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Part 4: First-Order Logic with Equality

Equality is the most important relation in mathematics and functional

programming.

In principle, problems in first-order logic with equality can be handled by

any prover for first-order logic without equality, as follows.
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4.1 Handling Equality Naively

Proposition 4.1.1:

Let F be a closed first-order formula with equality. Let ∼ /∈ Π be a new

predicate symbol. The set Eq(Σ) contains the formulas

∀x (x ∼ x)

∀x , y (x ∼ y → y ∼ x)

∀x , y , z (x ∼ y ∧ y ∼ z → x ∼ z)

∀~x ,~y (x1 ∼ y1 ∧ · · · ∧ xn ∼ yn → f (x1, . . . , xn) ∼ f (y1, . . . , yn))

∀~x ,~y (x1 ∼ y1 ∧ · · · ∧ xm ∼ ym ∧ P(x1, . . . , xm)→ P(y1, . . . , ym))

for every f /n ∈ Ω and P/m ∈ Π. Let F̃ be the formula that one obtains

from F if every occurrence of ≈ is replaced by ∼. Then F is satisfiable if

and only if Eq(Σ) ∪ {F̃} is satisfiable.
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Handling Equality Naively

An analogous proposition holds for sets of closed first-order formulas with

equality.

By giving the equality axioms explicitly, first-order problems with equality

can in principle be solved by a standard resolution or tableaux prover.

But this is unfortunately not efficient

(mainly due to the transitivity and congruence axioms).
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Handling Equality Naively

Equality is theoretically difficult:

First-order functional programming is Turing-complete.

But resolution theorem provers cannot even solve equational problems that

are intuitively easy.

Consequence: To handle equality efficiently, knowledge must be integrated

into the theorem prover.
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Roadmap

How to proceed:

• This part: Equations (unit clauses with equality).

Term rewrite systems.

Knuth–Bendix completion.

• Next part: Equational clauses.

Combining resolution and Knuth–Bendix completion.

→ Superposition.
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4.2 Rewrite Systems

Let E be a set of (implicitly universally quantified) equations.

The rewrite relation →E ⊆ TΣ(X )× TΣ(X ) is defined by

s →E t if and only if there exist (l ≈ r) ∈ E , p ∈ pos(s),

and σ : X → TΣ(X ),

such that s|p = lσ and t = s[rσ]p.

An instance of the lhs (left-hand side) of an equation is called a redex

(reducible expression).

Contracting a redex means replacing it with the corresponding instance of

the rhs (right-hand side) of the rule.
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Rewrite Systems

An equation l ≈ r is also called a rewrite rule if l is not a variable and

var(l) ⊇ var(r).

Notation: l → r .

A set of rewrite rules is called a term rewrite system (TRS).
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Rewrite Systems

We say that a set of equations E or a TRS R is terminating

if the rewrite relation →E or →R has this property.

(Analogously for other properties of abstract reduction systems.)

Note: If E is terminating, then it is a TRS.
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E-Algebras

Let E be a set of universally quantified equations.

A model of E is also called an E -algebra.

If E |= ∀~x (s ≈ t), i.e., ∀~x (s ≈ t) is valid in all E -algebras,

we write this also as s ≈E t.

Goal:

Use the rewrite relation →E to express the semantic consequence relation

syntactically:

s ≈E t if and only if s ↔∗
E t.
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E-Algebras

Let E be a set of equations over TΣ(X ). The following inference system

allows us to derive consequences of E :
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E-Algebras

E ⊢ t ≈ t (Reflexivity)

for every t ∈ TΣ(X )

E ⊢ t ≈ t′

E ⊢ t′ ≈ t
(Symmetry)

E ⊢ t ≈ t′ E ⊢ t′ ≈ t′′

E ⊢ t ≈ t′′
(Transitivity)

E ⊢ t1 ≈ t′
1

. . . E ⊢ tn ≈ t′n
E ⊢ f (t1, . . . , tn) ≈ f (t′

1
, . . . , t′n)

(Congruence)

E ⊢ tσ ≈ t′σ (Instance)

if (t ≈ t′) ∈ E and σ : X → TΣ(X )
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E-Algebras

Lemma 4.2.1:

The following properties are equivalent:

(i) s ↔∗
E t

(ii) E ⊢ s ≈ t is derivable.
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E-Algebras

Constructing a quotient algebra:

Let X be a set of variables.

For t ∈ TΣ(X ) let [t] = {t′ ∈ TΣ(X ) | E ⊢ t ≈ t′} be the congruence

class of t.

Define a Σ-algebra TΣ(X )/E (abbreviated by T ) as follows:

UT = {[t] | t ∈ TΣ(X )}.

fT ([t1], . . . , [tn]) = [f (t1, . . . , tn)] for f /n ∈ Ω.
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E-Algebras

Lemma 4.2.2:

fT is well-defined:

If [ti ] = [t′i ], then [f (t1, . . . , tn)] = [f (t′
1
, . . . , t′n)].

Lemma 4.2.3:

T = TΣ(X )/E is an E -algebra.

Lemma 4.2.4:

Let X be a countably infinite set of variables; let s, t ∈ TΣ(Y ).

If TΣ(X )/E |= ∀~x (s ≈ t), then E ⊢ s ≈ t is derivable.
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E-Algebras

Theorem 4.2.5 (“Birkhoff’s Theorem”):

Let X be a countably infinite set of variables, let E be a set of (universally

quantified) equations. Then the following properties are equivalent for all

s, t ∈ TΣ(X ):

(i) s ↔∗
E t.

(ii) E ⊢ s ≈ t is derivable.

(iii) s ≈E t, i.e., E |= ∀~x (s ≈ t).

(iv) TΣ(X )/E |= ∀~x (s ≈ t).
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4.3 Confluence

Let (A,→) be an abstract reduction system.

b and c ∈ A are joinable if there is an a such that b →∗ a←∗ c .

Notation: b ↓ c .

The relation → is called

Church–Rosser if b ↔∗ c implies b ↓ c ;

confluent if b ←∗ a→∗ c implies b ↓ c ;

locally confluent if b ← a→ c implies b ↓ c ;

convergent if it is confluent and terminating.
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Confluence

Theorem 4.3.1:

The following properties are equivalent:

(i) → has the Church–Rosser property.

(ii) → is confluent.
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Confluence

Lemma 4.3.2:

If → is confluent, then every element has at most one normal form.

Corollary 4.3.3:

If → is normalizing and confluent, then every element b has a unique

normal form.

Proposition 4.3.4:

If → is normalizing and confluent, then b ↔∗ c if and only if b↓ = c↓.

19



Confluence and Local Confluence

Theorem 4.3.5 (“Newman’s Lemma”):

If a terminating relation → is locally confluent, then it is confluent.
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Rewrite Relations

Corollary 4.3.6:

If E is convergent (i.e., terminating and confluent),

then s ≈E t if and only if s ↔∗
E t if and only if s↓E = t↓E .

Corollary 4.3.7:

If E is finite and convergent, then ≈E is decidable.

Reminder:

If E is terminating, then it is confluent if and only if it is locally confluent.
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Rewrite Relations

Problems:

Show local confluence of E .

Show termination of E .

Transform E into an equivalent set of equations that is locally confluent

and terminating.
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4.4 Critical Pairs

Showing local confluence (sketch):

Problem: If t1 ←E t0 →E t2, does there exist a term s such that

t1 →
∗
E s ←∗

E t2?

If the two rewrite steps happen in different subtrees (disjoint redexes):

yes.

If the two rewrite steps happen below each other (overlap at or below a

variable position): yes.

If the left-hand sides of the two rules overlap at a nonvariable position:

needs further investigation.
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Critical Pairs

Showing local confluence (sketch):

Question:

Are there rewrite rules l1 → r1 and l2 → r2 such that some subterm l1|p
and l2 have a common instance (l1|p)σ1 = l2σ2?

Observation:

If we assume without loss of generality that the two rewrite rules do

not have common variables, then only a single substitution is necessary:

(l1|p)σ = l2σ.

Further observation:

The mgu of l1|p and l2 subsumes all unifiers σ of l1|p and l2.
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Critical Pairs

Let li → ri (i ∈ {1, 2}) be two rewrite rules in a TRS R

whose variables have been renamed such that var(l1) ∩ var(l2) = ∅.

(Recall that var(li ) ⊇ var(ri ).)

Let p ∈ pos(l1) be a position such that l1|p is not a variable and σ is an

mgu of l1|p and l2.

Then r1σ ← l1σ → (l1σ)[r2σ]p.

〈r1σ, (l1σ)[r2σ]p〉 is called a critical pair of R.

The critical pair is joinable (or: converges) if r1σ ↓R (l1σ)[r2σ]p.
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Critical Pairs

Theorem 4.4.1 (“Critical Pair Theorem”):

A TRS R is locally confluent if and only if all its critical pairs are joinable.

Proof:

“only if”: Obvious, since joinability of a critical pair is a special case of

local confluence.

26



Critical Pairs

“if”: Suppose s rewrites to t1 and t2 using rewrite rules li → ri ∈ R at

positions pi ∈ pos(s), where i ∈ {1, 2}.

Without loss of generality, we can assume that the two rules are variable

disjoint, hence s|pi = liθ and ti = s[riθ]pi .

We distinguish between two cases: Either p1 and p2 are in disjoint subtrees

(p1 ‖ p2) or one is a prefix of the other (without loss of generality, p1 ≤ p2).
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Critical Pairs

Case 1: p1 ‖ p2.

Then s = s[l1θ]p1 [l2θ]p2 ,

and therefore t1 = s[r1θ]p1 [l2θ]p2 and t2 = s[l1θ]p1 [r2θ]p2 .

Let t0 = s[r1θ]p1 [r2θ]p2 .

Then clearly t1 →R t0 using l2 → r2 and t2 →R t0 using l1 → r1.

28



Critical Pairs

Case 2: p1 ≤ p2.

Case 2.1: p2 = p1q1q2, where l1|q1 is some variable x .

In other words, the second rewrite step takes place at or below a variable in

the first rule. Suppose that x occurs m times in l1 and n times in r1 (where

m ≥ 1 and n ≥ 0).

Then t1 →
∗
R t0 by applying l2 → r2 at all positions p1q

′q2, where q′ is a

position of x in r1.

Conversely, t2 →
∗
R t0 by applying l2 → r2 at all positions p1qq2, where q is

a position of x in l1 different from q1, and by applying l1 → r1 at p1 with

the substitution θ′, where θ′ = θ[x 7→ (xθ)[r2θ]q2 ].
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Critical Pairs

Case 2.2: p2 = p1p, where p is a nonvariable position of l1.

Then s|p2 = l2θ and s|p2 = (s|p1)|p = (l1θ)|p = (l1|p)θ,

so θ is a unifier of l2 and l1|p.

Let σ be the mgu of l2 and l1|p,

then θ = τ ◦ σ and 〈r1σ, (l1σ)[r2σ]p〉 is a critical pair.

By assumption, it is joinable, so r1σ →
∗
R v ←∗

R (l1σ)[r2σ]p.

Consequently, t1 = s[r1θ]p1 = s[r1στ ]p1 →
∗
R s[vτ ]p1 and t2 = s[r2θ]p2 =

s[(l1θ)[r2θ]p]p1 = s[(l1στ)[r2στ ]p]p1 = s[((l1σ)[r2σ]p)τ ]p1 →
∗
R s[vτ ]p1 .

This completes the proof of the Critical Pair Theorem. ✷

30



Critical Pairs

Note: Critical pairs between a rule and (a renamed variant of) itself must

be considered—except if the overlap is at the root (i.e., p = ε).
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Critical Pairs

Corollary 4.4.2:

A terminating TRS R is confluent if and only if all its critical pairs are

joinable.

Corollary 4.4.3:

For a finite terminating TRS, confluence is decidable.
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Critical Pairs: Example

We compute the critical pairs for the following rewrite system and determine

whether they are joinable:

f (g(f (x)))→ x (1) f (g(x))→ g(f (x)) (2)

• Between (1) at position 11 and a renamed copy of (1):

σ = {x 7→ g(f (x ′))},

g(f (x ′))← f (g(f (g(f (x ′)))))→ f (g(x ′)),

critical pair: 〈g(f (x ′)), f (g(x ′))〉, joinable at f (g(x ′)).

• Between (1) at position ε and a renamed copy of (2):

σ = {x ′ 7→ f (x)},

x ← f (g(f (x)))→ g(f (f (x))),

critical pair: 〈x , g(f (f (x)))〉, not joinable.
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Critical Pairs: Example

• Between (1) at position 11 and a renamed copy of (2):

σ = {x 7→ g(x ′)},

f (g(g(f (x ′))))← f (g(f (g(x ′))))→ g(x ′),

critical pair: 〈f (g(g(f (x ′)))), g(x ′)〉, joinable at g(x ′).
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