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3.17 Semantic Tableaux

Literature:

M. Fitting: First-Order Logic and Automated Theorem Proving, Springer-
Verlag, New York, 1996, chapters 3, 0, 7.

R. M. Smullyan: First-Order Logic, Dover Publ., New York, 1968, revised
1995.

Like resolution, semantic tableaux were developed in the 1960s, indepen-
dently by Zbigniew Lis and Raymond Smullyan on the basis of work by
Gentzen in the 1930s and of Beth in the 1950s.



ldea

ldea (for the propositional case):

Aset {F A G} UN of formulas has a model if and only if {F A\ G, F, G} U
N has a model.

Aset {F V G} UN of formulas has a model if and only if {F \V G, F}UN
or {FV G, G} UN has a model.

(and similarly for other connectives).

To avoid duplication, represent sets as paths of a tree.

Continue splitting until two complementary formulas are found =
Inconsistency detected.



A Tableau for {P A —(QV —R), -QV —R}

1. PA=(QV—R)

2. —QV-R

/ \ This tableau is not
3. QR 4. —-R y T

maximal’ : however,
5. P 10. P the first “path” is.
6. (QV-R) 11. -(QV -R) This path is not
7. =0 “closed” : hence the
q P set {1,2} is satisfiable.
| (These notions will all

9. R

be defined below.)



Properties

Properties of tableau calculi:

analytic: inferences correspond closely to the logical meaning of the
symbols.

goal-oriented: inferences operate directly on the goal to be proved.

global: some inferences affect the entire proof state (set of formulas), as
we will see later.



Propositional Expansion Rules

Expansion rules are applied to the formulas in a tableau and expand the
tableau at a leaf. We append the conclusions of a rule (horizontally or
vertically) at a leaf whenever the premise of the expansion rule matches a
formula appearing anywhere on the path from the root to that leaf.

Negation Elimination



Propositional Expansion Rules

a-Expansion
(for formulas that are essentially conjunctions: append subformulas a;
and a, one on top of the other)

$-Expansion
(for formulas that are essentially disjunctions:
append 1 and 5 horizontally, i.e., branch into 8; and ;)

5
B1 | B2




Classification of Formulas

conjunctive disjunctive
o a1 p b1 D2
FAG F G| =(FANG)| -F =G

-(FVG) | -F =G FVv G F G
-(F — G) F -G F— G | -F G

We assume that the binary connective <+ has been eliminated in advance.



Tableaux: Notions

A semantic tableau is a marked (by formulas), finite, unordered tree and
inductively defined as follows: Let {Fq,..., F,} be a set of formulas.

(i) The tree consisting of a single path

F1

Fn

is a tableau for {Fy,..., F,}.
(We do not draw edges if nodes have only one successor.)



Tableaux: Notions

(ii) If T is a tableau for {Fy,..., F,} and if T’ results from T by applying
an expansion rule then T’ is also a tableau for {Fy,..., F,}.

Note: We may also consider the /imit tableau of a tableau expansion; this
can be an infinite tree.
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Tableaux: Notions

A path (from the root to a leaf) in a tableau is called closed if it either
contains _L or else it contains both some formula F and its negation —F.
Otherwise the path is called open.

A tableau is called closed if all paths are closed.

A tableau proof for F is a closed tableau for {—F}.
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Tableaux: Notions

A path 7 in a tableau is called maximal if for each formula F on 7 that is
neither a literal nor L nor T there exists a node in 7 at which the expansion
rule for F has been applied.

In that case, If F is a formula on 7, 7 also contains:
(i) a1 and ay if F is a a-formula,
(i) By or B if Fis a S-formula, and

(iii) F’ if F is a negation formula, and F’ the conclusion of the
corresponding elimination rule.

A tableau is called maximal if each path is closed or maximal.
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Tableaux: Notions

A tableau is called strict if for each formula the corresponding expansion
rule has been applied at most once on each path containing that formula.

A tableau is called clausal if each of its formulas is a clause.
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An Example Proof

One starts out from the negation of the formula to be proved.

1. -(P=(QR—=R)—=((PVS)=(QR—R)VYS)))
2. (P—(Q — R))
3 ~((PVS) = ((Q = R)VS))
4. PvS
5. ~((Q = R)V S))
6. -(Q — R)
7. -5
/ \
. [21] 9. Q— R [27]
/ \
10. P [44] S [47]

There are three paths, each of them closed.
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Properties of Propositional Tableaux

We assume that T is a tableau for {Fq, ..., Fn}.

Theorem 3.17.1:

{Fy,..., F,} satisfiable < some path (i.e., the set of its formulas) in T is
satisfiable.

Proof:

(«<=) Trivial, since every path contains in particular Fq, ..., F,.

(=) By induction over the structure of T. O

Corollary 3.17.2:
T closed = {Fy,..., F,} unsatisfiable
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Properties of Propositional Tableaux

Theorem 3.17.3:
Every strict propositional tableau expansion is finite.

Proof:

New formulas resulting from expansion are L, T, or subformulas of the
expanded formula (modulo de Morgan's law), so the number of formulas
that can occur is finite. By strictness, on each path a formula can be
expanded at most once. Therefore, each path is finite, and a finitely
branching tree with finite paths is finite by Konig's lemma. (]

Conclusion: Strict and maximal tableaux can be effectively constructed.
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Refutational Completeness

A set H of propositional formulas is called a Hintikka set if
(1) there is no P € 1 with P € H and =P € H;
) LéH, =T ¢&H,
(3) if ~—F € H, then F € H;
) if a € H, then oy € H and ap € H;
)

if 6 € H, then 81 € H or B> € H.
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Refutational Completeness

Lemma 3.17.4 (Hintikka's Lemma):
Every Hintikka set is satisfiable.

Proof:
Let H be a Hintikka set. Define a valuation A by A(P) =1 if P € H and

A(P) = 0 otherwise. Then show that A(F) =1 for all F € ‘H by induction

over the size of formulas. O
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Refutational Completeness

Theorem 3.17.5:
Let 7 be a maximal open path in a tableau. Then the set of formulas on 7

Is satisfiable.

Proof:

We show that set of formulas on 7 is a Hintikka set: Conditions (3), (4),
(5) follow from the fact that 7 is maximal; conditions (1) and (2) follow
from the fact that 7 is open and from maximality for the second negation

elimination rule. O
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Refutational Completeness

Theorem 3.17.6:

{Fy,..., F,} satisfiable < there exists no closed strict tableau for
{Fy,..., Fn}

Proof:

(=) Clear by Cor. 3.17.2.

(«<=) Let T be a strict maximal tableau for {Fy,..., F,} and let w be an

open path in T. By the previous theorem, the set of formulas on 7 is

satisfiable, and hence by Theorem 3.17.1 the set {Fq, ..., F,}, is satisfiable.
[]
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Consequences

The validity of a propositional formula F can be established by constructing

a strict maximal tableau for {=F}:
e [ closed & F valid.

e It suffices to test complementarity of paths w.r.t. atomic formulas (cf.

reasoning in the proof of Theorem 3.17.5).

e Which of the potentially many strict maximal tableaux one computes
does not matter. In other words, tableau expansion rules can be applied

don’t-care nondeterministically (“proof confluence™).

e [he expansion strategy, however, can have a dramatic impact on the

tableau size.

21



A Variant of the 5-Rule

Since FV G H FV (G A —F), the 8 expansion rule

B
B | B

can be replaced by the following variant:

B
b1 | B2

—51
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A Variant of the 5-Rule

The variant 3-rule can lead to much shorter proofs, but it is not always
beneficial.

In general, it is most helpful if =57 can be at most (iteratively) a-expanded.

23



3.18 Semantic Tableaux for First-Order Logic

There are two ways to extend the tableau calculus to quantified formulas:
e using ground instantiation,

e using free variables.
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Tableaux with Ground Instantiation

Classification of quantified formulas:

universal existential

g V(t) 0 5(t)

VxF | F{x+— t} IxF | F{xm— t}
—3dxF | 2 F{x—t} || =VxF | =F{x — t}




Tableaux with Ground Instantiation

|dea:

Replace universally quantified formulas by appropriate ground instances.

y-expansion

- where t is some ground term
(1)

)-expansion

——  where c is a new Skolem constant

0(c)
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Tableaux with Ground Instantiation

Skolemization becomes part of the calculus and needs not necessarily be

applied in a preprocessing step. Of course, one could do Skolemization
beforehand, and then the o-rule would not be needed.

Note:

Skolem constants are sufficient:
In a 0-formula dx F, 3 is the outermost quantifier
and x is the only free variable in F.
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Tableaux with Ground Instantiation

Problems:
Having to guess ground terms is impractical.

Even worse, we may have to guess several ground instances, since
strictness for v is incomplete. For instance, constructing a closed tableau
for

1Vx (P(x) = P(f(x))), P(b), ~P(f(f(b)))}

Is iImpossible without applying v-expansion twice on one path.

28



Free-Variable Tableaux

An alternative approach:
Delay the instantiation of universally quantified variables.
Replace universally quantified variables by new free variables.

Intuitively, the free variables are universally quantified outside of the
entire tableau.
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Free-Variable Tableaux

y-expansion

y . .
——  where x is a new free variable

v(x)

)-expansion

where f is a new Skolem function, and the x; are the free variables in ¢
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Free-Variable Tableaux

Application of expansion rules has to be supplemented by a substitution

rule:

(iii) If T is a tableau for {Fy,..., F,} and if o is a substitution, then To is
also a tableau for {Fy,..., F,}.

The substitution rule may, potentially, modify all the formulas of a tableau.
This feature is what makes the tableau method a global proof method.
(Resolution, by comparison, is a local method.)

31



Free-Variable Tableaux

One can show that it is sufficient to consider substitutions o for which there
is a path in T containing two literals —=A and B such that ¢ = mgu(A, B).
Such tableaux are called AMGU-Tableaux.
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Example of a Free-Variable Tableau

—I(E|W\V/X P(x, w, f(x, w)) — IwVx3dy P(x, W,)/))
Awvx P(x, w, f(x, w))

—3dwVxdy P(x,w,y)

Vx P(x, c, f(x, c))

—Vx3dy P(x, vi,y)

-3y P(b(v1), v1, y)

P(v2, c, f(v2, c))

8. —P(b(v1),v1,s)

NS o s b=

7 and 8 are complementary (modulo unification):

{VQ — b(Vl), cC = Vi, f(VQ, C) — V3}

is solvable with an mgu 0 = {vi — ¢, v» — b(c), vz — f(b(c),

and hence, To is a closed (linear) tableau for the formula in 1.

1 [

1o [

2(c) [d]
3(v1) [V]
5(b(v1)) [0
4(v2) [

6(vs) [

<)}
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Free-Variable Tableaux

Problem:

Strictness for -y is still incomplete.
For instance, constructing a closed tableau for

1Vx (P(x) = P(f(x))), P(b), =P(f(f(b)))}

Is iImpossible without applying v-expansion twice on one path.
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Semantic Tableaux vs. Resolution

e Tableaux: global, goal-oriented, “"backward.”
e Resolution: local, “forward.”

e Goal-orientation is a clear advantage if only a small subset of a large
set of formulas is necessary for a proof.
(Note that resolution provers saturate also those parts of the clause set
that are irrelevant for proving the goal.)
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Semantic Tableaux vs. Resolution

e Resolution can be combined with more powerful redundancy elimination
methods; because of its global nature this is more difficult for the

tableau method.

e Resolution can be refined to work well with equality; for tableaux this

seems to be impossible.

e On the other hand tableau calculi can be easily extended to other
logics; in particular tableau provers are very successful in modal and

description logics.
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