseudo-)stable unknowns,

nserting an unknown into the stable set too early would completely inhibit its fixpoint iteration.
Consequently, there is a transitional phase: During iteration on some unknown x € U, indeed x € ¢
but x ¢ stable. This circumstance is incorporated in Theorem 1 by introducing a set ¢’ := ¢ — {x}.
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(i) Vu. (infl’ u— infl u) N (stable — {x}) = {}, i.e., the solver never detects influ-
ences on stable unknowns v € stable that were previously unidentified. This rule need
not apply to unknown X, for which additional influencing unknowns may be discovered.

(iii) Vu € stable. influ C infl’u, i.e., the solver only ever guins knowledge about the
influence of stable unknowns but never loses such information.

Ultimately, we will proof that the invariant valid is preserved by all three of the mutually
recursive functions defining the warrowing TD. To this end, we show that the invariant
remains intact throughout all intermediate computations. Such a statement is not
trivially given for the destab mechanism; we therefore refer to the proposition of an
auxiliary lemma by Stade et al., which is adapted to reflect the post-solution criterion:

Lemma 1 (Destabilization and Update of o Preserve Partial Post-Solution [44]). For
X € U, infl,infl’: U — P (U) and stable,stable’ C U, let infl’ and stable’ such
that destab x infl stable = (infl/, stable’) holds. Let ¢’ := ¢ —{x} and 0 == 0 &
{x > dy}. Assume

(i) Vx €€stable—c.T xo < 0X,
(i) T xo <dyand
(iii) VYu € stable—c'.Vv € dep ocu.u € inflv.

Then Vx € stable’ —c'. T xo' < ¢’ x holds.

3.2 Properties of the Warrowing Operator

So far, the warrowing operator ] was described by its defining suboperators V and A.
Properties of the latter are enforced by constraints, given in Equation 6 and 7. Recall
the definition of the warrowing operator in (8):

aAb ifb<a
alAb =
aVb otherwise

The case distinction in warrowing provides a further assumption per suboperator,
namely b < a for narrowing and —b < a for wideningZ. This allows us to derive a
unique characteristic of the warrowing operator, reflected in the statements below:

Lemma 2 (Warrowing Lower Bound). For arbitrary a,b € 1D, the second operand b is a
lower bound of the operation alAb; that is, b < aldb holds true.

2Remember that ID is required to be a join-semilattice. However, this by no means implies that elements
in D are ordered linearly. Therefore ~b <a # b > a.
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(a) Case b < a: Widening (b) Case b < a: Narrowing (c) Case b = a: Fixpoint

Figure 2: For a,b € D, consider the three exhaustive cases (a) b <4, (b) b < a and
() b = a. According to the definition of the operators V, A and IJ, warrowing is
bounded by 1 < aldb < 7] in the diagrams above (disregarding the color). The
warrowing operator behaves according to the intuition for (a) widening, (b) "true"
narrowing and (c) the fixpoint case b = a, which is handled by the narrowing operator.

Proof. The lemma simply follows from the properties of widening and narrowing: In
case b < a the warrowing operator chooses narrowing. The fact b < a also implies
amb = b. When paired with the narrowing operator’s lower bound (Equation 7), this
leads to the desired conclusion b = alb < aAb. In case = b < g, on the other hand,
widening is applied. For widening, condition b < a A b is adhered to per definition 6.
In consequence, b is a valid lower bound of the warrowing operation al4b. O

Lemma 3 (Warrowing Fixpoint Inequality). Let f: ID — D, x — xIAb for arbitrary but
fixed b € D. Assume allb = a for a value a € ID. In other words, a is a fixpoint of the
warrowing operator application defined by f. Then b < a.

Proof. The thesis is readily shown by contradiction: Assume —b < a. According to
the definition of the warrowing operator, this implies the application of widening:
a = aVb. Combined with constraint b < a Vb (Equation 6), b < a follows. The
inequality thus derived is in direct contradiction to the assumption, hence b <a. [

Lemma 3 reveals an interesting property of the warrowing TD: A chain of warrowing
iterations always terminates with an application of the narrowing operator. This
behavior corresponds to the initial concept of widening and narrowing proposed by
P. Cousot and R. Cousot [14], with the final stage dedicated to an attempt to refine the
results obtained:

Corollary 1 (Fixpoint Implies Narrowing). Assume a = alAb for values a,b € D. The
fixpoint is only reached if the warrowing operator dispatches narrowing, i.e., a = a A b.
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A detailed analysis comparing the relation of input values 2 and b (see Figure 2) yields
a final proposition regarding fixpoints, that is, solutions of the currently processed
equation x — 7T x:

Lemma 4 (Warrowing Preserves Fixpoints). Assume a = b for values a,b € ID. Then
aldb = a, i.e., the warrowing operator preserves fixpoints T x o = o x.

Proof. Due to the assumption, we know warrowing dispatches narrowing, that is,
aldb = a Ab holds and hence a Ab < a (Equation 7) must apply. Simultaneously, both
values a and b are a lower bound of the warrowing operator application: a = b < alAdb
(lemma 2). Both facts combined, a < al/1b < a holds and al4b = a follows. O

3.3 Soundness Proof

Whereas Stade et al. [44] prove partial correctness of the vanilla TD by showing its
equivalence to the plain TD, such an approach is not feasible for the warrowing TD.
The results of the warrowing TD merely fulfill the post-solution criterion. In addition,
termination properties may differ, so that the results of a run of the warrowing TD
are defined, while those of the vanilla TD are not. We therefore choose to conduct the
proof in a standalone fashion.

The proof goals consist of details concerning the implementation of the individual
functions query, iterate and eval, respectively. Furthermore, all changes in the
influence mapping and stable set must comply with the update relation. Parallel to the
standalone verification of the plain TD [44], we require that the mapping ¢ is invariant
for stable unknowns u € U. By doing so, the fact is then available to us as an induction
hypothesis, hence enabling us to make claims about the preservation of the invariant.

For the remainder of this section, assume the common variables to be of appropri-
ate types, i.e., let unknowns x,y € U, sets c*, stable}, point}, € P (), mappings
infl},: U — P(U), assignments ¢;: U — ID and values *dy,dy € ID. We then state:

Theorem 1 (Mutual Partial Correctness). The theorem shows:

e Assume queryyx c infl stable point ¢ = (dy, infl/, stable’, point’,¢’) is de-
fined and valid c o infl stable holds. Then
(i) Yu € stable.cu = ¢ uand
(ii) wvalid ¢ ¢’ infl’ stable’ holds.
Furthermore, in this case (iii) update y infl stable infl’ stable’ holds true and
(iv) y € infl’'x.
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® Assume iterate x ¢ infl stable point ¢ = (dy,infl/,stable’,point’,¢’) is
defined, x € ¢ and valid ¢’ ¢ infl stable holds, where ¢’ :== ¢ — {x}. Then
(i) Yu € stable.ocu=oc¢'uand
(ii)) wvalid ¢’ ¢/ infl’ stable’ holds.
Furthermore, in this case (iii) update x infl stable infl’ stable’ holds true and
(iv) x € stable’.
* Assume eval Xt ¢ infl stable point ¢ = (dy, infl/, stable’, point’,¢’) is de-
fined, x € stable and valid ¢ ¢ infl stable holds. Then
(i) Yu € stable.ocu = ¢ uand
(i1) wvalid ¢ ¢’ infl’ stable’ holds.
Furthermore, in this case (iii) update x infl stable infl’ stable’ holds, (iv) to’ = d,,
and (v) Yu € dep ¢’ t. x € infl’u.

Proof. The statements are shown by induction, following the induction scheme for
mutually recursive functions generated by Isabelle. An induction step corresponds to
a function call in the computation trace; accordingly, there are three cases. Individual
instances of calls can be abstracted based on their execution path; we call them subcases.
For the vanilla TD, Stade et al. [44] structure their inductive proof as follows:

Case 1 (Query). Assume queryyx ¢ infl stable o = (dy, infl/, stable’,¢”) is defined.
Depending on x € c, we distinguish:

Subcase 1.1 (Lookup). Assume x € c. Then return values are instantiated by (dy, infl/,
stable’,0’) = (0 x,infl’, stable, o) where infl’ = infl & {x — infl xUy}.

Subcase 1.2 (Iterate). Assume x ¢ c. Then iterate x ¢’ infl stable ¢ = (dy, infly,
stable’, o) is defined where ¢’ := ¢ — {x} and infl’ = infl; ® {x — infly xUy}.

Case 2 (Iterate). Assume iteratex ¢ infl stable 0 = (dy, infl/, stable’,¢’) is defined
and x € c. We distinguish 3 subcases:

Subcase 2.1 (Stable). Assume x € stable. Then return values are instantiated by (dy, infl/,
stable’,0’) = (0 x,infl, stable, o).

Subcase 2.2 (Fixpoint). Assume x ¢ stable. Let 0/,dy such that eval x (T x) ¢ infl
(stable U{x}) o = (dy, infl’, stable’,¢’) is defined and o’ x = dy.

Subcase 2.3 (Continue). Assume x ¢ stable. Let 01,'dy such that eval x (T x) ¢ infl
(stableU{x}) ¢ = ('dx,infly, stabley,01) is defined and oy x # 'dyx. Then iterate
X ¢ infl, stablep (0q @ {x +— 'dx}) = (dx, infl’,stable’,0’) is defined where (infly,
stable;) = destabx infl; stable.

Case 3 (Eval). Assume eval xt ¢ infl stable 0 = (dy, infl’,stable’,0’) is defined.
Depending on the type of tree t, we distinguish:
Subcase 3.1 (Answer). Assume t = Answer dy. Then return values are instantiated by (dy,
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infl/, stable’,¢’) = (dy,infl, stable, o).

Subcase 3.2 (Query). Assume t = Queryy g. Then both queryxy c infl stable o = (dy,
infly, stabley, 01) and eval x (gdy) ¢ infly stabley 0q = (dy, infl’,stable’,¢’) are
defined.

In order to lift their induction scheme and case rules to a scheme suitable for the
warrowing TD, we need to extend it by statements that reflect the administration of
set point. As already discussed above, none of the proof goals comprises facts about
the set of potential warrowing points. It comes as no surprise, then, that the proof
of Theorem 1 is conducted almost identical to those of Stade et al. [44] for all cases
mentioned above. We therefore only focus on novel insights. They occure in case Iterate:

Case 2 (Iterate). By case premise, invariant valid holds for the input arquments c’, o, infl and
stable, where ¢’ 1= ¢ — {x}. This implies (A) valid ¢ ¢ infl (stableU {x}). To satisfy
the proof goal, we need to show valid ¢’ ¢’ infl’ stable’ holds. The invariant includes the
proof obligation Vx € stable’ —c¢'. T xo’' < ¢'x, i.e., we have to show that after iteration, the
returned assignment ¢ is still a post-solution for all truly stable unknowns stable’ —c'.

With the introduction of set point, two new subcases arise where x ¢ stable and x € point.
In both subcases, (B) the induction hypothesis (IH) for eval applies as the necessary premises
are fulfilled with (A). It follows that eval x (T x) ¢ infl (stable U {x}) point o = ("dj,
infly, stableq, pointy, 07) is defined and (C) T x o1 = "dx holds. Likewise, (D) valid ¢ 01
infly stable; is satisfied after the evaluation of T x and thus (E) Yu € stable; —c. 7 uon
< oy u holds. Let (F) 'dy = oq x A "d,.

Subcase 2.4 (Warrowing Continue). Assume 'dy # o1 x. Let infly, stabley such that
(infl,, stabley) = destabx infl; stableq and 0y := o1 & {x — 'dx}. As in the subcase
Continue, we want to proof that the premises of the IH for iterate are fulfilled (see also Fig-
ure 3). We thus need to show that the invariant valid in (D) is preserved by both the warrowing
operator application and the ensuing destabilization. Accordingly, we aim to prove valid ¢’ o7
infly stabley holds before the iteration continues. The warrowing application in (F) only con-
cerns condition (ii) of the predicate valid. We therefore show Yu € stable; —c’. T uoy < oju
and refer to the formalization in Isabelle [18] for a thourough proof.

The aforementioned condition Vu € stable, —c¢’. T uoy < oy u is fulfilled by Lemma 1, if:

* VYu € stable; —c. T uoy < oy u. This corresponds to fact (E).

e T xo <'dy. The inequality follows from T x o1 = "dx (fact (C)) and "dy <'dy (by
Lemma 2 and the definition of 'dy in (F)).

* Yu € stable; —c'. Vv € dep 0y u. u € infly v. By (D), a similiar statement
Yu € stable; —c. Vv € dep 07 u. u € infly v holds. According to the IH for eval
(fact (B)), stable U {x} C stabley is valid and therefore x € stable;. For this reason,
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Figure 3: The figure illustrates an induction step of the warrowing TD for the subcase
Warrowing Continue. Its implementation only differs to that of subcase Continue in that
warrowing is applied after function eval returned a value. To fulfill all premises of
the induction hypothesis (IH) for the recursive call iterate, we need to show that an
application of the warrowing operator preserves the invariant valid. All other proof
obligations follow analogously to subcase Continue. Adapted from [44].

the two statements differ. However, the IH for eval also states that Vv € dep oy X.
x € infly v is fulfilled. The assumption is thus satisfied.

This establishes a proof state equivalent to the state before the recursive call of function iterate
in subcase Continue. The remaining proof follows simultaneously.

Subcase 2.5 (Warrowing Fixpoint). Assume (G) 'dy = o1 x. Let infl’ = infl;, stable’ =
stabley, (H) ¢’ = 0y and dy = 'dx (see also Figure 4). The IH for eval (fact (B)) states that
the evaluation step satisfies the update relation, therefore stable Ux C stable’ holds. This
implies x € stable’. To fulfill the proof obligation, and even more specifically the post-solution
criterion, we thus need to show that T x ¢’ < ¢’ x. By the case premise of iterate, X € ¢
holds, hence the proposition is not covered by (E). Instead, combine the facts below:

e Txo' ="dc by (C)
e With (F) and (G), 'dyx = "dy 2 "dy holds. Lemma 3 applies, hence "dy <'d.
o 'd. =o' xdueto(G)and (H)

All remaining proof obligations follow according to the reasoning in subcase Fixpoint.

O]

Recall that function solve is defined as a wrapper function to iterate. Accordingly, a
call solvex is equivalent to that of iteratex {x} infly {} {} 0o = (dy, infl’, stable’,
point’,¢0’). The initialization fulfills all required assumptions and Theorem 1 applies.
We conclude that valid ¢’ ¢/ infl’ stable’ holds and ultimately claim:

Corollary 2 (Partial Correctness of the warrowing TD). Assume that a call to solve x
terminates, i.e., the equation (stable, o) = solveX is defined. Then o is a partial post-solution
for stable and x € stable.
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Figure 4: In the subcase Warrowing Fixpoint, the induction hypothesis (IH) for query
implies that unknown x must be stable after its evaluation terminated. To conclude this
subcase, we therefore need to show that the computed value of X, after being subject to
warrowing, still fulfills the post-solution criterion for equation x — 7 x.

3.4 Discussion

In an effort to implement warrowing as a modular feature, early attempts concerned the
extension of the plain TD (i.e., without memoization) with widening and warrowing,
respectively. However, it turns out that considering such an implementation, partial
correctness cannot be proven. Even if only widening is used, the integrity of the solver
is violated by the way it administers potential widening points in set point. The core
problem is outlined in a small counterexample:

Example 5: Let D = {L,00,M, T} where L <O < M < T, ie., the domain is ordered
linearly. For unknowns U = {x,y,z}, the system of equations 7 is defined by the
following query-answer trees:

a )

T y X z

Qx Qz Qx
o/ \eam || e AL

Qz AO Al AN Al AO AN AT
‘LHLT
Al
\ )

Assume that widening and narrowing operators are

givenasa Vb = T and a A b = a (which effectively dis- O=0cx<Txoc=0
ables narrowing) and we employ the plain TD without l=0cy<Tyoc=0
memoization. A call to solvey yields the computation T—0z£Tz0=M0

trace illustrated in Figure 5 and returns the assignment
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Figure 5: The computation trace of a call to solve y in Example 5. Note how the first
half of leaf nodes consists of queries of x compared to nodes of the second half, which
consists of queries of y. The application of warrowing is redirected correspondingly.

o ={x— 0, y— 1, z— T}. However, when validating the returned assignment, it
does not fulfill the post-solution criterion for unknown z.

The discordance of values occurs due to a cyclic depen-

y X =T] dency of unknowns x and z and the fact that eval y initially

/ \ queries both unknowns — whereas an evaluation of the

N e right-hand side of unknown y with the computed solution
~ o, does not.

Reconsider the computation trace above. The left half of the tree, that is, all nodes
below the topmost query of x, assumes unknown x to be the widening point of the
aforementioned cycle. But the right half of the tree, that is, all nodes below the topmost
query of z, recognizes unknown z as widening point. In consequence, the plain TD with
warrowing immediately readjusts the value of x without applying warrowing. The solver
thus loses the integrity of its internally managed assignment ¢: While x is ultimately
assigned the new value [, the value of y is still calculated based on the old value of x.

In essence, the discrepancy arises when during computation, the solver identifies
differing unknowns of one and the same circle as suitable widening points. A similar
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effect is observable when unknowns u € U are added over-eagerly but mistakenly to
set point in a first iteration phase and non-recursively re-queried later. Due to them
having reached a fixpoint during their first iteration, they are assumed to be stable
henceforth, that is, c u = dy is invariant for all following assignments ¢: ¢/ — D and
dy € D (c.f. Theorem 1 in [44]) . But on closer inspection, this does not hold: The
solver plain TD is not able to reconstruct the information u € point at a later point in
time. The seemingly stable unknown u is therefore treated as a non-widening point
u’ ¢ point and potentially updated to a non-widened value d, € ID. This update may,
however, cause an inconsistency for all unknowns influenced by u with respect to the
resulting assignment *: ¢/ — ID. If their calculation was based on the now outdated
value dy, the post-solution criterion need not apply. An implementation of the plain
TD with widening (or warrowing) can thus not be proven correct.

We propose several remedies to circumvent the loss of integrity described above. The
most straightforward solution is to reverse the proposed optimization by Tilscher et
al. [46] and refrain from removing unknowns from point once they have been added
to this set. As a result, the plain TD with widening computes partially correct results,
but looses accuracy in the way shown by the authors.

Another, more brute-force approach specifies the inequality 'dy < ox as fixpoint
condition. On termination of an iterate phase, the solver returns the looked-up value
dy 1= o x. A fixpoint condition of this kind prevents any future improvement in the
values of widening points and therefore guarantees partial correctness. Note that a
proof along the lines of Theorem 1 by Stade et al. [44] introduces the necessity to
prove x ¢ s for subcase Widening Continue in case Iterate. The solution criterion now
relaxed to a post-solution criterion thereby requires for a stronger widening constraint:
b<a — aVb =a We remark that such a condition is feasible for real-world
applications and consistent with the initial intention of widening. As one would expect,
however, this adaptation may also result in a drastic loss of precision and changes
termination properties of the solver. In addition, the inequality of the fixpoint condition
generally conflicts with an extension by the narrowing operator.

A more sophisticated implementation follows the idea underlying the verification of
the plain TD by Stade et al. [44, Theorem 1 (Partial Correctness of the plain TD)]. The
implicit stable set s utilized in their proof collects all unknowns occurring in previous
iterations, as well as those currently under evaluation. This set s is now introduced as
an explicit parameter of the solver. In consequence, the function iterate is adapted to:

iterate x ¢ s p 0 =
if x € s then
let ("dy, s’, p’, 0) = eval x (T x) ¢ (s U {x}) po in
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let 'dy = if x ¢ p then "dy else ¢ x 4 "dy in
if 'dy = ¢ x then
(c x, s, p> — {x}, o)
else
iterate x ¢ s p’ (0 @ {x — 'dy})
else (0 x, s, p, 0)

Note how unknown x is permanently added to the implicit stable set s once a fixpoint
is reached and hence never reevaluated later. As it turns out, the implementation is
closely related to our first proposal, where unknowns are permanently added to point.
This concludes our discussion on the extension of the solver plain TD with warrowing.

In the following, recall that warrowing was introduced in Section 2.6 as a more robust
operator than narrowing, in that the former guarantees partial correctness even in
the presence of non-monotonic systems of equations. Non-monotonic equations are
indispensable for a number of static analyses problems, notably context-sensitive
analysis such as interprocedural analysis [15] or the analysis of concurrent systems [48].
Yet at the same time, the warrowing operator exhibits a major weakness in terms of its
termination characteristics: If the dynamic selection of its suboperators V and A leads
to a cycle of calculated values, then the solver may not terminate.

Example 6 (adapted from [42]): Let U = {x} and ID = IN U {oo} with the bottom element
1p :=0and a dedicated top element T := co. For values a,b € D, let

oS ifa<b b ifa=o0
V= and A=
alb otherwise alb otherwise.
Consider the single equation
x = (if x = 0 then 1 else 0).
Obviously, any assignment o: Y — D, ¢ := {x+ d} where d > 1 is a valid post-
solution to the present system of equations. An iteration on x started by the warrowing
TD first computes the values Lp and T, where the latter constitutes a correct result

value. But in an attempt to improve the overly general value oo, the solver will then
apply narrowing. This yields the cyclical behavior

0—200—=0—=20=230—00—...

and the solver thus never terminates.
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Still, termination of the warrowing TD can be enforced even for non-monotonic equa-
tions if a few assumptions are met. An inherently inevitable condition of top-down
solving is that (i) only finitely many unknowns may be encountered during the eval-
uation of strategy trees. In case of an infinite domain D, both the widening and
narrowing operator must ensure (ii) arbitrary values in ID are only in- or decreased
finitely often. Such a restriction is made with regard to Kleene’s Fixpoint Theorem [28].
Let f: D — DD denote a monotonic function whose iterative application results in
a finite ascending chain of values. Then a fixpoint is reached in a finite amount of
function applications n € IN [28, 14]. With this in mind, we (iii) also restrict the number
of switches between widening and narrowing phases. For example, an alternative
implementation of the TD [42] features a single widening phase per iteration, followed
by a single narrowing phase. Another possibility involves the introduction of a counter
variable that terminates the solver after a defined number of switches. Without proof,
we claim that such a solver terminates and returns partially correct results if

(iv) There exists a maximum element of the domain, i.e., Tp is defined. Note that
this proposition directly follows from assumption (ii).

(v) In case the termination is triggered by the counter variable exceeding the thresh-
old of maximum switches, the solver must terminate with a completed widening
phase. A widening phase is completed if the solver would apply narrowing in
the next iteration step.

That being said, we remark that for verifying soundness, that is, the correctness of the
solver conditioned on termination, assumptions on the domain of values ID can be
further relaxed. A close inspection of Theorem 1 reveals that its proof is based only on
parts of the assumptions about the narrowing operator, namely

b<a — b<aAb )

for a,b € ID. Above condition is applied in Lemma 2 and Lemma 3. Due to the
design of the warrowing operator, narrowing is only dispatched to if b < a. Thus
b = amb holds and the requirement for the existence of a pairwise supremum operator
is obsolete. The second part of the assumptions a Ab < a (see definition 7), on the
other hand, is only referred to once in the proof of Lemma 4. The preservation of
fixpoints stated in Lemma 4 finds application in proofs concerning the precision of
results and termination properties of the solver, but is of no relevance to our work. In
our formalization in Isabelle [18], we therefore assume ID to form a join-semilattice and
fix Lp as dedicated bottom element. In addition, the choice of narrowing operator is
solely limited by inequality 9.
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Our work is closely related to that of Stade et al. [44], whose verification we extend
by widening and narrowing. The changes made can be broken down into three core
measures: First, we combine their standalone correctness proof of the plain TD with
their equivalence proof of the plain TD and the vanilla TD. This gives us a standalone
proof of the partial correctness of the vanilla TD. We then generalize the proof such that
the correctness criterion is already fulfilled if the returned assignment is a post-solution,
hence accounting for the solver to overapproximate solutions. Lastly, the algorithm of
the fixpoint engine TD is extended by warrowing. The proof of soundness is adjusted
where necessary, namely by the extension with two new subcases Warrowing Continue
and Warrowing Fixpoint (see also Section 3.3).

It is particularly interesting to note that, parallel to the implementation of the vanilla
TD by Stade et al. [44], local parameters such as the point set could be realized by
references to mutable data structures. The warrowing TD as presented in Chapter 3
can therefore be implemented in a very memory-efficient way.

With regard to generic fixpoint engines, correctness and termination of various al-
gorithms have been verified by machine-checked proofs. This includes round-robin
iteration [7], variations of worklist iteration [35, 11], [5] (correctness only) and the local
generic fixpoint solver RLD [24]. The solver RLD is closely related to the TD, but
destabilizes directly influenced unknowns locally. Additionally, affected unknowns are
reevaluated immediately by means of a local worklist. A major weakness of the RLD,
however, is that multiple queries of the same unknown within a single right-hand side
can result in different values [44]. The undesired behavior can be avoided by imple-
menting extra measures [4]. Nevertheless, this characteristic leads to the realization that
the RLD is not a chaotic iteration solver [6] and thus hardly compatible with widening
and narrowing.

One of the most recent formalizations of a local generic solver was published by
Vilhena et al. [47], who prove their solver’s partial correctness using Iris. In retracing
the reasoning in Section 2.2, we note that: While the representation as strategy trees is
minimalistic and straightforward, the constraint of purity does not allow for right-hand
sides to cause any side effects. This effectively deprives the TD of its ability to handle
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internal side effects, such as logging or the support of concurrency. Vilhena et al. [47]
address the issue by proposing the concept of apparent purity: If two identical calls to a
function terminate, they must return the same result. Yet functions can also have an
internal state as long as it is properly encapsulated. In consequence, their evaluation of
two semantically equivalent expressions may differ observationally. In comparison to
the top-down solver TD, however, their implementation also loses general applicability
due to a restriction to systems of equations with monotonic right-hand sides.

As an alternative to generic fixpoint engines, static analysis tools that focus on the
abstract interpretation of a specific programming language often apply syntax-directed
fixpoint iterators. In this context, a number of non-generic fixpoint engines have
been verified [8, 9, 26, 17]. A formalization of particular interest for our thesis is
that of a minimalistic abstract interpreter developed by Nipkow [34]. It is conceived
for educational purposes and targeted at a simple while-language. Even though this
solver is syntax-directed, their verification is closely related to ours in that they use
Isabelle as their proof assistant and include a basic support of widening and narrowing.
The original publication [34] formally verified correctness and supplied a technical
(i.e. pen-and-paper-style) proof of termination. A machine-checked termination proof
including widening and narrowing was supplemented later [36].

Despite its indispensability for certain abstract domains, solvers implementing widening
and narrowing are rarely verified and if so, then only to a limited extent. Limited,
as they either do not consider any guarantees regarding termination or exclusively
apply an ascending acceleration, that is, widening [39, 26, 17]. An exception is the
work of Pichardie (et al.): With a special interest in termination, they proposed various
attempts of a certified abstract interpreter, including such that implement widening
and narrowing [38, 9]. Regarding verifications of generic solvers with widening and
narrowing, there exist several technical formalizations [3, 1, 2, 40, 42]. Machine-checked
formalizations of generic solvers used in practice, on the other hand, are rare. To our
knowledge, the warrowing TD constitutes one of the first implementations of a certified
generic abstract interpretation framework implementing widening and narrowing.
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5 Conclusion

In our thesis, we provided an extension of the vanilla TD presented by Stade et al. [44]
with the warrowing operator and demonstrated how their proof structure can be
extended to consider post-solutions. We then conducted an in-depth analysis of the
warrowing operator and identified characteristic properties. Building on the existing
verification, we ultimately showed the partial correctness of the warrowing TD.

Whereas memoization can be implemented to preserve the semantics of a solver, this
is not the case with widening and narrowing. The warrowing TD does generally
not compute the least solution — even for extended assumptions on widening and
narrowing operators (Equation 6, 7) and monotonic systems of equations (see also
Example 4). In consequence, derived claims on program states might be too weak to be
of reasonable use for the overall problem statement. A detailed analysis and comparison
of the quality of results under different parameters is advisable and remains for future
research. Equally important, the termination properties discussed above should be
formally verified as well. For monotonic systems of equations, this is possible without
further adjustments. As an alternative, we outlined an adapted implementation in
Section 3.4, which enforces termination for arbitrary equation systems by restricting
the number of phase switches.

The consideration of warrowing as an independent operator in Section 3.2 presents
opportunities for the further improvement of fixpoint engines. In combination with an
identification of the minimal set of required properties in Section 3.3, it is possible to
refine the warrowing operator in accordance with the application scenario. For example,
a dynamic warrowing operator can be defined which, in the case of oscillating behavior
of the solver, introduces additional thresholds and thereby reduces the deviation from
the smallest solution (c.f. Example 6). The incomplete propagation of the point set
in an implementation without memoization, on the other hand, indicates that the
management of potential warrowing points may need to be revised. Inspired by the
discussion in Section 3.4, a more sophisticated distinction could be made between
genuine warrowing points and unknowns that were over-eagerly added to point in
early iteration steps. If realizable, this can also improve the quality of results, as the
deployment of accelerated but imprecise widening is further restricted.
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