
Automated Theorem Proving

Lecture 13: Superposition Continued

Prof. Dr. Jasmin Blanchette

based on slides by Dr. Uwe Waldmann

Winter Term 2025/26

1



5.4 Superposition: Refutational Completeness

For a set E of ground equations, TΣ(∅)/E is an E -interpretation

(or E -algebra) with universe {[t] | t ∈ TΣ(∅)}.

One can show (similar to the proof of Birkhoff’s Theorem) that for every

ground equation s ≈ t we have TΣ(∅)/E |= s ≈ t if and only if s ↔∗
E t.

In particular, if E is a convergent set of rewrite rules R and s ≈ t is a

ground equation, then TΣ(∅)/R |= s ≈ t if and only if s ↓R t.

By abuse of terminology, we say that an equation or clause is valid (or true)

in R if and only if it is true in TΣ(∅)/R.

2



Superposition: Refutational Completeness

Construction of candidate interpretations

(Bachmair and Ganzinger 1990):

Let N be a set of clauses not containing ⊥.

Using induction on the clause ordering we define sets of rewrite rules

EC and RC for all C ∈ GΣ(N) as follows:

Assume that ED has already been defined for all D ∈ GΣ(N) with D ≺C C .

Then RC =
⋃

D≺CC
ED .

3



Superposition: Refutational Completeness

The set EC contains the rewrite rule s → t if

(a) C = C ′ ∨ s ≈ t.

(b) s ≈ t is strictly maximal in C .

(c) s ≻ t.

(d) C is false in RC .

(e) C ′ is false in RC ∪ {s → t}.

(f) s is irreducible w.r.t. RC .

In this case, C is called productive. Otherwise EC = ∅.

Finally, R∞ =
⋃

D∈GΣ(N) ED .

4



Superposition: Refutational Completeness

Example:

We use the lpo with the precedence f ≻ e ≻ d ≻ c ≻ b ≻ a (max. side of

max. literals in red).

Let N = {d ≈ c , b ≈ a ∨ e 6≈ c , b 6≈ b ∨ f (b) ≈ a, f (c) ≈ b, f (b) ≈

a ∨ f (c) 6≈ b, f (b) ≈ a ∨ f (d) 6≈ b} be a clause set saturated w.r.t. the

ground superposition calculus.

The next table shows each iteration of the candidate interpretation

construction for N.

5



Superposition: Refutational Completeness

Iter. Clause C RC EC

0 d ≈ c ∅ {d → c}

1 b ≈ a ∨ e 6≈ c {d → c} ∅

2 b 6≈ b ∨ f (b) ≈ a {d → c} {f (b) → a}

3 f (c) ≈ b {d → c, f (b) → a} {f (c) → b}

4 f (b) ≈ a ∨ f (c) 6≈ b {d → c, f (b) → a, f (c) → b} ∅

5 f (b) ≈ a ∨ f (d) 6≈ b {d → c, f (b) → a, f (c) → b} ∅

At each iteration i + 1, the term rewriting system consists of the union of

the rewrite rules RC and the “epsilon” EC of iteration i . The interpretation

R∞ = {d → c , f (b) → a, f (c) → b} after iteration 5 is a model of N.

6



Superposition: Refutational Completeness

Lemma 5.4.1:

If EC = {s → t} and ED = {u → v}, then s ≻ u if and only if C ≻C D.

Corollary 5.4.2:

The rewrite systems RC and R∞ are convergent (i.e., terminating and

confluent).

7



Superposition: Refutational Completeness

Lemma 5.4.3:

If D �C C and EC = {s → t}, then s ≻ u for every term u occurring in

a negative literal in D and s � u for every term u occurring in a positive

literal in D.

Corollary 5.4.4:

If D ∈ GΣ(N) is true in RD , then D is true in R∞ and RC for all C ≻C D.

Corollary 5.4.5:

If D = D′ ∨ u ≈ v is productive, then D′ is false and D is true in R∞ and

RC for all C ≻C D.

8



Superposition: Refutational Completeness

Lemma 5.4.6 (“Lifting Lemma”):

Let C be a clause and let θ be a substitution such that Cθ is ground.

Then every equality resolution or equality factoring inference from Cθ is a

ground instance of an inference from C .

Proof:

Omitted. ✷

9



Superposition: Refutational Completeness

Lemma 5.4.7 (“Lifting Lemma”):

Let D = D′ ∨ u ≈ v and C = C ′ ∨ [¬] s ≈ t be two clauses (without

common variables) and let θ be a substitution such that Dθ and Cθ are

ground.

If there is a superposition inference between Dθ and Cθ where uθ and

some subterm of sθ are overlapped, and uθ does not occur in sθ at or

below a variable position of s, then the inference is a ground instance of a

superposition inference from D and C .

Proof:

Omitted. ✷

10



Superposition: Refutational Completeness

Theorem 5.4.8 (“Model Construction”):

Let N be a set of clauses that is saturated up to redundancy and does

not contain the empty clause. Then we have for every ground clause

Cθ ∈ GΣ(N):

(i) ECθ = ∅ if and only if Cθ is true in RCθ.

(ii) If Cθ is redundant w.r.t. GΣ(N), then it is true in RCθ.

(iii) Cθ is true in R∞ and in RD for every D ∈ GΣ(N) with D ≻C Cθ.

11



Superposition: Refutational Completeness

A Σ-interpretation A is called term-generated if for every b ∈ UA there is

a ground term t ∈ TΣ(∅) such that b = A(β)(t).

Lemma 5.4.9:

Let N be a set of (universally quantified) Σ-clauses and let A be a

term-generated Σ-interpretation.

Then A is a model of GΣ(N) if and only if it is a model of N.

12



Superposition: Refutational Completeness

Theorem 5.4.10 (Refutational Completeness: Static View):

Let N be a set of clauses that is saturated up to redundancy.

Then N has a model if and only if N does not contain the empty clause.

13



Superposition: Refutational Completeness

So far, we have considered only inference rules that add new clauses to the

current set of clauses

(corresponding to the “Deduce” rule of Knuth–Bendix completion).

In other words, we have derivations of the form N0 ⊢ N1 ⊢ N2 ⊢ · · · , where

each Ni+1 is obtained from Ni by adding the consequence of some inference

from clauses in Ni .

Under which circumstances are we allowed to delete (or simplify) a clause

during the derivation?

14



Superposition: Refutational Completeness

A run of the superposition calculus is a sequence

N0 ⊢ N1 ⊢ N2 ⊢ · · · such that

(i) Ni |= Ni+1, and

(ii) all clauses in Ni \ Ni+1 are redundant w.r.t. Ni+1.

In other words, during a run we may add a new clause if it follows from the

old ones, and we may delete a clause if it is redundant w.r.t. the remaining

ones.

For a run, N∞ =
⋃

i≥0

⋂
j≥i Nj .

The set N∞ of all persistent clauses is called the limit of the run.

15



Superposition: Refutational Completeness

Lemma 5.4.11:

If N ⊆ N′, then Red(N) ⊆ Red(N′).

Proof:

Obvious. ✷

16



Superposition: Refutational Completeness

Lemma 5.4.12:

If N′ ⊆ Red(N), then Red(N) ⊆ Red(N \ N′).

Proof:

Omitted. ✷

17



Superposition: Refutational Completeness

Lemma 5.4.13:

Let N0 ⊢ N1 ⊢ N2 ⊢ · · · be a run.

Then Red(Ni ) ⊆ Red(
⋃

j≥0 Nj ) and Red(Ni ) ⊆ Red(N∞) for every i .

Proof:

Omitted. ✷

18



Superposition: Refutational Completeness

Corollary 5.4.14:

Ni ⊆ N∞ ∪ Red(N∞) for every i .

Proof:

If C ∈ Ni \ N∞, then there is a k ≥ i such that C ∈ Nk \ Nk+1.

Therefore C must be redundant w.r.t. Nk+1.

Consequently, C is redundant w.r.t. N∞. ✷

19



Superposition: Refutational Completeness

A run is called fair if the conclusion of every inference from clauses in

N∞ \ Red(N∞) is contained in some Ni ∪ Red(Ni ).

Lemma 5.4.15:

If a run is fair, then its limit is saturated up to redundancy.

Proof:

If the run is fair, then the conclusion of every inference from nonredundant

clauses in N∞ is contained in some Ni ∪ Red(Ni ), and therefore contained

in N∞ ∪ Red(N∞).

Hence N∞ is saturated up to redundancy. ✷

20



Superposition: Refutational Completeness

Theorem 5.4.16 (Refutational Completeness: Dynamic View):

Let N0 ⊢ N1 ⊢ N2 ⊢ · · · be a fair run, let N∞ be its limit.

Then N0 has a model if and only if ⊥ /∈ N∞.

21



5.5 Improvements and Refinements

The superposition calculus as described so far can be improved and refined

in several ways.

22



Concrete Redundancy and Simplification Criteria

Redundancy is undecidable.

Even decidable approximations are often expensive

(experimental evaluations are needed to see what pays off in practice).

Often a clause can be made redundant by adding another clause that is

entailed by the existing ones.

This process is called simplification.

23



Concrete Redundancy and Simplification Criteria

Examples:

Subsumption:

If N contains clauses D and C = C ′ ∨ Dσ, where C ′ is nonempty, then

D subsumes C and C is redundant.

Example:

f (x) ≈ g(x) subsumes f (y) ≈ a ∨ f (h(y)) ≈ g(h(y)).

24



Concrete Redundancy and Simplification Criteria

Examples:

Trivial literal elimination:

Duplicated literals and trivially false literals can be deleted:

A clause C ′ ∨ L ∨ L can be simplified to C ′ ∨ L;

a clause C ′ ∨ s 6≈ s can be simplified to C ′.

25



Concrete Redundancy and Simplification Criteria

Examples:

Condensation:

If we obtain a clause D from C by applying a substitution, followed

by deletion of duplicated literals, and if D subsumes C , then C can be

simplified to D.

Example:

By applying {y → g(x)} to C = f (g(x)) ≈ a ∨ f (y) ≈ a and deleting

the duplicated literal, we obtain f (g(x)) ≈ a, which subsumes C .

26



Concrete Redundancy and Simplification Criteria

Examples:

Semantic tautology deletion:

Every clause that is a tautology is redundant. Note that in the

nonequational case, a clause is a tautology if and only if it contains

two complementary literals, whereas in the equational case we

need a congruence closure algorithm to detect that a clause like

x 6≈ y ∨ f (x) ≈ f (y) is tautological.

27



Concrete Redundancy and Simplification Criteria

Examples:

Rewriting:

If N contains a unit clause D = s ≈ t and a clause C [sσ], such that

sσ ≻ tσ and C ≻C Dσ, then C can be simplified to C [tσ].

Example:

If D = f (x , x) ≈ g(x) and C = h(f (g(y), g(y))) ≈ h(y), and ≻ is

an lpo with the precedence h ≻ f ≻ g , then C can be simplified to

h(g(g(y))) ≈ h(y).

28



Selection Functions

Like the ordered resolution calculus, superposition can be used with a

selection function that overrides the ordering restrictions for negative

literals.

A selection function is a mapping

S : C 7→ set of occurrences of negative literals in C

We indicate selected literals by a box:

¬f (x) ≈ a ∨ g(x , y) ≈ g(x , z)

29



Selection Functions

The second ordering condition for inferences is replaced by

– Either the last literal in each premise is selected or there is no selected

literal in the premise and the literal is maximal in the premise (strictly

maximal for positive literals in superposition inferences).

In particular, clauses with selected literals can only be used in equality

resolution inferences and as the second premise in negative superposition

inferences.

30



Selection Functions

Refutational completeness is proved essentially as before:

We assume that each ground clause in GΣ(N) inherits the selection of

one of the clauses in N of which it is a ground instance (there may be

several ones).

In the proof of the model construction theorem, we replace case 3 by

“Cθ contains a selected or maximal negative literal” and case 4 by “Cθ

contains neither a selected nor a maximal negative literal.”

In addition, for the induction proof of this theorem we need one more

property, namely:

(iv) If Cθ has selected literals then ECθ = ∅.

31



Redundant Inferences

So far, we have defined saturation in terms of redundant clauses:

N is saturated up to redundancy if the conclusion of every inference from

clauses in N \ Red(N) is contained in N ∪ Red(N).

This definition ensures that in the proof of the model construction theorem,

the conclusion C0θ of a ground inference follows from clauses in GΣ(N)

that are smaller than or equal to itself,

hence they are smaller than the premise Cθ of the inference,

hence they are true in RCθ by induction.

32



Redundant Inferences

However, a closer inspection of the proof shows that it is actually sufficient

that the clauses from which C0θ follows are smaller than Cθ—it is not

necessary that they are smaller than C0θ itself.

This motivates the following definition of redundant inferences:

A ground inference with conclusion C0 and right (or only) premise C is

called redundant w.r.t. a set of ground clauses N if one of its premises

is redundant w.r.t. N, or if C0 follows from clauses in N that are smaller

than C .

An inference is redundant w.r.t. a set of clauses N if all its ground instances

are redundant w.r.t. GΣ(N).

33



Redundant Inferences

Recall that a clause can be redundant w.r.t. N without being contained

in N.

Analogously, an inference can be redundant w.r.t. N without being an

inference from clauses in N.

The set of all inferences that are redundant w.r.t. N is denoted by

RedInf (N).

34



Redundant Inferences

Saturation is then redefined in the following way:

N is saturated up to redundancy if every inference from clauses in N is

redundant w.r.t. N.

Using this definition, the model construction theorem can be proved

essentially as before.

35



Redundant Inferences

The connection between redundant inferences and clauses is given by the

following lemmas. They are proved in the same way as the corresponding

lemmas for redundant clauses:

Lemma 5.5.1:

If N ⊆ N′, then RedInf (N) ⊆ RedInf (N′).

Lemma 5.5.2:

If N′ ⊆ Red(N), then RedInf (N) ⊆ RedInf (N \ N′).

36


