Automated Theorem Proving Lecture 9: Rewrite Systems

Prof. Dr. Jasmin Blanchette based on slides by Dr. Uwe Waldmann

Winter Term 2025/26

Part 4: First-Order Logic with Equality

Equality is the most important relation in mathematics and functional programming.

In principle, problems in first-order logic with equality can be handled by any prover for first-order logic without equality, as follows.

4.1 Handling Equality Naively

Proposition 4.1.1:

Let *F* be a closed first-order formula with equality. Let $\sim \notin \Pi$ be a new predicate symbol. The set $Eq(\Sigma)$ contains the formulas

$$\begin{array}{c} \forall x (x \sim x) \\ \forall x, y (x \sim y \rightarrow y \sim x) \\ \forall x, y, z (x \sim y \wedge y \sim z \rightarrow x \sim z) \\ \forall \vec{x}, \vec{y} (x_1 \sim y_1 \wedge \dots \wedge x_n \sim y_n \rightarrow f(x_1, \dots, x_n) \sim f(y_1, \dots, y_n)) \\ \forall \vec{x}, \vec{y} (x_1 \sim y_1 \wedge \dots \wedge x_m \sim y_m \wedge P(x_1, \dots, x_m) \rightarrow P(y_1, \dots, y_m)) \end{array}$$

for every $f/n \in \Omega$ and $P/m \in \Pi$. Let \tilde{F} be the formula that one obtains from F if every occurrence of \approx is replaced by \sim . Then F is satisfiable if and only if $Eq(\Sigma) \cup \{\tilde{F}\}$ is satisfiable. An analogous proposition holds for *sets* of closed first-order formulas with equality.

By giving the equality axioms explicitly, first-order problems with equality can in principle be solved by a standard resolution or tableaux prover.

But this is unfortunately not efficient

(mainly due to the transitivity and congruence axioms).

Equality is theoretically difficult:

First-order functional programming is Turing-complete.

But resolution theorem provers cannot even solve equational problems that are intuitively easy.

Consequence: To handle equality efficiently, knowledge must be integrated into the theorem prover.

Roadmap

How to proceed:

• This part: Equations (unit clauses with equality).

Term rewrite systems. Knuth-Bendix completion.

• Next part: Equational clauses.

Combining resolution and Knuth–Bendix completion. \rightarrow Superposition.

Let E be a set of (implicitly universally quantified) equations.

The rewrite relation $\rightarrow_E \subseteq \mathsf{T}_{\Sigma}(X) \times \mathsf{T}_{\Sigma}(X)$ is defined by

$$s \rightarrow_E t$$
 if and only if there exist $(l \approx r) \in E$, $p \in pos(s)$,
and $\sigma : X \rightarrow T_{\Sigma}(X)$,
such that $s|_p = l\sigma$ and $t = s[r\sigma]_p$.

An instance of the lhs (left-hand side) of an equation is called a redex (reducible expression).

Contracting a redex means replacing it with the corresponding instance of the rhs (right-hand side) of the rule.

An equation $l \approx r$ is also called a rewrite rule if l is not a variable and $var(l) \supseteq var(r)$.

Notation: $I \rightarrow r$.

A set of rewrite rules is called a term rewrite system (TRS).

We say that a set of equations E or a TRS R is terminating if the rewrite relation \rightarrow_E or \rightarrow_R has this property.

(Analogously for other properties of abstract reduction systems.)

Note: If E is terminating, then it is a TRS.

Let E be a set of universally quantified equations. A model of E is also called an E-algebra.

If $E \models \forall \vec{x} (s \approx t)$, i.e., $\forall \vec{x} (s \approx t)$ is valid in all *E*-algebras, we write this also as $s \approx_E t$.

Goal:

Use the rewrite relation \rightarrow_E to express the semantic consequence relation syntactically:

 $s \approx_E t$ if and only if $s \leftrightarrow_E^* t$.

Let *E* be a set of equations over $T_{\Sigma}(X)$. The following inference system allows us to derive consequences of *E*:

 $E \vdash t \approx t$ (Reflexivity) for every $t \in T_{\Sigma}(X)$ $E \vdash t \approx t'$ (Symmetry) $F \vdash t' \approx t$ $E \vdash t \approx t'$ $E \vdash t' \approx t''$ (Transitivity) $E \vdash t \approx t''$ $\frac{E \vdash t_1 \approx t'_1 \quad \dots \quad E \vdash t_n \approx t'_n}{E \vdash f(t_1, \dots, t_n) \approx f(t'_1, \dots, t'_n)}$ (Congruence) $E \vdash t\sigma \approx t'\sigma$ (Instance) if $(t \approx t') \in E$ and $\sigma : X \to \mathsf{T}_{\Sigma}(X)$

E-Algebras

Lemma 4.2.1:

The following properties are equivalent:

```
(i) s \leftrightarrow_E^* t
(ii) E \vdash s \approx t is derivable.
```

Constructing a quotient algebra:

Let X be a set of variables.

For $t \in T_{\Sigma}(X)$ let $[t] = \{t' \in T_{\Sigma}(X) \mid E \vdash t \approx t'\}$ be the congruence class of t.

Define a Σ -algebra $T_{\Sigma}(X)/E$ (abbreviated by \mathcal{T}) as follows:

$$U_{\mathcal{T}} = \{[t] \mid t \in \mathsf{T}_{\Sigma}(X)\}.$$

 $f_{\mathcal{T}}([t_1],\ldots,[t_n]) = [f(t_1,\ldots,t_n)]$ for $f/n \in \Omega$.

E-Algebras

Lemma 4.2.2: $f_{\mathcal{T}}$ is well-defined: If $[t_i] = [t'_i]$, then $[f(t_1, \ldots, t_n)] = [f(t'_1, \ldots, t'_n)]$.

Lemma 4.2.3: $\mathcal{T} = T_{\Sigma}(X)/E$ is an *E*-algebra.

Lemma 4.2.4: Let X be a countably infinite set of variables; let $s, t \in T_{\Sigma}(Y)$. If $T_{\Sigma}(X)/E \models \forall \vec{x} (s \approx t)$, then $E \vdash s \approx t$ is derivable. Theorem 4.2.5 ("Birkhoff's Theorem"):

Let X be a countably infinite set of variables, let E be a set of (universally quantified) equations. Then the following properties are equivalent for all $s, t \in T_{\Sigma}(X)$:

(i) $s \leftrightarrow_E^* t$. (ii) $E \vdash s \approx t$ is derivable. (iii) $s \approx_E t$, i.e., $E \models \forall \vec{x} (s \approx t)$. (iv) $\mathsf{T}_{\Sigma}(X)/E \models \forall \vec{x} (s \approx t)$. Let (A, \rightarrow) be an abstract reduction system.

b and $c \in A$ are joinable if there is an *a* such that $b \rightarrow^* a \leftarrow^* c$. Notation: $b \downarrow c$.

The relation \rightarrow is called

Church–Rosser if $b \leftrightarrow^* c$ implies $b \downarrow c$;

confluent if $b \leftarrow^* a \rightarrow^* c$ implies $b \downarrow c$;

locally confluent if $b \leftarrow a \rightarrow c$ implies $b \downarrow c$;

convergent if it is confluent and terminating.

Confluence

Theorem 4.3.1:

The following properties are equivalent:

- (i) \rightarrow has the Church–Rosser property.
- (ii) \rightarrow is confluent.

Confluence

Lemma 4.3.2:

If \rightarrow is confluent, then every element has at most one normal form.

Corollary 4.3.3:

If \rightarrow is normalizing and confluent, then every element b has a unique normal form.

Proposition 4.3.4:

If \rightarrow is normalizing and confluent, then $b \leftrightarrow^* c$ if and only if $b \downarrow = c \downarrow$.

Confluence and Local Confluence

Theorem 4.3.5 ("Newman's Lemma"):

If a terminating relation \rightarrow is locally confluent, then it is confluent.

Rewrite Relations

Corollary 4.3.6: If *E* is convergent (i.e., terminating and confluent), then $s \approx_E t$ if and only if $s \leftrightarrow_E^* t$ if and only if $s \downarrow_E = t \downarrow_E$.

Corollary 4.3.7: If *E* is finite and convergent, then \approx_E is decidable.

Reminder:

If E is terminating, then it is confluent if and only if it is locally confluent.

Rewrite Relations

Problems:

- Show local confluence of E.
- Show termination of E.
- Transform E into an equivalent set of equations that is locally confluent and terminating.

Showing local confluence (sketch):

Problem: If $t_1 \leftarrow_E t_0 \rightarrow_E t_2$, does there exist a term *s* such that $t_1 \rightarrow_E^* s \leftarrow_E^* t_2$?

If the two rewrite steps happen in different subtrees (disjoint redexes): yes.

If the two rewrite steps happen below each other (overlap at or below a variable position): yes.

If the left-hand sides of the two rules overlap at a nonvariable position: needs further investigation.

Showing local confluence (sketch):

Question:

Are there rewrite rules $l_1 \rightarrow r_1$ and $l_2 \rightarrow r_2$ such that some subterm $l_1|_p$ and l_2 have a common instance $(l_1|_p)\sigma_1 = l_2\sigma_2$?

Observation:

If we assume without loss of generality that the two rewrite rules do not have common variables, then only a single substitution is necessary: $(l_1|_p)\sigma = l_2\sigma$.

Further observation:

The mgu of $I_1|_p$ and I_2 subsumes all unifiers σ of $I_1|_p$ and I_2 .

Let $l_i \rightarrow r_i$ $(i \in \{1, 2\})$ be two rewrite rules in a TRS Rwhose variables have been renamed such that $var(l_1) \cap var(l_2) = \emptyset$. (Recall that $var(l_i) \supseteq var(r_i)$.)

Let $p \in pos(l_1)$ be a position such that $l_1|_p$ is not a variable and σ is an mgu of $l_1|_p$ and l_2 .

Then $r_1 \sigma \leftarrow l_1 \sigma \rightarrow (l_1 \sigma)[r_2 \sigma]_p$.

 $\langle r_1\sigma, (l_1\sigma)[r_2\sigma]_p \rangle$ is called a critical pair of R.

The critical pair is joinable (or: converges) if $r_1 \sigma \downarrow_R (l_1 \sigma)[r_2 \sigma]_p$.

Theorem 4.4.1 ("Critical Pair Theorem"):

A TRS R is locally confluent if and only if all its critical pairs are joinable.

Proof:

"only if": Obvious, since joinability of a critical pair is a special case of local confluence.

"if": Suppose *s* rewrites to t_1 and t_2 using rewrite rules $l_i \rightarrow r_i \in R$ at positions $p_i \in pos(s)$, where $i \in \{1, 2\}$. Without loss of generality, we can assume that the two rules are variable disjoint, hence $s|_{p_i} = l_i\theta$ and $t_i = s[r_i\theta]_{p_i}$.

We distinguish between two cases: Either p_1 and p_2 are in disjoint subtrees $(p_1 \parallel p_2)$ or one is a prefix of the other (without loss of generality, $p_1 \leq p_2$).

Case 1: $p_1 \parallel p_2$. Then $s = s[l_1\theta]_{p_1}[l_2\theta]_{p_2}$, and therefore $t_1 = s[r_1\theta]_{p_1}[l_2\theta]_{p_2}$ and $t_2 = s[l_1\theta]_{p_1}[r_2\theta]_{p_2}$. Let $t_0 = s[r_1\theta]_{p_1}[r_2\theta]_{p_2}$. Then clearly $t_1 \rightarrow_R t_0$ using $l_2 \rightarrow r_2$ and $t_2 \rightarrow_R t_0$ using $l_1 \rightarrow r_1$.

Case 2: $p_1 \le p_2$.

Case 2.1: $p_2 = p_1 q_1 q_2$, where $l_1|_{q_1}$ is some variable x.

In other words, the second rewrite step takes place at or below a variable in the first rule. Suppose that x occurs m times in l_1 and n times in r_1 (where $m \ge 1$ and $n \ge 0$).

Then $t_1 \rightarrow_R^* t_0$ by applying $l_2 \rightarrow r_2$ at all positions $p_1 q' q_2$, where q' is a position of x in r_1 .

Conversely, $t_2 \rightarrow_R^* t_0$ by applying $l_2 \rightarrow r_2$ at all positions $p_1 q q_2$, where q is a position of x in l_1 different from q_1 , and by applying $l_1 \rightarrow r_1$ at p_1 with the substitution θ' , where $\theta' = \theta[x \mapsto (x\theta)[r_2\theta]_{q_2}]$.

Case 2.2: $p_2 = p_1 p$, where p is a nonvariable position of l_1 .

Then $s|_{p_2} = l_2\theta$ and $s|_{p_2} = (s|_{p_1})|_p = (l_1\theta)|_p = (l_1|_p)\theta$, so θ is a unifier of l_2 and $l_1|_p$.

Let σ be the mgu of l_2 and $l_1|_p$, then $\theta = \tau \circ \sigma$ and $\langle r_1 \sigma, (l_1 \sigma)[r_2 \sigma]_p \rangle$ is a critical pair.

By assumption, it is joinable, so $r_1\sigma \rightarrow^*_R v \leftarrow^*_R (I_1\sigma)[r_2\sigma]_p$.

Consequently, $t_1 = s[r_1\theta]_{p_1} = s[r_1\sigma\tau]_{p_1} \rightarrow^*_R s[v\tau]_{p_1}$ and $t_2 = s[r_2\theta]_{p_2} = s[(l_1\theta)[r_2\theta]_p]_{p_1} = s[(l_1\sigma\tau)[r_2\sigma\tau]_p]_{p_1} = s[((l_1\sigma)[r_2\sigma]_p)\tau]_{p_1} \rightarrow^*_R s[v\tau]_{p_1}.$

This completes the proof of the Critical Pair Theorem.

Note: Critical pairs between a rule and (a renamed variant of) itself must be considered—except if the overlap is at the root (i.e., $p = \varepsilon$).

Corollary 4.4.2: A terminating TRS R is confluent if and only if all its critical pairs are joinable.

Corollary 4.4.3: For a finite terminating TRS, confluence is decidable. We compute the critical pairs for the following rewrite system and determine whether they are joinable:

 $f(g(f(x))) \rightarrow x$ (1) $f(g(x)) \rightarrow g(f(x))$ (2)

- Between (1) at position 11 and a renamed copy of (1): $\sigma = \{x \mapsto g(f(x'))\},\$ $g(f(x')) \leftarrow f(g(f(g(f(x'))))) \rightarrow f(g(x')),\$ critical pair: $\langle g(f(x')), f(g(x')) \rangle$, joinable at f(g(x')).
- Between (1) at position ε and a renamed copy of (2):
 σ = {x' → f(x)},
 x ← f(g(f(x))) → g(f(f(x))),
 critical pair: ⟨x, g(f(f(x)))⟩, not joinable.

Critical Pairs: Example

• Between (1) at position 11 and a renamed copy of (2): $\sigma = \{x \mapsto g(x')\},\$ $f(g(g(f(x')))) \leftarrow f(g(f(g(x')))) \rightarrow g(x'),\$ critical pair: $\langle f(g(g(f(x')))), g(x') \rangle$, joinable at g(x').