
Automated Theorem Proving

Lecture 7: Resolution Continued

Prof. Dr. Jasmin Blanchette

based on slides by Dr. Uwe Waldmann

Winter Term 2025/26

1

3.13 Ordered Resolution with Selection

Motivation: Search space for Res very large.

Ideas for improvement:

1. In the completeness proof (Model Existence Theorem 3.9.5) one only

needs to resolve and factor maximal atoms

⇒ if the calculus is restricted to inferences involving maximal atoms,

the proof remains correct

⇒ ordering restrictions

2. In the proof, it does not really matter with which negative literal an

inference is performed

⇒ choose a negative literal don’t-care-nondeterministically

⇒ selection

2

Ordering Restrictions

In the completeness proof one only needs to resolve and factor maximal

atoms. Therefore the proof remains correct if we impose ordering restrictions

on ground inferences.

(Ground) Ordered Resolution:

D ∨ A C ∨ ¬A

D ∨ C

if A ≻ L for all L in D and ¬A � L for all L in C .

(Ground) Ordered Factorization:

C ∨ A ∨ A

C ∨ A

if A � L for all L in C .

3

Ordering Restrictions

Problem: How to extend this to nonground inferences?

In the completeness proof, we talk about (strictly) maximal literals of

ground clauses.

In the nonground calculus, we have to consider those literals that correspond

to (strictly) maximal literals of ground instances.

4

Ordering Restrictions

An ordering ≻ on atoms (or terms) is called stable under substitutions

if A ≻ B implies Aσ ≻ Bσ.

Note:

• We can not require that A ≻ B if and only if Aσ ≻ Bσ for all σ,

because this is not computable.

• We can not require that ≻ is total on nonground atoms, because this

would be incompatible with stability under substitution.

Consequence:

In the ordering restrictions for nonground inferences, we have to replace

≻ by 6� and � by 6≺.

5

Ordering Restrictions

Ordered Resolution:
D ∨ B C ∨ ¬A

(D ∨ C)σ

if σ = mgu(A,B) and Bσ 6� Lσ for all L in D

and ¬Aσ 6≺ Lσ for all L in C .

Ordered Factorization:
C ∨ A ∨ B

(C ∨ A)σ

if σ = mgu(A,B) and Aσ 6≺ Lσ for all L in C .

6

Selection Functions

Selection functions can be used to override ordering restrictions for

individual clauses.

A selection function is a mapping

sel : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨ A

7

Selection Functions

Intuition:

• If a clause has at least one selected literal, compute only inferences

that involve a selected literal.

• If a clause has no selected literals, compute only inferences that involve

a maximal literal.

8

Resolution Calculus Res
≻

sel

The resolution calculus Res≻sel is parameterized by

• a selection function sel

• and a well-founded ordering ≻ on atoms that is total on ground atoms

and stable under substitutions.

9

Resolution Calculus Res
≻

sel

(Ground) Ordered Resolution with Selection:

D ∨ A C ∨ ¬A

D ∨ C

if the following conditions are satisfied:

(i) A ≻ L for all L in D;

(ii) nothing is selected in D ∨ A by sel;

(iii) ¬A is selected in C ∨ ¬A,

or nothing is selected in C ∨ ¬A and ¬A � L for all L in C .

10

Resolution Calculus Res
≻

sel

(Ground) Ordered Factorization with Selection:

C ∨ A ∨ A

C ∨ A

if the following conditions are satisfied:

(i) A � L for all L in C ;

(ii) nothing is selected in C ∨ A ∨ A by sel.

11

Resolution Calculus Res
≻

sel

The extension from ground inferences to nonground inferences is analogous

to ordered resolution (replace ≻ by 6� and � by 6≺). Again we assume that

≻ is stable under substitutions.

12

Resolution Calculus Res
≻

sel

Ordered Resolution with Selection:

D ∨ B C ∨ ¬A

(D ∨ C)σ

if the following conditions are satisfied:

(i) σ = mgu(A,B);

(ii) Bσ 6� Lσ for all L in D;

(iii) nothing is selected in D ∨ B by sel;

(iv) ¬A is selected in C ∨ ¬A,

or nothing is selected in C ∨ ¬A and ¬Aσ 6≺ Lσ for all L in C .

13

Resolution Calculus Res
≻

sel

Ordered Factorization with Selection:

C ∨ A ∨ B

(C ∨ A)σ

if the following conditions are satisfied:

(i) σ = mgu(A,B);

(ii) Aσ 6≺ Lσ for all L in C ;

(iii) nothing is selected in C ∨ A ∨ B by sel.

14

Lifting Lemma for Res≻sel

Lemma 3.13.1:

Let C and D be variable-disjoint clauses. If

D




y

θ1

Dθ1

C




y

θ2

Cθ2

C ′
[ground inference in Res

≻

sel]

and if sel(Dθ1) ≃ sel(D), sel(Cθ2) ≃ sel(C) (that is, “corresponding” literals are

selected), then there exists a substitution ρ such that

D C

C
′′





y

ρ

C
′ = C

′′ρ

[inference in Res
≻

sel]

15

Lifting Lemma for Res≻sel

An analogous lifting lemma holds for factorization.

16

Saturation of Sets of General Clauses

Corollary 3.13.2:

Let N be a set of general clauses saturated under Res≻sel, i.e., Res
≻
sel(N) ⊆ N.

Then there exists a selection function sel′ such that sel|N = sel′|N and

GΣ(N) is also saturated, i.e.,

Res≻
sel′

(GΣ(N)) ⊆ GΣ(N).

17

Soundness and Refutational Completeness

Theorem 3.13.3:

Let ≻ be an atom ordering and sel a selection function such that

Res≻sel(N) ⊆ N. Then N |= ⊥ ⇔ ⊥ ∈ N

Proof:

(⇐): trivial.

(⇒): Consider first the propositional level:

Construct a candidate interpretation IN as for unrestricted resolution,

except that clauses C in N that have selected literals are never productive

(even if they are false in IC

and if their maximal atom occurs only once and is positive).

The result for general clauses follows using Corollary 3.13.2. ✷

18

What Do We Gain?

Search spaces become smaller:

1 P ∨ Q

2 P ∨ ¬Q

3 ¬P ∨ Q

4 ¬P ∨ ¬Q

5 Q ∨ Q Res 1, 3

6 Q Fact 5

7 ¬P Res 6, 4

8 P Res 6, 2

9 ⊥ Res 8, 7

We assume P ≻ Q and sel as

indicated by X . The maxi-

mal literal in a clause is de-

picted in red.

19

What Do We Gain?

Rotation redundancy can be avoided:

From
C1 ∨ A C2 ∨ ¬A ∨ B

C1 ∨ C2 ∨ B C3 ∨ ¬B

C1 ∨ C2 ∨ C3

we can obtain by rotation

C1 ∨ A

C2 ∨ ¬A ∨ B C3 ∨ ¬B

C2 ∨ ¬A ∨ C3

C1 ∨ C2 ∨ C3

another proof of the same clause. In large proofs many rotations are

possible. However, if A ≻ B , then the second proof does not fulfill the

ordering restrictions.

20

3.14 Redundancy

So far: local restrictions of the resolution inference rules using orderings

and selection functions.

Is it also possible to delete clauses altogether?

Under which circumstances are clauses unnecessary

(e.g., if they are tautologies)?

Intuition: If a clause is guaranteed to be neither a minimal counterexample

nor productive, then we do not need it.

21

A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not necessarily

in N). C is called redundant w.r.t. N if there exist C1, . . . ,Cn ∈ N, n ≥ 0,

such that Ci ≺ C and C1, . . . ,Cn |= C .

Redundancy for general clauses:

C is called redundant w.r.t. N if all ground instances Cσ of C are redundant

w.r.t. GΣ(N).

Intuition: If a ground clause C is redundant and all clauses smaller than C

hold in IC , then C holds in IC

(so C is neither a minimal counterexample nor productive).

22

A Formal Notion of Redundancy

Notation: The set of all clauses that are redundant w.r.t. N is denoted by

Red(N).

Note: The same ordering ≻ is used for ordering restrictions and for

redundancy (and for the completeness proof).

23

Examples of Redundancy

In general, redundancy is undecidable. Decidable approximations are

sufficient for us, however.

Proposition 3.14.1:

Some redundancy criteria:

• C tautology (i.e., |= C) ⇒ C redundant w.r.t. any set N.

• Cσ ⊂ D ⇒ D redundant w.r.t. N ∪ {C}.

(Under certain conditions one may also use nonstrict subsumption, but this

requires a slightly more complicated definition of redundancy.)

24

Saturation up to Redundancy

N is called saturated up to redundancy (w.r.t. Res≻sel) if

Res≻sel(N \ Red(N)) ⊆ N ∪ Red(N)

Theorem 3.14.2:

Let N be saturated up to redundancy. Then

N |= ⊥ ⇔ ⊥ ∈ N

25

Monotonicity Properties of Redundancy

When we want to delete redundant clauses during a derivation, we have

to ensure that redundant clauses remain redundant in the rest of the

derivation.

Theorem 3.14.3:

(i) N ⊆ M ⇒ Red(N) ⊆ Red(M)

(ii) M ⊆ Red(N) ⇒ Red(N) ⊆ Red(N \M)

Recall that Red(N) may include clauses that are not in N.

26

Computing Saturated Sets

Redundancy is preserved when, during a theorem proving derivation one

adds new clauses or deletes redundant clauses. This motivates the following

definitions:

A run of the resolution calculus is a sequence

N0 ⊢ N1 ⊢ N2 ⊢ · · · , such that

(i) Ni |= Ni+1, and

(ii) all clauses in Ni \ Ni+1 are redundant w.r.t. Ni+1.

In other words, during a run we may add a new clause if it follows from the

old ones, and we may delete a clause if it is redundant w.r.t. the remaining

ones.

27

Computing Saturated Sets

For a run, we define N∞ =
⋃

i≥0

⋂
j≥i Nj .

The set N∞ of all persistent clauses is called the limit of the run.

28

Computing Saturated Sets

Lemma 3.14.4:

Let N0 ⊢ N1 ⊢ N2 ⊢ · · · be a run.

Then Red(Ni) ⊆ Red(
⋃

i≥0
Ni) and Red(Ni) ⊆ Red(N∞) for every i .

Proof:

Omitted. ✷

29

Computing Saturated Sets

Corollary 3.14.5:

Ni ⊆ N∞ ∪ Red(N∞) for every i .

Proof:

If C ∈ Ni \ N∞, then there is a k ≥ i such that C ∈ Nk \ Nk+1, so C must

be redundant w.r.t. Nk+1.

Consequently, C is redundant w.r.t. N∞. ✷

30

Computing Saturated Sets

Even if a set N is inconsistent, it could happen that ⊥ is never derived,

because some required inference is never computed.

The following definition rules out such runs:

A run is called fair if the conclusion of every inference from clauses in

N∞ \ Red(N∞) is contained in some Ni ∪ Red(Ni).

Lemma 3.14.6:

If a run is fair, then its limit is saturated up to redundancy.

31

Computing Saturated Sets

Theorem 3.14.7 (Refutational Completeness: Dynamic View):

Let N0 ⊢ N1 ⊢ N2 ⊢ · · · be a fair run, let N∞ be its limit.

Then N0 has a model if and only if ⊥ /∈ N∞.

Proof:

(⇐): By fairness, N∞ is saturated up to redundancy.

If ⊥ /∈ N∞, then it has an Herbrand model.

Since every clause in N0 is contained in N∞ or redundant w.r.t. N∞,

this model is also a model of GΣ(N0)

and therefore a model of N0.

(⇒): Obvious, since N0 |= N∞. ✷

32

Simplifications

In theory, the definition of a run permits to add arbitrary clauses that are

entailed by the current ones.

33

Simplifications

In practice, we restrict to two cases:

• We add conclusions of Res≻sel-inferences from nonredundant premises.

❀ necessary to guarantee fairness

• We add clauses that are entailed by the current ones if this makes

other clauses redundant:

N ∪ {C} ⊢ N ∪ {C ,D} ⊢ N ∪ {D}

if N ∪ {C} |= D and C ∈ Red(N ∪ {D}).

Net effect: C is simplified to D.

❀ useful to get easier/smaller clause sets

34

Simplifications

Notation for simplification rules:

C1 . . . Cn

D1 . . . Dm

means

N ∪ {C1, . . . , Cn} ⊢ N ∪ {D1, . . . , Dm}

35

Simplifications

Examples of simplification techniques:

• Deletion of duplicated literals:

C ∨ L ∨ L

C ∨ L

• Subsumption resolution:

D ∨ L C ∨ Dσ ∨ Lσ

D ∨ L C ∨ Dσ

36

3.15 Hyperresolution

There are many variants of resolution.

One well-known example is hyperresolution (Robinson 1965):

Assume that several negative literals are selected in a clause C .

If we perform an inference with C , then one of the selected literals is

eliminated.

Suppose that the remaining selected literals of C are again selected in

the conclusion. Then we must eliminate the remaining selected literals

one by one by further resolution steps.

37

Hyperresolution

Hyperresolution replaces these successive steps by a single inference.

As for Res≻sel, the calculus is parameterized by an atom ordering ≻ and a

selection function sel.

38

Hyperresolution

D1 ∨ B1 . . . Dn ∨ Bn C ∨ ¬A1 ∨ . . . ∨ ¬An

(D1 ∨ . . . ∨ Dn ∨ C)σ

with σ = mgu(A1

.
= B1, . . . ,An

.
= Bn) if

(i) Biσ strictly maximal in Diσ, 1 ≤ i ≤ n;

(ii) nothing is selected in Di ;

(iii) the indicated occurrences of the ¬Ai are exactly the ones selected by

sel, or nothing is selected in the right premise and n = 1 and ¬A1σ is

maximal in Cσ.

Similarly to resolution, hyperresolution has to be complemented by a

factorization inference.

39

Hyperresolution

As we have seen, hyperresolution can be simulated by iterated binary

resolution.

However, this yields intermediate clauses which HR might not derive.

40

3.16 Implementing Resolution: The Main Loop

Standard approach:

Select one clause (“Given clause”).

Find many partner clauses that can be used in inferences together with

the “given clause” using an appropriate index data structure.

Compute the conclusions of these inferences; add them to the set of

clauses.

41

Implementing Resolution: The Main Loop

The set of clauses is split into two subsets:

• WO = “Worked-off” (or “active”) clauses:

Have already been selected as “given clause.”

• U = “Usable” (or “passive”) clauses:

Have not yet been selected as “given clause.”

42

Implementing Resolution: The Main Loop

During each iteration of the main loop:

Select a new given clause C from U;

U := U \ {C}.

Find partner clauses Di from WO;

New := Conclusions of inferences from {Di | i ∈ I} ∪ C

where one premise is C ;

U := U ∪ New ;

WO := WO ∪ {C}

⇒ At any time, all inferences between clauses in WO have been computed.

⇒ The procedure is fair if no clause remains in U forever.

43

Implementing Resolution: The Main Loop

Additionally:

Try to simplify C using WO.

(Skip the remainder of the iteration if C can be eliminated.)

Try to simplify (or even eliminate) clauses from WO using C .

44

Implementing Resolution: The Main Loop

Design decision: should one also simplify U using C?

Yes ❀ “Otter loop”:

Advantage: simplifications of U may be useful to derive the empty clause.

No ❀ “DISCOUNT loop”:

Advantage: clauses in U are really passive;

only clauses in WO have to be kept in index data structure.

(Hence: can use index data structure for which retrieval is faster, even if

update is slower and space consumption is higher.)

45

3.17 Summary: Resolution Theorem Proving

• Resolution is a machine-oriented calculus.

• Using unification, the enumeration of instances becomes a by-product

of inference computation.

• Parameters: atom ordering ≻ and selection function sel.

On the nonground level, ordering constraints can (only) be solved

approximatively.

• Completeness proof by constructing candidate interpretations from

productive clauses C ∨ A, A ≻ C .

46

Summary: Resolution Theorem Proving

• Local restrictions of inferences via ≻ and sel

⇒ fewer proof variants.

• Global restrictions of the search space via redundancy

⇒ computing with “smaller”/“easier” clause sets.

(In practice: simplification and detection of redundant clauses uses

90% of the prover runtime.)

• Termination on many decidable fragments.

• However, not good enough for dealing with orderings, equality, and

more specific algebraic theories (lattices, abelian groups, rings, fields)

⇒ further specialization of inference systems required.

47

