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Part 4: First-Order Logic with Equality

Equality is the most important relation in mathematics and functional
programming.

In principle, problems in first-order logic with equality can be handled by
any prover for first-order logic without equality, as follows.



4.1 Handling Equality Naively

Proposition 4.1.1:

Let F be a closed first-order formula with equality. Let ~ ¢ I1 be a new
predicate symbol. The set Eq(X) contains the formulas

Vx (x ~ x)
Vx,y(x ~y =y ~ x)
VX, v, Zz(Xx ~y ANy ~zZ— x~ Z)
VX, V(X1 ~ Y1 A AXp~yn— F(xq,..., Xp) ~ fly1, ..., Yn))
VX, ¥ (x1 ~ i A  AXm ~ Ym AP(Xx1, ..., Xm) = P(y1, -2 Ym))

for every f/n € Q and P/m € I. Let F be the formula that one obtains

from F if every occurrence of = is replaced by ~. Then F is satisfiable if
and only if Eq(X)U {F} is satisfiable.



Handling Equality Naively

An analogous proposition holds for sets of closed first-order formulas with

equality.

By giving the equality axioms explicitly, first-order problems with equality
can in principle be solved by a standard resolution or tableaux prover.

But this is unfortunately not efficient
(mainly due to the transitivity and congruence axioms).



Handling Equality Naively

Equality is theoretically difficult:
First-order functional programming is Turing-complete.

But resolution theorem provers cannot even solve equational problems that
are intuitively easy.

Consequence: To handle equality efficiently, knowledge must be integrated
into the theorem prover.



Roadmap

How to proceed:

e This part: Equations (unit clauses with equality).

Term rewrite systems.
Knuth—Bendix completion.

e Next part: Equational clauses.

Combining resolution and Knuth—Bendix completion.
— Superposition.



4.2 Rewrite Systems

Let E be a set of (implicitly universally quantified) equations.

The rewrite relation —g C Ty (X) x Tx(X) is defined by

s —gt ifandonly if thereexist (/~r) € E, p € pos(s),
and o : X — Tx(X),

such that s|, = /o and t = s[ro],.

An instance of the |hs (left-hand side) of an equation is called a redex
(reducible expression).

Contracting a redex means replacing it with the corresponding instance of
the rhs (right-hand side) of the rule.



Rewrite Systems

An equation [ = r is also called a rewrite rule if [ is not a variable and
var(/) 2 var(r).

Notation: [ — r.

A set of rewrite rules is called a term rewrite system (TRS).



Rewrite Systems

We say that a set of equations E or a TRS R is terminating
If the rewrite relation — g or — g has this property.

(Analogously for other properties of abstract reduction systems.)

Note: If E is terminating, then it is a TRS.



E-Algebras

Let E be a set of universally quantified equations.
A model of E is also called an E-algebra.

If E l=VX(s=~t),ie., VX(s~t)isvalid in all E-algebras,

we write this also as s ~¢ t.

Goal:
Use the rewrite relation — g to express the semantic consequence relation

syntactically:

s~ tifand only if s <3¢ t.

10



E-Algebras

Let £ be a set of equations over Tx(X). The following inference system
allows us to derive consequences of E:

11



E-Algebras

EFtxt
for every t € Tg(X)

EFt=t

EFt =t

EFt=t'  EFt =t"
Ert=tl

EFti=t] ... EFty=t]

Erto~to
if (t~t')e Eando: X — Tg(X)

(Reflexivity)

(Symmetry)

(Transitivity)

(Congruence)

(Instance)
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E-Algebras

Lemma 4.2.1:
The following properties are equivalent:

(i) sEt

(i) E+ s =~ t is derivable.
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E-Algebras

Constructing a quotient algebra:

Let X be a set of variables.

Fort € Te(X) let [t] = {t' € Tx(X) | EF t = t’} be the congruence
class of t.

Define a -algebra T (X)/E (abbreviated by T) as follows:
Ur ={lt] | t € T=(X)}.
fr([t], ..., [t,]) = [f(t1, ..., t,)] for f/n € Q.
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E-Algebras

Lemma 4.2.2:
fr is well-defined:
If [t;] = [t]], then [f(t1,..., ta)] = [f(t],..., t/)].

Lemma 4.2.3:
T = Ts(X)/E is an E-algebra.

Lemma 4.2.4:
Let X be a countably infinite set of variables; let s,t € Tx(Y).
If Tx(X)/E =VX(s=t), then EF s~ tis derivable.
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E-Algebras

Theorem 4.2.5 (“Birkhoff's Theorem™):
Let X be a countably infinite set of variables, let E be a set of (universally

quantified) equations. Then the following properties are equivalent for all
S, t & Tz(X)

(i) s <F t.
(i) EF s = tis derivable.
(iii)) s ~g t, i.e., E=VX(s ~ t).

(iv) Te(X)/E EVX (s~ t).
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4.3 Confluence

Let (A, —) be an abstract reduction system.

b and ¢ € A are joinable if there is an a such that b —* a +* c.
Notation: b | c.

The relation — is called
Church—Rosser if b <* ¢ implies b | c;
confluent if b <* a —* ¢ implies b | c;
locally confluent if b+ a — ¢ implies b | c;

convergent if it is confluent and terminating.
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Confluence

Theorem 4.3.1:
The following properties are equivalent:

(i) — has the Church—Rosser property.

(i) — is confluent.

18



Confluence

Lemma 4.3.2:

If — is confluent, then every element has at most one normal form.

Corollary 4.3.3:
If — is normalizing and confluent, then every element b has a unique

normal form.

Proposition 4.3.4:
If — is normalizing and confluent, then b <+* ¢ if and only if b] = c|.
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Confluence and Local Confluence

Theorem 4.3.5 (“Newman's Lemma"):
If a terminating relation — is locally confluent, then it is confluent.
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Rewrite Relations

Corollary 4.3.6:
If E is convergent (i.e., terminating and confluent),
then s~g tifandonly if s<»E tif and only if s|g = t|Eg.

Corollary 4.3.7:
If E is finite and convergent, then = is decidable.

Reminder:
If E is terminating, then it is confluent if and only if it is locally confluent.
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Rewrite Relations

Problems:
Show local confluence of E.
Show termination of E.

Transform E into an equivalent set of equations that is locally confluent
and terminating.
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4.4 Critical Pairs

Showing local confluence (sketch):

Problem: If t; < to — g t», does there exist a term s such that
t1 =5 S <f tof

If the two rewrite steps happen in different subtrees (disjoint redexes):

yes.

If the two rewrite steps happen below each other (overlap at or below a

variable position): yes.

If the left-hand sides of the two rules overlap at a nonvariable position:

needs further investigation.
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Critical Pairs

Showing local confluence (sketch):

Question:

Are there rewrite rules } — r and /b — r, such that some subterm /;|,
and / have a common instance (/|,)01 = ho,?

Observation:
If we assume without loss of generality that the two rewrite rules do

not have common variables, then only a single substitution is necessary:

(/1 ‘p)O' — /20'.

Further observation:

The mgu of /1|, and k subsumes all unifiers o of /1|, and k.
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Critical Pairs

Let [; — r; (/ € {1,2}) be two rewrite rules in a TRS R
whose variables have been renamed such that var(/) Nvar(h) = 0.
(Recall that var(/;) D var(r;).)

Let p € pos(/1) be a position such that /1|, is not a variable and o is an

mgu of /1|, and b.
Then o < /10' — (/10')[/’20']p.

(no, (ho)|roly) is called a critical pair of R.

The critical pair is joinable (or: converges) if no [r (ho)[ro],.
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Critical Pairs

Theorem 4.4.1 (“Critical Pair Theorem"):
A TRS R is locally confluent if and only if all its critical pairs are joinable.

Proof:

“only if": Obvious, since joinability of a critical pair is a special case of
local confluence.
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Critical Pairs

“if" . Suppose s rewrites to t; and ty using rewrite rules /; — r; € R at
positions p; € pos(s), where i € {1,2}.
Without loss of generality, we can assume that the two rules are variable

disjoint, hence s|, = ;68 and t; = s[r;0],,.

We distinguish between two cases: Either p; and py are in disjoint subtrees
(p1 || p2) or one is a prefix of the other (without loss of generality, p1 < p2).
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Critical Pairs

Case 1: P1 H Po.

Then s = s[h0]p,[lL0)],,,
and therefore t; = s[r0],,[0],, and to = s[h8]p, [0],,.

Let to = s[r10],, [n0],,.
Then clearly t; —g tg using b — r» and t, —g to using | — .
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Critical Pairs

Case 2: p1 < po».
Case 2.1: p» = p1q1 G2, where /1|, is some variable x.

In other words, the second rewrite step takes place at or below a variable in
the first rule. Suppose that x occurs m times in /; and n times in r; (where
m > 1 and n > 0).

Then t; —% tp by applying b — r» at all positions p; g’ g2, where ¢’ is a
position of x in ry.

Conversely, to =% to by applying b — r» at all positions p; gg2, where g is
a position of x in /; different from g1, and by applying 1 — 1 at p; with
the substitution 6/, where 68" = 0[x — (x0)[r20]4,].
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Critical Pairs

Case 2.2: pp = p1 p, where p is a nonvariable position of /.

Then s|p, = k0 and s|,, = (s]p,)[p = (h0)|p = (hlp)0.
so 6 is a unifier of k and /1 |,.

Let o be the mgu of k and /1|,
then 8 =700 and (rio, (ho)[ro]y) is a critical pair.

By assumption, it is joinable, so no =5 v <5 (ho)[nol,.

Consequently, t; = s[nf], = s[noT]y, =% s[vT]y, and ta = s[rnb], =
s[(h0)[r20]plp, = sl(hoT)[roT]plp, = s[((ho)[r2o]p)T]e —& slvT]p-

This completes the proof of the Critical Pair Theorem.
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Critical Pairs

Note: Critical pairs between a rule and (a renamed variant of) itself must
be considered—except if the overlap is at the root (i.e., p = ¢).
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Critical Pairs

Corollary 4.4 .2:
A terminating TRS R is confluent if and only if all its critical pairs are
joinable.

Corollary 4.4 .3:
For a finite terminating TRS, confluence is decidable.
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Critical Pairs: Example

We compute the critical pairs for the following rewrite system and determine

whether they are joinable:

fle(f(x) —x (1)  f(e(x)) = &(f(x)) (2)
e Between (1) at position 11 and a renamed copy of (1):
o= {x—g(f(x))},
g(f(x")) « f(g(f(g(f(x"))))) — f(&(x)),
critical pair: (g(f(x’)), f(g(x"))), joinable at f(g(x’)).
e Between (1) at position € and a renamed copy of (2):
o= {x"— f(x)},

x « f(g(f(x))) — g(f(f(x))),
critical pair: (x, g(f(f(x)))), not joinable.

33



Critical Pairs: Example

e Between (1) at position 11 and a renamed copy of (2):
o= {x—g(x")},
f(g(g(f(x’)))) « f(g(f(g(x")))) — &(x),
critical pair: (f(g(g(f(x")))), g(x’)), joinable at g(x’).
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