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4.6 Knuth–Bendix Completion

Completion:

Goal: Given a set E of equations, transform E into an equivalent

convergent set R of rewrite rules.

(If R is finite: decision procedure for E .)
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Knuth–Bendix Completion: Idea

How to ensure termination?

Fix a reduction ordering ≻ and construct R in such a way that →R ⊆ ≻

(i.e., l ≻ r for every l → r ∈ R).

How to ensure confluence?

Check that all critical pairs are joinable.

Note: Every critical pair 〈s, t〉 can be made joinable by adding s → t or

t → s to R.

(Actually, we first add s ≈ t to E and later try to turn it into a rule that

is contained in ≻; this gives us more freedom.)
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Knuth–Bendix Completion: Inference Rules

The completion procedure is presented as a set of inference rules working

on a set of equations E and a set of rules R:

E0,R0 ⊢ E1,R1 ⊢ E2,R2 ⊢ · · · .

At the beginning, E = E0 is the input set and R = R0 is empty.

At the end, E should be empty; then R is the result.

For each step E ,R ⊢ E ′,R′, the equational theories of E ∪ R and E ′ ∪ R′

agree: ≈E∪R = ≈E ′∪R′ .
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Knuth–Bendix Completion: Inference Rules

Notations:

The formula s
.

≈ t denotes either s ≈ t or t ≈ s.

CP(R) denotes the set of all critical pairs between rules in R.
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Knuth–Bendix Completion: Inference Rules

Orient:

E ∪ {s
.

≈ t}, R

E , R ∪ {s → t}
if s ≻ t

Note: There are equations s ≈ t that cannot be oriented,

i.e., neither s ≻ t nor t ≻ s.
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Knuth–Bendix Completion: Inference Rules

Trivial equations cannot be oriented—but we do not need them anyway:

Delete:

E ∪ {s ≈ s}, R

E , R
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Knuth–Bendix Completion: Inference Rules

Critical pairs between rules in R are turned into additional equations:

Deduce:

E , R

E ∪ {s ≈ t}, R
if 〈s, t〉 ∈ CP(R).

Note: If 〈s, t〉 ∈ CP(R), then s ←R u →R t and hence R |= s ≈ t.
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Knuth–Bendix Completion: Inference Rules

The following inference rules are not strictly necessary,

but are very useful (e.g., to eliminate joinable critical pairs and

to cope with equations that cannot be oriented):

Simplify-Eq:

E ∪ {s
.

≈ t}, R

E ∪ {u ≈ t}, R
if s →R u.
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Knuth–Bendix Completion: Inference Rules

Simplification of the right-hand side of a rule is unproblematic:

R-Simplify-Rule:

E , R ∪ {s → t}

E , R ∪ {s → u}
if t →R u.

Simplification of the left-hand side may influence orientability and

orientation. Therefore, it yields an equation:

L-Simplify-Rule:

E , R ∪ {s → t}

E ∪ {u ≈ t}, R

if s →R u using a rule l → r ∈ R

such that s ⊐ l (see next slide).
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Knuth–Bendix Completion: Inference Rules

For technical reasons, the lhs of s → t may only be simplified using a rule

l → r if l → r cannot be simplified using s → t, that is, if s ⊐ l , where the

encompassment quasi-ordering ⊐
∼ is defined by

s ⊐∼ l if s|p = lσ for some p and σ

and ⊐ = ⊐
∼ \

⊏
∼ is the strict part of ⊐∼.

Lemma 4.6.1:

⊐ is a well-founded strict partial ordering.
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Knuth–Bendix Completion: Inference Rules

Lemma 4.6.2:

If E ,R ⊢ E ′,R′, then ≈E∪R = ≈E ′∪R′ .

Lemma 4.6.3:

If E ,R ⊢ E ′,R′ and →R ⊆ ≻, then →R′ ⊆ ≻.
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Knuth–Bendix Completion: Inference Rules

Note: Like in ordered resolution, simplification should be preferred to

deduction:

• Simplify/delete whenever possible.

• Otherwise, orient an equation if possible.

• Last resort: compute critical pairs.
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Knuth–Bendix Completion: Example

We apply the Knuth–Bendix procedure to the set of equations

add(zero, zero) ≈ zero (1) add(x , succ(y)) ≈ succ(add(x , y)) (2)

add(succ(x), y) ≈ succ(add(x , y)) (3)

using the lpo with the precedence add ≻ succ ≻ zero.

We first apply “Orient” to (1)–(3), resulting in the rewrite rules

add(zero, zero)→ zero (4) add(x , succ(y))→ succ(add(x , y)) (5)

add(succ(x), y)→ succ(add(x , y)) (6)
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Knuth–Bendix Completion: Example

add(zero, zero)→ zero (4) add(x , succ(y))→ succ(add(x , y)) (5)

add(succ(x), y)→ succ(add(x , y)) (6)

Then we apply “Deduce” between (5) and a renamed copy of (6):

succ(add(succ(x), y)) ≈ succ(add(x , succ(y))) (7)

We can now apply “Simplify-Eq” to both sides of (7) using (6) and (5):

succ(succ(add(x , y))) ≈ succ(succ(add(x , y))) (8)

This last equation is trivial and can be deleted using “Delete.”

All critical pairs have been checked.

The resulting term rewrite system is {(4), (5), (6)}.
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Knuth–Bendix Completion: Correctness Proof

What can happen if we run the completion procedure on a set E of

equations?

(1) We reach a state where no more inference rules are applicable and E is

not empty.

⇒ Failure (try again with another ordering?)

(2) We reach a state where E is empty and all critical pairs between the

rules in the current R have been checked.

(3) The procedure runs forever.

To treat these cases simultaneously, we need some definitions.
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Knuth–Bendix Completion: Correctness Proof

A (finite or infinite sequence) E0,R0 ⊢ E1,R1 ⊢ E2,R2 ⊢ · · · with R0 = ∅ is

called a run of the completion procedure with input E0 and ≻.

For a run, E∪ =
⋃

i≥0
Ei and R∪ =

⋃
i≥0

Ri .

The sets of persistent equations or rules of the run are E∞ =
⋃

i≥0

⋂
j≥i Ej

and R∞ =
⋃

i≥0

⋂
j≥i Rj .

Note: If the run is finite and ends with En,Rn,

then E∞ = En and R∞ = Rn.
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Knuth–Bendix Completion: Correctness Proof

A run is called fair if CP(R∞) ⊆ E∪

(i.e., if every critical pair between persisting rules is computed at some step

of the derivation).

Goal:

Show: If a run is fair and E∞ is empty,

then R∞ is convergent and equivalent to E0.

In particular: If a run is fair and E∞ is empty,

then ≈E0
= ≈E∪∪R∪

=↔∗
E∪∪R∪

= ↓R∞
.
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Knuth–Bendix Completion: Correctness Proof

General assumptions from now on:

E0,R0 ⊢ E1,R1 ⊢ E2,R2 ⊢ · · · is a fair run.

R0 and E∞ are empty.
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Knuth–Bendix Completion: Correctness Proof

A proof of s ≈ t in E∪ ∪ R∪ is a finite sequence (s0, . . . , sn) such that

s = s0, t = sn, and for all i ∈ {1, . . . , n}:

(1) si−1 ↔E∪
si , or

(2) si−1 →R∪
si , or

(3) si−1 ←R∪
si .

The pairs (si−1, si ) are called proof steps.

A proof is called a rewrite proof in R∞

if there is a k ∈ {0, . . . , n} such that si−1 →R∞
si for 1 ≤ i ≤ k

and si−1 ←R∞
si for k + 1 ≤ i ≤ n
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Knuth–Bendix Completion: Correctness Proof

Idea (Bachmair, Dershowitz, Hsiang):

Define a well-founded ordering on proofs such that for every proof that

is not a rewrite proof in R∞ there is an equivalent smaller proof.

Consequence: For every proof there is an equivalent rewrite proof in R∞.
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Knuth–Bendix Completion: Correctness Proof

We associate a cost c(si−1, si ) with every proof step as follows:

(1) If si−1 ↔E∪
si , then c(si−1, si ) = ({si−1, si},−,−),

where the first component is a multiset of terms and − denotes an

arbitrary (irrelevant) term.

(2) If si−1 →R∪
si using l → r , then c(si−1, si ) = ({si−1}, l , si ).

(3) If si−1 ←R∪
si using l → r , then c(si−1, si ) = ({si}, l , si−1).

Proof steps are compared using the lexicographic combination of the

multiset extension of the reduction ordering ≻,

the encompassment ordering ⊐, and the reduction ordering ≻.
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Knuth–Bendix Completion: Correctness Proof

The cost c(P) of a proof P is the multiset of the costs of its proof steps.

The proof ordering ≻C compares the costs of proofs using the multiset

extension of the proof step ordering.

Lemma 4.6.4:

≻C is a well-founded ordering.
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Knuth–Bendix Completion: Correctness Proof

Lemma 4.6.5:

Let P be a proof in E∪ ∪ R∪. If P is not a rewrite proof in R∞, then there

exists an equivalent proof P ′ in E∪ ∪ R∪ such that P ≻C P
′.

Proof:

If P is not a rewrite proof in R∞, then it contains

(a) a proof step that is in E∪, or

(b) a proof step that is in R∪ \ R∞, or

(c) a subproof si−1 ←R∞
si →R∞

si+1 (peak).

We show that in all three cases the proof step or subproof can be replaced

by a smaller subproof:
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Knuth–Bendix Completion: Correctness Proof

Case (a): A proof step using an equation s
.

≈ t is in E∪.

This equation must be deleted during the run.

If s
.

≈ t is deleted using Orient:

. . . si−1 ↔E∪
si . . . =⇒ . . . si−1 →R∪

si . . .

If s
.

≈ t is deleted using Delete:

. . . si−1 ↔E∪
si−1 . . . =⇒ . . . si−1 . . .

If s
.

≈ t is deleted using Simplify-Eq:

. . . si−1 ↔E∪
si . . . =⇒ . . . si−1 →R∪

s′ ↔E∪
si . . .
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Knuth–Bendix Completion: Correctness Proof

Case (b): A proof step using a rule s → t is in R∪ \ R∞.

This rule must be deleted during the run.

If s → t is deleted using R-Simplify-Rule:

. . . si−1 →R∪
si . . . =⇒ . . . si−1 →R∪

s′ ←R∪
si . . .

If s → t is deleted using L-Simplify-Rule:

. . . si−1 →R∪
si . . . =⇒ . . . si−1 →R∪

s′ ↔E∪
si . . .
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Knuth–Bendix Completion: Correctness Proof

Case (c): A subproof has the form si−1 ←R∞
si →R∞

si+1.

If there is no overlap or a noncritical overlap:

. . . si−1 ←R∞
si →R∞

si+1 . . . =⇒ . . . si−1 →
∗
R∞

s′ ←∗
R∞

si+1 . . .

If there is a critical pair that has been added using “Deduce”:

. . . si−1 ←R∞
si →R∞

si+1 . . . =⇒ . . . si−1 ↔E∪
si+1 . . .

In all cases, checking that the replacement subproof is smaller than the

replaced subproof is routine. ✷
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Knuth–Bendix Completion: Correctness Proof

Theorem 4.6.6:

Let E0,R0 ⊢ E1,R1 ⊢ E2,R2 ⊢ · · · be a fair run and let R0 and E∞ be

empty. Then

(1) every proof in E∪ ∪ R∪ is equivalent to a rewrite proof in R∞,

(2) R∞ is equivalent to E0, and

(3) R∞ is convergent.
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Knuth–Bendix Completion: Correctness Proof

Proof:

(1) By well-founded induction on ≻C using the previous lemma.

(2) Clearly ≈E∪∪R∪
= ≈E0

.

Since R∞ ⊆ R∪, we get ≈R∞
⊆ ≈E∪∪R∪

.

On the other hand, by (1), ≈E∪∪R∪
⊆ ≈R∞

.

(3) Since →R∞
⊆ ≻, R∞ is terminating.

By (1), R∞ is confluent. ✷
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4.7 Unfailing Completion

Classical completion:

Try to transform a set E of equations into an equivalent convergent

TRS.

Fail if an equation can be neither oriented nor deleted.

Unfailing completion (Bachmair, Dershowitz, and Plaisted):

If an equation cannot be oriented, we can still use orientable instances

for rewriting.

Note: If ≻ is total on ground terms, then every ground instance of an

equation is trivial or can be oriented.

Goal: Derive a ground convergent set of equations.
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Unfailing Completion

Outlook:

Combine ordered resolution and unfailing completion

to get a calculus for equational clauses:

compute inferences between (strictly) maximal literals

as in ordered resolution,

compute overlaps between maximal sides of equations

as in unfailing completion

⇒ Superposition calculus.
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