Automated Theorem Proving
Lecture 4: First-Order Logic

Prof. Dr. Jasmin Blanchette
based on slides by Dr. Uwe Waldmann

Winter Term 2025/26

Part 3: First-Order Logic

First-order logic

® IS expressive:
can be used to formalize mathematical concepts,
can be used to encode Turing machines,
but cannot axiomatize natural numbers or uncountable sets,

e has important decidable fragments,

e has interesting logical properties (model and proof theory).

First-order logic is also called (first-order) predicate logic.

3.1 Syntax

Syntax:

e nonlogical symbols (domain-specific)
= terms, atomic formulas

e logical connectives (domain-independent)
= Boolean combinations, quantifiers

Signatures

A signature ¥ = (£, 1) fixes an alphabet of nonlogical symbols, where

e () is a set of function symbols f with arity n > 0,
written arity(f) = n,

e [1is a set of predicate symbols P with arity m > 0,
written arity(P) = m.

Function symbols are also called operator symbols.
If n =0 then f is also called a constant (symbol).
If m =0 then P is also called a propositional variable.

Signatures

We will usually use
b, c, d for constant symbols,
f, g, h for nonconstant function symbols,
P, Q, R, S for predicate symbols.

Convention: We will usually write f/n € € instead of
f € Q, arity(f) = n (analogously for predicate symbols).

Signatures

Refined concept for practical applications:

many-sorted signatures (corresponds to simple type systems in programming
languages);

no big change from a logical point of view.

Variables

Predicate logic admits the formulation of abstract, schematic assertions.
(Object) variables are the technical tool for schematization.

We assume that X is a given countably infinite set of symbols which we
use to denote variables.

Terms

Terms over & and X (X-terms) are formed according to these syntactic
rules:

s, t,u,v = X , x € X (variable)
| f(s1,....sn) . f/neQ (functional term)

By Ts(X) we denote the set of >-terms (over X).
A term not containing any variable is called a ground term.
By Ty we denote the set of 2-ground terms.

Atoms

Atoms (also called atomic formulas) over ¥ are formed according to this

syntax:

A B = P(si,...,Sm) , P/me&Tl (nonequational atom)
{ | (s~ t) (equation) }

Whenever we admit equations as atomic formulas we are in the realm of
first-order logic with equality. Admitting equality does not really increase
the expressiveness of first-order logic (see next part). But deductive systems
where equality is treated specifically are much more efficient.

Literals

L =
|

A
—A

(positive literal)

(negative literal)

10

SV L

k>1

(empty clause)

(nonempty clause)

11

General First-Order Formulas

Fx(X) is the set of first-order formulas over ¥ defined as follows:

F.GGH = 1 (falsum)
T (verum)
A (atomic formula)
-F (negation)
(FAG) (conjunction)
(FV G) (disjunction)
(F — G) (implication)
(F < G) (equivalence)
Vx F (universal quantification)
dx F (existential quantification)

Notational Conventions

We omit parentheses according to the conventions for propositional logic.

Vxy,...,x, F and dxq,...,x, F abbreviate
Vxy...Vx, F and dx;...dx, F.

13

Notational Conventions

We use infix, prefix, postfix, or mixfix notation with the usual operator

precedences.

Examples:

S+ t*xu for

sxu<t—+v for

—S for
s| for
|s| for

0 for

+(s, *(t, u))
< (x(s, u), +(t, v))
—(s)
I(s)
-I(s)
0()

14

Example: Peano Arithmetic

Ypa = (£2pa, Mpa)
QPA = {O/O, —|—/2, */2, 5/1}
I_IPA — {</2}

Examples of formulas over this signature are

Vx,y (x <yVxmy)+ Iz(x+zxy))
IXVy (x+y~y)

Vx,y (x*s(y) =~ xxy + x)

Vx,y (s(x) = s(y) = x = y)

Vxdy (x < y A—-dz(x < zAz<y))

15

Positions in Terms and Formulas

The set of positions is extended from propositional logic to first-order logic:

The positions of a term s (formula F):

pos(x) = {€},
f(s1,---.5)) ={e} WU {ip | p € pos(si)},

P(tr,....ta)) = {e} UUL,{ip | p € pos(ti)}.

Vx F)={e}U{lp| p € pos(F)},
IxF) = {e}U{lp| p € pos(F)}.

AAAA

16

Positions in Terms and Formulas

The prefix order <, the subformula (subterm) operator, the formula (term)
replacement operator, and the size operator are extended accordingly.

17

Variables

The set of variables occurring in a term t is denoted by var(t)
(and analogously for atoms, literals, clauses, and formulas).

18

Bound and Free Variables

In Qx F, Q € {3, V}, we call F the scope of the quantifier Qx.
An occurrence of a variable x is called bound

if it is inside the scope of a quantifier Qx.

Any other occurrence of a variable is called free.

Formulas without free variables are called closed formulas

(or sentential forms).

Formulas without variables are called ground.

19

Bound and Free Variables

Example:

scope of Vy

_/\

scope of Vx
vy ((vx P(x)) — R(xv))

The occurrence of y is bound, as is the first occurrence of x. The second

occurrence of x Is a free occurrence.

20

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs
in all inference systems for first-order logic.

Substitutions are mappings
o: X — Tg(X)
such that the domain of o, that is, the set
dom(o) = {x € X | o(x) # x},

is finite. The set of variables introduced by o, that is, the set of variables
occurring in one of the terms o(x), with x € dom(o), is denoted by

codom(o).

21

Substitutions

Substitutions are often written as {x; > s1,...,x, > s,}, with x; pairwise

distinct, and then denote the mapping

si, Ify=x
{Xl%sl,...,Xn%Sn}(y): _
y, otherwise

We also write xo for o(x).

The modification of a substitution o at x is defined as follows:

t, if vy =x
olx = tl(y) = _
o(y), otherwise

22

Why Substitution is Complicated

We define the application of a substitution o to a term t or formula F by
structural induction over the syntactic structure of t or F by the equations
on the next slide.

In the presence of quantification it is surprisingly complex:

We must not only ensure that bound variables are not replaced by o.

We must also make sure that the (free) variables in the codomain of o are
not captured upon placing them into the scope of a quantifier Qy.

Hence the bound variable must be renamed into a “fresh,” that is,
previously unused, variable z.

23

Application of a Substitution

"Homomorphic” extension of o to terms and formulas:

f(sy,.-., sn)o = f(sio,..., Sno)
lo=_1
lTo=1T

P(sy, ..., sn)o = P(s0,..., SnO)

(u=v)o = (uo ~ vo)
—~Fo = —(Fo)
(FoG)o =(Fo o Go) for each binary connective o

(Qx F)o = Qz(F o[x — z]) with z a fresh variable

24

Application of a Substitution

If s = to for some substitution o,
we call the term s an instance of the term t,
and we call t a generalization of s (analogously for formulas).

25

3.2 Semantics

To give semantics to a logical system means to define a notion of truth for
the formulas. The concept of truth that we will now define for first-order
logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values
“true” and "false” denoted by 1 and 0, respectively.

26

Algebras

A > -algebra (also called X-interpretation or X -structure) is a triple

A= (Ua, (fa: ULy — Us)r/nea, (Pa S UL)p/men)

where Uy # () is a set, called the universe of A.
By >-Alg we denote the class of all 2-algebras.

> -algebras generalize the valuations from propositional logic.

27

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to
be defined externally (explicitly or implicitly in a given context) by an

assignment.

A (variable) assignment (over a given X-algebra A) is a function
5 : X — Uy.

Variable assignments are the semantic counterparts of substitutions.

28

Value of a Term in A with respect to

By structural induction we define
A(B) : Te(X) — Ua
as follows:

A(B)(x) = B(x),
AB)F(s1, ... 8n)) = fa(A(B)(s1), - .. A(B)(sn)),

x e X
f/ne

29

Value of a Term in A with respect to

In the scope of a quantifier we need to evaluate terms with respect to

modified assignments. To that end, let B[x +— a] : X — Uy, for x € X and
a € Uy, denote the assignment

INE if x=1y
pher ally) = B(y) otherwise

30

Truth Value of a Formula in A with respect to 5

A(B) : Fg(X) — {0, 1} is defined inductively as follows:

AB)L) = 0
AB)NT) = 1
AB)(P(st, ..., sn)) = if (A(B)(s1). .-, A(B)(sn)) € Pa
then 1 else 0

A(B)(s~t) = if A(B)(s)=A(B)(t) then 1 else O

31

Truth Value of a Formula in A with respect to 5

A(B) : Fg(X) — {0, 1} is defined inductively as follows:

A(B)(=F) = 1—A(B)(F)
AB)FAG) = min(A(B)(F), A(F)(G))
AB)FV G) = max(A(B)(F), A(B)(G))
AB)F = G) = max(1 - A(B)(F), A(F)(G))

(

A(B)F < G) = if A(B)(F)= A(B)(G) then 1 else 0
AB)(¥x F) = min {A(Blx = a])(F)}
AB)Ex F) = max{A(3]x > al)(F))

32

Example

The “standard” interpretation for Peano arithmetic:

Ue = {0,1,2,...}

Oy = 0

sN . n—n+1

+n : (n,m)— n+m

xn = (n,m)— nxm

<n = {(n,m)]| nless than m}

Note that N is just one out of many possible > pa-interpretations.

33

Example

Values over N for sample terms and formulas:

Under the assignment 3 : x — 1,y — 3 we obtain

_ O = = W

34

Ground Terms and Closed Formulas

If t is a ground term, then A(53)(t) does not depend on 3, that is,
A(B)(t) = A(B")(t) for every B and 3’.

Analogously, if F is a closed formula, then A(8)(F) does not depend on /3,
that is, A(8)(F) = A(B’)(F) for every B and 5.

35

Ground Terms and Closed Formulas

An element a € Uy is called term-generated if a = A(5)(t) for some

ground term t.

In general, not every element of an algebra is term-generated.

36

3.3 Models, Validity, and Satisfiability

F is true in A under assignment 3:
AbEF = AB)(F) =1
F is true in A (A is a model of F; F is valid in A):
AEF & APBEF forall e X — Uy
F is valid (or is a tautology):

=F & AEF forall Ae X-Alg

F is called satisfiable if there exist A and 3 such that A, 5 = F.

Otherwise F is called unsatisfiable.

37

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written F = G, if for
all A € 2-Alg and 3 € X — Uy, we have

ABEF = ABEG

F and G are called equivalent, written F G, if for all A € >-Alg and
g e X — Uy we have

ABEF < ABEG

38

Entailment and Equivalence

Proposition 3.3.1:
F = G if and only if F — G is valid

Proposition 3.3.2:
F = G if and only if F < G is valid.

Extension to sets of formulas N as in propositional logic, e.g.:

N=F & forall AcX-Algand g e X — Ugx:
if A,B = G forall G € N, then A, 3 = F.

39

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained
by the following proposition.

Proposition 3.3.3:
Let F and G be formulas, let N be a set of formulas. Then

(i) F is valid if and only if —=F is unsatisfiable.
(i) F = G if and only if F A =G is unsatisfiable.
(iii) N = G if and only if NU{—=G} is unsatisfiable.

Hence in order to design a theorem prover (validity checker), it is sufficient
to design a checker for unsatisfiability.

40

Substitution Lemma

Lemma 3.3.4:
Let A be a 2 -algebra, let 5 be an assignment, let ¢ be a substitution. Then
for any 2 -term t

A(B)(to) = A(B oo)(t),
where S oo : X — Uy4 is the assignment (8 o 0)(x) = A(S8)(x0o).
Proposition 3.3.5:

Let A be a 2-algebra, let 5 be an assignment, let ¢ be a substitution. Then
for every 2-formula F

A(B)(Fo) = A(Boa)(F).

41

Substitution Lemma

Corollary 3.3.6:
ABEFo & A BoockEF

These theorems basically express that the syntactic concept of substitution
corresponds to the semantic concept of an assignment.

42

Two Lemmas

Lemma 3.3.7:

Let A be a Y-algebra. Let F be a X -formula with free variables x;
Then

AEVx,..., x, F if and only if A= F.

43

Two Lemmas

Lemma 3.3.8:
Let A be a X-algebra.

Let F be a 2-formula with free variables xq, ..., Xp.

Let 0 be a substitution and let y;

vm be the free variables of Fo. Then

AEVxy,...,x, F implies AEVy1,...,ymFo.

44

3.4 Algorithmic Problems

Validity(F): = F?

Satisfiability(F): F satisfiable?

Entailment(F,G): does F entail G7

Model(A,F): AE F?

Solve(A,F): find an assignment 3 such that A, 3 = F.
Solve(F): find a substitution o such that = Fo.

Abduce(F): find G with “certain properties” such that G = F.

45

Theory of an Algebra

Let A € ¥-Alg. The (first-order) theory of A is defined as

Th(A) ={G e Fs(X) | A= G}

Problem of axiomatizability:

Given an algebra A (or a class of algebras) can one axiomatize Th(.4), that
is, can one write down a formula F (or a semidecidable set F of formulas)
such that

Th(A) ={G | F = G}?

46

Two Interesting Theories

Let Xpes = ({0/0,s/1,+/2}, {<}) and N, = (N, 0, s, +, <) its standard
interpretation on the natural numbers.

Th(N_) is called Presburger arithmetic (M. Presburger, 1929).

(There is no essential difference when one, instead of N, considers the
integer numbers Z as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS,
16(3):323-332, 1978), and in 2EXPSPACE, using automata-theoretic
methods (and there is a constant ¢ > 0 such that Th(Z,) & NTIME(227)).

47

Two Interesting Theories

However, N, = (N, 0, s, +, %, <), the standard interpretation of Zpy =

({0/0,s/1,+/2, «/2}, {<}), has as theory the so-called Peano arithmetic
which is undecidable and not even semidecidable.

48

(Non)computability Results

1. For most signatures 2, validity is undecidable for > -formulas.
(One can easily encode Turing machines in most signatures.)

2. Godel’'s completeness theorem:
For each signature X, the set of valid X-formulas is semidecidable.

(We will prove this by giving complete deduction systems.)

3. Godel's incompleteness theorem:
For ¥ = Ypa and N, = (N, 0, s, 4, *, <), the theory Th(N,) is not
semidecidable.

These complexity results motivate the study of subclasses of formulas

(fragments) of first-order logic.

49

