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3.10 General Resolution

Propositional (ground) resolution:
refutationally complete,

In Its most naive version:
not guaranteed to terminate for satisfiable sets of clauses,
(improved versions do terminate, however)

inferior to the CDCL procedure.

But in contrast to the CDCL procedure, resolution can be easily extended
to nonground clauses.



Observation

If A is a model of an (implicitly universally quantified) clause C,
then by Lemma 3.3.8 it is also a model of all (implicitly universally
quantified) instances Co of C.

Consequently, if we show that some instances of clauses in a set N are
unsatisfiable, then we have also shown that N itself is unsatisfiable.



General Resolution through Instantiation

ldea: instantiate clauses appropriately:

P(z',Z") Vv -Q(2) -P(a,y) P(x’, b) vV Q(f(x, x))
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General Resolution through Instantiation

Early approaches (Gilmore 1960, Davis and Putnam 1960):
Generate ground instances of clauses.
Try to refute the set of ground instances by resolution.

If no contradiction is found, generate more ground instances.

Problems:
More than one instance of a clause can participate in a proof.

Even worse: There are infinitely many possible instances.



General Resolution through Instantiation

Observation:

Instantiation must produce complementary literals
(so that inferences become possible).



General Resolution through Instantiation

ldea (Robinson 1965):

Do not instantiate more than necessary to get complementary literals

= most general unifiers (mgu).

Calculus works with nonground clauses;

inferences with nonground clauses represent infinite sets
of ground inferences which are computed simultaneously
= lifting principle.

Computation of instances becomes a by-product of boolean reasoning.



General Resolution through Instantiation

P(z',Z") Vv -Q(2) -P(a,y) P(x’, b) vV Q(f(x", x))

{ma}J {wa/ \{y%b} J{ma}
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Unification

Let £ = {s; = t1,...,S, = t,} (s;, t; terms or atoms) be a multiset of
equality problems. A substitution o is called a unifier of E if sjc = t;jo for
all 1 </ <n.

If a unifier of E exists, then E is called unifiable.



Unification

A substitution o is called more general than a substitution 7, denoted
by o < 7, if there exists a substitution p such that po o = 7, where
(poo)(x):=(xc)p is the composition of o and p as mappings.

(Note that p o o has a finite domain as required for a substitution.)

If a unifier of E is more general than any other unifier of E, then we speak
of a most general unifier of E, denoted by mgu(E).

10



Unification

Proposition 3.10.1:
(i) < is a quasi-ordering on substitutions, and o is associative.

(i) If o <7 and 7 < o (we write o ~ 7 in this case), then xo and x7 are

equal up to (bijective) variable renaming, for any x in X.

A substitution o is called idempotent if c o0 = 0.

Proposition 3.10.2:
o is idempotent if and only if dom(o) N codom(o) = 0.
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Rule-Based Naive Standard Unification

t=t E
f(ty,..., tn), E
)=g(--.) E
x=t, E

x =t E
t=x, E

E

Ss1=1t,..., s, = t,, E
1

if f+g

x =t, E{x— t}
if x € var(E), x & var(t)

1
if x # t,x € var(t)

x =t E
iftg X
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Properties of SU

If E={xy = u1,...,xk = ux}, with x; pairwise distinct, x; &€ var(u;), then
E is called an (equational problem in)

solved form representing the solution

O ={Xy — U1, ..., Xx — Ux}.

Proposition 3.10.3:
If E is a solved form then og is an mgu of E.
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Properties of SU

Theorem 3.10.4:
1. If E =5y E’ then o is a unifier of E if and only if o is a unifier of E’.
2. If E =5y L then E is not unifiable.

3. If E ="y E’ with E’ in solved form, then ogs is an mgu of E.
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Main Unification Theorem

Theorem 3.10.5:
E is unifiable if and only if there is a most general unifier o of E

such that o is idempotent and dom(c) U codom(o) C var(E).
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Example of SU

Example 3.10.6:

We unify g(x, f(x)) and g(b, y) using standard unification:

Resulting substitution: {x — b, y — f(b)}.
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Exponential Growth of SU

Problem: Using = sy, an exponential growth of terms is possible.

Example 3.10.7:
We unify g(x,y,z) and g(f(y,y), f(z, z), f(a, a)) using SU:

g(x,y,z) =g(f(y,y) f(z,2),f(a a))

=su x ="f(y,y) y =1(z,2), z=f(a, a)

=sy x = f(f(z,2),f(z,2)),y =1f(z,2), z=f(a,a)

=Sy X = fEf(f)(a, a),f(a,a)),f(f(a a),f(a a))), y="~(f(a a),f(a a)),
z="1(a, a

Resulting substitution: {x — f(f(f(a, a), f(a, a)), f(f(a a),f(a,a))), y —
f(f(a, a),f(aa)), z— f(a, a)}.
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Rule-Based Polynomial Unification

The following unification algorithm avoids the exponential growth problem,
at least if the final solved form is represented as a DAG.
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Rule-Based Polynomial Unification

t=t,E =py E

f(s1,....sn) =Ff(ts,..., th),E =py s1=ty,...,5p=1t, E
f(..)=g(...),E =py L
iff+g

x=y,E =py x=y E{x—y}
if x €var(E),x #y

x1=1tt,....x,=t,, E =py L
If there are positions p; with

ti‘p,- — Xi+1, th p, — X1
and some p; # ¢
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Rule-Based Polynomial Unification

x=t,E =py L

t=x,E =py

x=t,x=s5E =py

if x #t,x € var(t)
x=t,E

iftg X

x=t t=sE

if t,s ¢ X and |t]| < |5
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Properties of PU

Theorem 3.10.8:
1. If E =py E’ then o is a unifier of E if and only if o is a unifier of E’.
2. If E="py L then E is not unifiable.
3. If E ="py E’ with E’ in solved form, then o/ is an mgu of E.
The solved form of = py is different from the solved form obtained from
=gsy. 1o obtain the unifier og/, we have to sort the list of equality problems

x; = t; in such a way that x; does not occur in t; for j < /, and then we
have to compose the substitutions {x; — t;} o--- o {xx — tx}.
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Example of PU

Example 3.10.9:
We unify g(x, f(x)) and g(b, y) using polynomial unification:

g(x. f(x)) =g(b,y)
=py X =b, f(x) =y

=pu X =b, y = f(x)

Resulting substitution: {x +— b} o{y — f(x)} ={x+— b, y — f(b)}.
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Polynomial Growth of PU

Example 3.10.10:
We unify g(x,y,z) and g(f(y,y), f(z, z), f(a, a)) using PU:

g(x.y z) =g(f(y.y) f(z,2). f(a a))
=py X =f(y,y), y =1f(z,2), z=f(a,a)
= z=1f(a,a),y="F(z,z), x=f(y,y)

Resulting substitution: {z + f(a,a)} o{y — f(z,z)} o {x— f(y,y)}.
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Resolution for General Clauses

We obtain the resolution inference rules for nonground clauses from the
inference rules for ground clauses by replacing equality by unifiability:

General resolution Res:

DV B CVv-A
(DV C)o

if o = mgu(A, B) [resolution]

CVAVEB
(CV Ao

if o = mgu(A, B) [factorization]
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Resolution for General Clauses

For inferences with more than one premise, we assume that the variables in
the premises are (bijectively) renamed such that they become different to

any variable in the other premises.
We do not formalize this. Which names one uses for variables is otherwise

irrelevant.
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Resolution for General Clauses

Example 3.10.11:
Consider the clauses

P2, 2') vV -Q(z) (1)

~P(a y) (2)

P(x",b) vV Q(f(x",x)) (3)
From (1) and (2), using “Resolution” we obtain =Q(z) (4).
From (3) and (2), using “Resolution” we obtain Q(f(a, x)) (5).

From (5) and (4), using “Resolution” we obtain the empty clause.
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Lifting Lemma

Lemma 3.10.12:
Let C and D be variable-disjoint clauses. If

D C
o [o
D6, Co-
:

[ground resolution]

then there exists a substitution p such that

D C .
[general resolution]

j p
_
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Lifting Lemma

An analogous lifting lemma holds for factorization.
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Saturation of Sets of General Clauses

Corollary 3.10.13:

Let N be a set of general clauses saturated under Res, i.e., Res(N) C N.

Then also Gy (N) is saturated, that is,

Res(Gs(N)) C Gg(N).
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Soundness for General Clauses

Proposition 3.10.14:
The general resolution calculus is sound.
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Herbrand’s Theorem

Lemma 3.10.15:
Let N be a set of 2-clauses, let A be an interpretation.

Then A = N implies A = Gs(N).

Lemma 3.10.16:
Let N be a set of X-clauses, let A be an Herbrand interpretation.

Then A = Gs(N) implies A = N.
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Herbrand’s Theorem

Theorem 3.10.17 (Herbrand):
A set N of X-clauses is satisfiable if and only if it has an Herbrand model

over 2.

Corollary 3.10.18:
A set N of 2-clauses is satisfiable if and only if its set of ground instances

Gy (N) is satisfiable.
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Refutational Completeness of General Resolution

Theorem 3.10.19:
Let N be a set of general clauses that is saturated w.r.t. Res.

Then N = 1L if and only if L € N.
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3.11 Theoretical Consequences

We get some classical results on properties of first-order logic as easy
corollaries.
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The Theorem of Lowenheim-Skolem

Theorem 3.11.1 (Lowenheim—Skolem):
Let > be a countable signature and let S be a set of closed X -formulas.
Then S is satisfiable if and only if S has a model over a countable universe.

There exist more refined versions of this theorem. For instance, one can
show that if S has some infinite model, then S has a model with a universe
of cardinality k for every k that is larger than or equal to the cardinalty of

the signature X.
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Compactness of Predicate Logic

Theorem 3.11.2 (Compactness Theorem for First-Order Logic):
Let S be a set of closed first-order formulas.
S is unsatisfiable < some finite subset S’ C S is unsatisfiable.
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