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1.4 Multisets

Let M be a set. A multiset S over M is a mapping S : M → N. We

interpret S(m) as the number of occurrences of elements m of the base set

M within the multiset S .

Example. S = {a, a, a, b, b} is a multiset over {a, b, c},

where S(a) = 3, S(b) = 2, S(c) = 0.

We say that m is an element of S if S(m) > 0.
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Multisets

We use set notation (∈, ⊆, ∪, ∩, etc.) with analogous meaning also for

multisets, e.g.,

m ∈ S :⇔ S(m) > 0

(S1 ∪ S2)(m) := S1(m) + S2(m)

(S1 ∩ S2)(m) := min{S1(m),S2(m)}

(S1 − S2)(m) :=







S1(m)− S2(m) if S1(m) ≥ S2(m)

0 otherwise

S1 ⊆ S2 :⇔ S1(m) ≤ S2(m) for all m ∈ M
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Multisets

A multiset S is called finite if the set

{m ∈ M | S(m) > 0}

is finite.

From now on we only consider finite multisets.
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Multiset Orderings

Let (M ,≻) be an abstract reduction system. The multiset extension of ≻

to multisets over M is defined by

S1 ≻mul S2 if and only if

there exist multisets X and Y over M such that

∅ 6= X ⊆ S1,

S2 = (S1 − X ) ∪ Y ,

∀y ∈ Y ∃x ∈ X : x ≻ y
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Multiset Orderings

Theorem 1.4.1:

(a) If ≻ is transitive, then ≻mul is transitive.

(b) If ≻ is irreflexive and transitive, then ≻mul is irreflexive.

(c) If ≻ is a well-founded ordering, then ≻mul is a well-founded ordering.

(d) If ≻ is a strict total ordering, then ≻mul is a strict total ordering.
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Multiset Orderings

The multiset extension as defined above is due to Dershowitz and Manna

(1979).

There are several other ways to characterize the multiset extension of a

binary relation. The following one is due to Huet and Oppen (1980):
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Multiset Orderings

Let (M ,≻) be an abstract reduction system. The (Huet–Oppen) multiset

extension of ≻ to multisets over M is defined by

S1 ≻
HO
mul S2 if and only if

S1 6= S2 and

∀m ∈ M :
(

S2(m) > S1(m)

⇒ ∃m′ ∈ M : m′ ≻ m and S1(m
′) > S2(m

′)
)
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Multiset Orderings

A third way to characterize the multiset extension of a binary relation ≻ is

to define it as the transitive closure of the relation ≻1
mul given by

S1 ≻
1
mul S2 if and only if

there exists x ∈ S1 and a multiset Y over M such that

S2 = (S1 − {x}) ∪ Y ,

∀y ∈ Y : x ≻ y
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Multiset Orderings

For strict partial orderings all three characterizations of ≻mul are equivalent:

Theorem 1.4.2:

If ≻ is a strict partial ordering, then

(a) ≻mul = ≻
HO
mul,

(b) ≻mul = (≻1
mul)

+.

Note, however, that for an arbitrary binary relation ≻ all three relations

≻mul, ≻
HO
mul, and (≻1

mul)
+ may be different.
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Part 2: Propositional Logic

Propositional logic

• logic of truth values,

• decidable (but NP-complete),

• can be used to describe functions over a finite domain,

• industry standard for many analysis/verification tasks

(e.g., model checking).
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2.1 Syntax

When we define a logic, we must define

what formulas of the logic look like (syntax),

and what they mean (semantics).

We start with the syntax.

Propositional formulas are built from

• propositional variables,

• logical connectives (e.g., ∧, ∨).
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Propositional Variables

Let Π be a set of propositional variables.

We use letters P , Q, R, S to denote propositional variables.
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Propositional Formulas

FΠ is the set of propositional formulas over Π defined inductively as follows:

F ,G ::= ⊥ (falsum)

| ⊤ (verum)

| P , P ∈ Π (atomic formula)

| (¬F ) (negation)

| (F ∧ G ) (conjunction)

| (F ∨ G ) (disjunction)

| (F → G ) (implication)

| (F ↔ G ) (equivalence)

14



Propositional Formulas

Sometimes further connectives are used, for instance

(F ← G ) (reverse implication)

(F ⊕ G ) (exclusive or)

(if F then G1 else G0) (if-then-else)
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Notational Conventions

As a notational convention we assume that ¬ binds strongest, and we

remove outermost parentheses, so ¬P ∨ Q is actually a shorthand for

((¬P) ∨ Q).

Instead of ((P ∧Q) ∧ R) we simply write P ∧Q ∧ R (analogously for ∨).

For all other logical connectives, we will use parentheses when needed.
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Formula Manipulation

Automated theorem proving is very much formula manipulation.

We perform syntactic operations on formulas to show semantic properties

of formulas.
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Formula Manipulation

To precisely describe the manipulation of a formula, we introduce positions.

A position is a word over N.

The set of positions of a formula F is inductively defined by

pos(F ) := {ε} if F ∈ {⊤,⊥} or F ∈ Π

pos(¬F ) := {ε} ∪ {1p | p ∈ pos(F )}

pos(F ◦ G ) := {ε} ∪ {1p | p ∈ pos(F )} ∪ {2p | p ∈ pos(G )}

where ◦ ∈ {∧,∨,→,↔}.
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Formula Manipulation

The prefix order ≤ on positions is defined by

p ≤ q if there is some p′ such that pp′ = q.

Note that the prefix order is partial, e.g., the positions 12 and 21 are not

comparable, they are “parallel,” see below.

By < we denote the strict part of ≤, that is,

p < q if p ≤ q but not q ≤ p.

By ‖ we denote incomparable positions, that is,

p ‖ q if neither p ≤ q nor q ≤ p.

We say that p is above q if p ≤ q, p is strictly above q if p < q, and

p and q are parallel if p ‖ q.
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Formula Manipulation

The size of a formula F is given by the cardinality of pos(F ): |F | := |pos(F )|.

The subformula of F at position p ∈ pos(F ) is recursively defined by

F |ε := F

(¬F )|1p := F |p

(F1 ◦ F2)|ip := Fi |p where i ∈ {1, 2}

and ◦ ∈ {∧,∨,→,↔}.
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Formula Manipulation

Finally, the replacement of a subformula at position p ∈ pos(F ) by a

formula G is recursively defined by

F [G ]ε := G

(¬F )[G ]1p := ¬(F [G ]p)

(F1 ◦ F2)[G ]1p := (F1[G ]p ◦ F2)

(F1 ◦ F2)[G ]2p := (F1 ◦ F2[G ]p)

where ◦ ∈ {∧,∨,→,↔}.
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Formula Manipulation

Example 2.1.1:

The set of positions for the formula F = (P → Q)→ (P ∧ ¬R)

is pos(F ) = {ε, 1, 11, 12, 2, 21, 22, 221}.

The subformula at position 22 is F |22 = ¬R

and replacing this formula by P ↔ Q results in

F [P ↔ Q]22 = (P → Q)→ (P ∧ (P ↔ Q)).
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2.2 Semantics

In classical logic (dating back to Aristotle) there are only two truth values,

“true” and “false,” which we will denote, respectively, by 1 and 0.

There are multi-valued logics that have more than two truth values.

23



Valuations

A propositional variable has no intrinsic meaning. The meaning of a

propositional variable needs to be defined by a valuation.

A Π-valuation is a function

A : Π→ {0, 1}

where {0, 1} is the set of truth values.

24



Truth Value of a Formula in A

Given a Π-valuation A : Π→ {0, 1}, its extension to formulas

A∗ : FΠ → {0, 1} is defined inductively as follows:

A∗(⊥) = 0

A∗(⊤) = 1

A∗(P) = A(P)

A∗(¬F ) = 1−A∗(F )

A∗(F ∧ G ) = min(A∗(F ),A∗(G ))

A∗(F ∨ G ) = max(A∗(F ),A∗(G ))

A∗(F → G ) = max(1−A∗(F ),A∗(G ))

A∗(F ↔ G ) = if A∗(F ) = A∗(G ) then 1 else 0
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Truth Value of a Formula in A

For simplicity, the extension A∗ of A is usually also denoted by A.

Note that formulas and truth values are disjoint classes of objects.

Statements like P = 1 or F ∧ G = 0 that equate formulas and truth values

are nonsensical.

A formula is never equal to a truth value, but it has a truth value in some

valuation A.
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2.3 Models, Validity, and Satisfiability

Let F be a Π-formula.

We say that F is true in A (A is a model of F ;

F is valid in A; F holds in A), written A |= F , if A(F ) = 1.

We say that F is valid or that F is a tautology, written |= F ,

if A |= F for all Π-valuations A.

F is called satisfiable if there exists an A such that A |= F .

Otherwise F is called unsatisfiable (or contradictory).
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Entailment and Equivalence

F entails (implies) G (or G is a consequence of F ),

written F |= G , if for all Π-valuations A we have

if A |= F then A |= G ,

or equivalently
A(F ) ≤ A(G ).

F and G are called equivalent, written F |=| G ,

if for all Π-valuations A we have

A |= F if and only if A |= G ,

or equivalently
A(F ) = A(G ).
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Entailment and Equivalence

F and G are called equisatisfiable

if either both F and G are satisfiable, or both F and G are unsatisfiable.
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Entailment and Equivalence

The notions defined above for formulas, such as satisfiability, validity, or

entailment, are extended to sets of formulas N by treating sets of formulas

analogously to conjunctions of formulas, e.g.:

A |= N if A |= G for all G ∈ N.

N |= F if for all Π-valuations A: if A |= N, then A |= F .

Note: Formulas are always finite objects; but sets of formulas may be

infinite. Therefore, it is in general not possible to replace a set of formulas

by the conjunction of its elements.
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Entailment and Equivalence

Proposition 2.3.1:

F |= G if and only if |= (F → G ).

Proposition 2.3.2:

F |=| G if and only if |= (F ↔ G ).
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Validity vs. Unsatisfiability

Validity and unsatisfiability of formulas are just two sides of the same medal

as explained by the following proposition.

Proposition 2.3.3:

F is valid if and only if ¬F is unsatisfiable.

Hence to design a theorem prover (validity checker),

it is sufficient to design a checker for unsatisfiability.
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Validity vs. Unsatisfiability

In a similar way, entailment can be reduced to unsatisfiability and

vice versa:

Proposition 2.3.4:

G |= F if and only if G ∧ ¬F is unsatisfiable.

N |= F if and only if N ∪ {¬F} is unsatisfiable.

Proposition 2.3.5:

G |= ⊥ if and only if G is unsatisfiable.

N |= ⊥ if and only if N is unsatisfiable.
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Checking Unsatisfiability

Every formula F contains only finitely many propositional variables.

Obviously, A(F ) depends only on the values of those finitely many variables

in F in A.

If F contains n distinct propositional variables, then it is sufficient to check

2n valuations to see whether F is satisfiable or not ⇒ truth table.

So the satisfiability problem is clearly decidable

(but, by Cook’s Theorem, NP-complete).

Nevertheless, in practice, there are much better methods than truth tables

to check the satisfiability of a formula.
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Replacement Theorem

Proposition 2.3.6:

Let A be a valuation, let F and G be formulas, and let H = H[F ]p be a

formula in which F occurs as a subformula at position p.

If A(F ) = A(G ), then A(H[F ]p) = A(H[G ]p).

Theorem 2.3.7:

Let F and G be equivalent formulas, let H = H[F ]p be a formula in which

F occurs as a subformula at position p.

Then H[F ]p is equivalent to H[G ]p.
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Some Important Equivalences

Proposition 2.3.8:

The following equivalences hold for all formulas F ,G ,H:

(F ∧ F ) |=| F

(F ∨ F ) |=| F (Idempotency)

(F ∧ G ) |=| (G ∧ F )

(F ∨ G ) |=| (G ∨ F ) (Commutativity)

(F ∧ (G ∧ H)) |=| ((F ∧ G ) ∧ H)

(F ∨ (G ∨ H)) |=| ((F ∨ G ) ∨ H) (Associativity)

(F ∧ (G ∨ H)) |=| ((F ∧ G ) ∨ (F ∧ H))

(F ∨ (G ∧ H)) |=| ((F ∨ G ) ∧ (F ∨ H)) (Distributivity)
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Some Important Equivalences

The following equivalences hold for all formulas F ,G ,H:

(F ∧ (F ∨ G )) |=| F

(F ∨ (F ∧ G )) |=| F (Absorption)

(¬¬F ) |=| F (Double Negation)

¬(F ∧ G ) |=| (¬F ∨ ¬G )

¬(F ∨ G ) |=| (¬F ∧ ¬G ) (De Morgan’s Laws)

(F ∧ G ) |=| F if G is a tautology

(F ∨ G ) |=| ⊤ if G is a tautology

(F ∧ G ) |=| ⊥ if G is unsatisfiable

(F ∨ G ) |=| F if G is unsatisfiable (Tautology Laws)
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Some Important Equivalences

The following equivalences hold for all formulas F ,G ,H:

(F ↔ G ) |=| ((F → G ) ∧ (G → F ))

(F ↔ G ) |=| ((F ∧ G ) ∨ (¬F ∧ ¬G )) (Equivalence)

(F → G ) |=| (¬F ∨ G ) (Implication)
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An Important Entailment

Proposition 2.3.9:

The following entailment holds for all formulas F ,G ,H:

(F ∨ H) ∧ (G ∨ ¬H) |= F ∨ G (Generalized Resolution)
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