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3.17 Semantic Tableaux

Literature:

M. Fitting: First-Order Logic and Automated Theorem Proving, Springer-

Verlag, New York, 1996, chapters 3, 6, 7.

R. M. Smullyan: First-Order Logic, Dover Publ., New York, 1968, revised

1995.

Like resolution, semantic tableaux were developed in the 1960s, indepen-

dently by Zbigniew Lis and Raymond Smullyan on the basis of work by

Gentzen in the 1930s and of Beth in the 1950s.
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Idea

Idea (for the propositional case):

A set {F ∧ G} ∪N of formulas has a model if and only if {F ∧ G , F , G} ∪

N has a model.

A set {F ∨ G} ∪N of formulas has a model if and only if {F ∨ G , F} ∪N

or {F ∨ G , G} ∪ N has a model.

(and similarly for other connectives).

To avoid duplication, represent sets as paths of a tree.

Continue splitting until two complementary formulas are found ⇒

inconsistency detected.
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A Tableau for {P ∧ ¬(Q ∨ ¬R), ¬Q ∨ ¬R}

1. P ∧ ¬(Q ∨ ¬R)

2. ¬Q ∨ ¬R

3. ¬Q

5. P

6. ¬(Q ∨ ¬R)

7. ¬Q

8. ¬¬R

9. R

4. ¬R

10. P

11. ¬(Q ∨ ¬R)

This tableau is not

“maximal”; however,

the first “path” is.

This path is not

“closed”; hence the

set {1, 2} is satisfiable.

(These notions will all

be defined below.)
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Properties

Properties of tableau calculi:

analytic: inferences correspond closely to the logical meaning of the

symbols.

goal-oriented: inferences operate directly on the goal to be proved.

global: some inferences affect the entire proof state (set of formulas), as

we will see later.
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Propositional Expansion Rules

Expansion rules are applied to the formulas in a tableau and expand the

tableau at a leaf. We append the conclusions of a rule (horizontally or

vertically) at a leaf whenever the premise of the expansion rule matches a

formula appearing anywhere on the path from the root to that leaf.

Negation Elimination

¬¬F
F

¬⊤
⊥

¬⊥
⊤
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Propositional Expansion Rules

α-Expansion

(for formulas that are essentially conjunctions: append subformulas α1

and α2 one on top of the other)

α

α1

α2

β-Expansion

(for formulas that are essentially disjunctions:

append β1 and β2 horizontally, i.e., branch into β1 and β2)

β

β1 | β2
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Classification of Formulas

conjunctive disjunctive

α α1 α2 β β1 β2

F ∧ G F G ¬(F ∧ G ) ¬F ¬G

¬(F ∨ G ) ¬F ¬G F ∨ G F G

¬(F → G ) F ¬G F → G ¬F G

We assume that the binary connective ↔ has been eliminated in advance.
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Tableaux: Notions

A semantic tableau is a marked (by formulas), finite, unordered tree and

inductively defined as follows: Let {F1, . . . ,Fn} be a set of formulas.

(i) The tree consisting of a single path

F1

...

Fn

is a tableau for {F1, . . . ,Fn}.

(We do not draw edges if nodes have only one successor.)
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Tableaux: Notions

(ii) If T is a tableau for {F1, . . . ,Fn} and if T ′ results from T by applying

an expansion rule then T ′ is also a tableau for {F1, . . . ,Fn}.

Note: We may also consider the limit tableau of a tableau expansion; this

can be an infinite tree.
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Tableaux: Notions

A path (from the root to a leaf) in a tableau is called closed if it either

contains ⊥ or else it contains both some formula F and its negation ¬F .

Otherwise the path is called open.

A tableau is called closed if all paths are closed.

A tableau proof for F is a closed tableau for {¬F}.
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Tableaux: Notions

A path π in a tableau is called maximal if for each formula F on π that is

neither a literal nor ⊥ nor ⊤ there exists a node in π at which the expansion

rule for F has been applied.

In that case, if F is a formula on π, π also contains:

(i) α1 and α2 if F is a α-formula,

(ii) β1 or β2 if F is a β-formula, and

(iii) F ′ if F is a negation formula, and F ′ the conclusion of the

corresponding elimination rule.

A tableau is called maximal if each path is closed or maximal.
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Tableaux: Notions

A tableau is called strict if for each formula the corresponding expansion

rule has been applied at most once on each path containing that formula.

A tableau is called clausal if each of its formulas is a clause.
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An Example Proof

One starts out from the negation of the formula to be proved.

1. ¬

(

(P → (Q → R)) → ((P ∨ S) → ((Q → R) ∨ S))
)

2. (P → (Q → R)) [11]

3. ¬((P ∨ S) → ((Q → R) ∨ S)) [12]

4. P ∨ S [31]

5. ¬((Q → R) ∨ S)) [32]

6. ¬(Q → R) [51]

7. ¬S [52]

8. ¬P [21] 9. Q → R [22]

10. P [41] 11. S [42]

There are three paths, each of them closed.
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Properties of Propositional Tableaux

We assume that T is a tableau for {F1, . . . ,Fn}.

Theorem 3.17.1:

{F1, . . . ,Fn} satisfiable ⇔ some path (i.e., the set of its formulas) in T is

satisfiable.

Proof:

(⇐) Trivial, since every path contains in particular F1, . . . ,Fn.

(⇒) By induction over the structure of T . ✷

Corollary 3.17.2:

T closed ⇒ {F1, . . . ,Fn} unsatisfiable
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Properties of Propositional Tableaux

Theorem 3.17.3:

Every strict propositional tableau expansion is finite.

Proof:

New formulas resulting from expansion are ⊥, ⊤, or subformulas of the

expanded formula (modulo de Morgan’s law), so the number of formulas

that can occur is finite. By strictness, on each path a formula can be

expanded at most once. Therefore, each path is finite, and a finitely

branching tree with finite paths is finite by König’s lemma. ✷

Conclusion: Strict and maximal tableaux can be effectively constructed.
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Refutational Completeness

A set H of propositional formulas is called a Hintikka set if

(1) there is no P ∈ Π with P ∈ H and ¬P ∈ H;

(2) ⊥ /∈ H, ¬⊤ /∈ H;

(3) if ¬¬F ∈ H, then F ∈ H;

(4) if α ∈ H, then α1 ∈ H and α2 ∈ H;

(5) if β ∈ H, then β1 ∈ H or β2 ∈ H.
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Refutational Completeness

Lemma 3.17.4 (Hintikka’s Lemma):

Every Hintikka set is satisfiable.

Proof:

Let H be a Hintikka set. Define a valuation A by A(P) = 1 if P ∈ H and

A(P) = 0 otherwise. Then show that A(F ) = 1 for all F ∈ H by induction

over the size of formulas. ✷
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Refutational Completeness

Theorem 3.17.5:

Let π be a maximal open path in a tableau. Then the set of formulas on π

is satisfiable.

Proof:

We show that set of formulas on π is a Hintikka set: Conditions (3), (4),

(5) follow from the fact that π is maximal; conditions (1) and (2) follow

from the fact that π is open and from maximality for the second negation

elimination rule. ✷
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Refutational Completeness

Theorem 3.17.6:

{F1, . . . ,Fn} satisfiable ⇔ there exists no closed strict tableau for

{F1, . . . ,Fn}.

Proof:

(⇒) Clear by Cor. 3.17.2.

(⇐) Let T be a strict maximal tableau for {F1, . . . ,Fn} and let π be an

open path in T . By the previous theorem, the set of formulas on π is

satisfiable, and hence by Theorem 3.17.1 the set {F1, . . . ,Fn}, is satisfiable.

✷
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Consequences

The validity of a propositional formula F can be established by constructing

a strict maximal tableau for {¬F}:

• T closed ⇔ F valid.

• It suffices to test complementarity of paths w.r.t. atomic formulas (cf.

reasoning in the proof of Theorem 3.17.5).

• Which of the potentially many strict maximal tableaux one computes

does not matter. In other words, tableau expansion rules can be applied

don’t-care nondeterministically (“proof confluence”).

• The expansion strategy, however, can have a dramatic impact on the

tableau size.
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A Variant of the β-Rule

Since F ∨ G |=| F ∨ (G ∧ ¬F ), the β expansion rule

β

β1 | β2

can be replaced by the following variant:

β

β1

∣

∣

∣

∣

∣

β2

¬β1
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A Variant of the β-Rule

The variant β-rule can lead to much shorter proofs, but it is not always

beneficial.

In general, it is most helpful if ¬β1 can be at most (iteratively) α-expanded.
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3.18 Semantic Tableaux for First-Order Logic

There are two ways to extend the tableau calculus to quantified formulas:

• using ground instantiation,

• using free variables.
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Tableaux with Ground Instantiation

Classification of quantified formulas:

universal existential

γ γ(t) δ δ(t)

∀xF F{x 7→ t} ∃xF F{x 7→ t}

¬∃xF ¬F{x 7→ t} ¬∀xF ¬F{x 7→ t}

25



Tableaux with Ground Instantiation

Idea:

Replace universally quantified formulas by appropriate ground instances.

γ-expansion
γ

γ(t)
where t is some ground term

δ-expansion

δ

δ(c)
where c is a new Skolem constant
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Tableaux with Ground Instantiation

Skolemization becomes part of the calculus and needs not necessarily be

applied in a preprocessing step. Of course, one could do Skolemization

beforehand, and then the δ-rule would not be needed.

Note:

Skolem constants are sufficient:

In a δ-formula ∃x F , ∃ is the outermost quantifier

and x is the only free variable in F .
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Tableaux with Ground Instantiation

Problems:

Having to guess ground terms is impractical.

Even worse, we may have to guess several ground instances, since

strictness for γ is incomplete. For instance, constructing a closed tableau

for

{∀x (P(x) → P(f (x))), P(b), ¬P(f (f (b)))}

is impossible without applying γ-expansion twice on one path.
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Free-Variable Tableaux

An alternative approach:

Delay the instantiation of universally quantified variables.

Replace universally quantified variables by new free variables.

Intuitively, the free variables are universally quantified outside of the

entire tableau.
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Free-Variable Tableaux

γ-expansion
γ

γ(x)
where x is a new free variable

δ-expansion
δ

δ(f (x1, . . . , xn))

where f is a new Skolem function, and the xi are the free variables in δ
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Free-Variable Tableaux

Application of expansion rules has to be supplemented by a substitution

rule:

(iii) If T is a tableau for {F1, . . . ,Fn} and if σ is a substitution, then Tσ is

also a tableau for {F1, . . . ,Fn}.

The substitution rule may, potentially, modify all the formulas of a tableau.

This feature is what makes the tableau method a global proof method.

(Resolution, by comparison, is a local method.)
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Free-Variable Tableaux

One can show that it is sufficient to consider substitutions σ for which there

is a path in T containing two literals ¬A and B such that σ = mgu(A,B).

Such tableaux are called AMGU-Tableaux.
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Example of a Free-Variable Tableau

1. ¬
(

∃w∀x P(x ,w , f (x ,w)) → ∃w∀x∃y P(x ,w , y)
)

2. ∃w∀x P(x ,w , f (x ,w)) 11 [α]

3. ¬∃w∀x∃y P(x ,w , y) 12 [α]

4. ∀x P(x , c , f (x , c)) 2(c) [δ]

5. ¬∀x∃y P(x , v1, y) 3(v1) [γ]

6. ¬∃y P(b(v1), v1, y) 5(b(v1)) [δ]

7. P(v2, c, f (v2, c)) 4(v2) [γ]

8. ¬P(b(v1), v1, v3) 6(v3) [γ]

7 and 8 are complementary (modulo unification):

{v2
.
= b(v1), c

.
= v1, f (v2, c)

.
= v3}

is solvable with an mgu σ = {v1 7→ c, v2 7→ b(c), v3 7→ f (b(c), c)},

and hence, Tσ is a closed (linear) tableau for the formula in 1.
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Free-Variable Tableaux

Problem:

Strictness for γ is still incomplete.

For instance, constructing a closed tableau for

{∀x (P(x) → P(f (x))), P(b), ¬P(f (f (b)))}

is impossible without applying γ-expansion twice on one path.
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Semantic Tableaux vs. Resolution

• Tableaux: global, goal-oriented, “backward.”

• Resolution: local, “forward.”

• Goal-orientation is a clear advantage if only a small subset of a large

set of formulas is necessary for a proof.

(Note that resolution provers saturate also those parts of the clause set

that are irrelevant for proving the goal.)
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Semantic Tableaux vs. Resolution

• Resolution can be combined with more powerful redundancy elimination

methods; because of its global nature this is more difficult for the

tableau method.

• Resolution can be refined to work well with equality; for tableaux this

seems to be impossible.

• On the other hand tableau calculi can be easily extended to other

logics; in particular tableau provers are very successful in modal and

description logics.
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