
Automated Theorem Proving∗

Dr. Uwe Waldmann

with modifications by Prof. Dr. Jasmin Blanchette

Winter Term 2025/26

Contents

1 Preliminaries 3
1.1 Mathematical Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Abstract Reduction Systems . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Orderings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Multisets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Propositional Logic 12
2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Models, Validity, and Satisfiability . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Improving the CNF Transformation . . . . . . . . . . . . . . . . . . . . . 22
2.6 The DPLL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 From DPLL to CDCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 OBDDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.9 Other Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 First-Order Logic 32
3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Models, Validity, and Satisfiability . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Algorithmic Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

∗This document contains the text of the lecture slides (almost verbatim) plus some additional infor-
mation. It is not a full script and does not contain the examples and additional explanations given
during the lecture. Moreover it should not be taken as an example how to write a research paper—
neither stylistically nor typographically.
Parts of this document are based on lecture notes by Harald Ganzinger and Christoph Weidenbach.

1



3.5 Normal Forms and Skolemization . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Herbrand Interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7 Inference Systems and Proofs . . . . . . . . . . . . . . . . . . . . . . . . 48
3.8 Ground (or Propositional) Resolution . . . . . . . . . . . . . . . . . . . . 51
3.9 Refutational Completeness of Resolution . . . . . . . . . . . . . . . . . . 52
3.10 General Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.11 Theoretical Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.12 Ordered Resolution with Selection . . . . . . . . . . . . . . . . . . . . . . 69
3.13 Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.14 Hyperresolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.15 Implementing Resolution: The Main Loop . . . . . . . . . . . . . . . . . 79
3.16 Summary: Resolution Theorem Proving . . . . . . . . . . . . . . . . . . . 80
3.17 Semantic Tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.18 Semantic Tableaux for First-Order Logic . . . . . . . . . . . . . . . . . . 86

4 First-Order Logic with Equality 89
4.1 Handling Equality Naively . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2 Rewrite Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3 Confluence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4 Critical Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.5 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.6 Knuth–Bendix Completion . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.7 Unfailing Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Superposition 114
5.1 Recapitulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 The Superposition Calculus—Informally . . . . . . . . . . . . . . . . . . 118
5.3 The Superposition Calculus—Formally . . . . . . . . . . . . . . . . . . . 120
5.4 Superposition: Refutational Completeness . . . . . . . . . . . . . . . . . 122
5.5 Improvements and Refinements . . . . . . . . . . . . . . . . . . . . . . . 130

6 Efficient Saturation Procedures 133
6.1 Term Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.2 Index Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Outlook 139
7.1 Satisfiability Modulo Theories (SMT) . . . . . . . . . . . . . . . . . . . . 139
7.2 Sorted Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.3 Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.4 Higher-Order Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

2



1 Preliminaries

Literature:

Franz Baader and Tobias Nipkow: Term Rewriting and All That,
Cambridge Univ. Press, 1998, Chapter 2.

Before we start with the main subjects of the lecture, we repeat some prerequisites
from mathematics and computer science and introduce some tools that we will need
throughout the lecture.

1.1 Mathematical Prerequisites

N = {0, 1, 2, . . .} is the set of natural numbers (including 0).

Z, Q, R denote the integers, rational numbers and the real numbers, respectively.

∅ is the empty set.

If M and M ′ are sets, then M ∩ M ′, M ∪ M ′, and M \ M ′ denote the intersection,
union, and set difference of M and M ′.

The subset relation is denoted by ⊆. The strict subset relation is denoted by ⊂ (i.e.,
M ⊂M ′ if and only if M ⊆M ′ and M 6= M ′).

Relations

Let M be a set, let n ≥ 2. We write Mn for the n-fold cartesian product M × · · · ×M .

To handle the cases n ≥ 2, n = 1, and n = 0 simultaneously, we also define M1 = M
and M0 = {()}. (We do not distinguish between an element m of M and a 1-tuple (m)
of an element of M .)

An n-ary relation R over some set M is a subset of Mn: R ⊆Mn.

We often use predicate notation for relations:

Instead of (m1, . . . , mn) ∈ R we write R(m1, . . . , mn), and say that R(m1, . . . , mn) holds
or is true.

For binary relations, we often use infix notation, so
(m,m′) ∈ < ⇔ <(m,m′) ⇔ m < m′.

Since relations are sets, we can use the usual set operations for them.

Example: Let R = {(0, 2), (1, 2), (2, 2), (3, 2)} ⊆ N× N.
Then R ∩< = R ∩ {(n,m) ∈ N× N | n < m} = {(0, 2), (1, 2)}.
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A relation Q is a subrelation of a relation R if Q ⊆ R.

Words

Given a nonempty set (also called alphabet) Σ, the set Σ∗ of finite words over Σ is
defined inductively by

(i) the empty word ε is in Σ∗,

(ii) if u ∈ Σ∗ and a ∈ Σ then ua is in Σ∗.

The set of nonempty finite words Σ+ is Σ∗ \ {ε}.

The concatenation of two words u, v ∈ Σ∗ is denoted by uv.

The length |u| of a word u ∈ Σ∗ is defined by

(i) |ε| := 0,

(ii) |ua| := |u|+ 1 for any u ∈ Σ∗ and a ∈ Σ.

1.2 Abstract Reduction Systems

Throughout the lecture, we will have to work with reduction systems.

An abstract reduction system is a pair (A,→), where

A is a nonempty set,

→ ⊆ A× A is a binary relation on A.

The relation → is usually written in infix notation, i.e., a→ b instead of (a, b) ∈ →.

Let →′ ⊆ A×A and →′′ ⊆ A×A be two binary relations. Then the composition of →′

and →′′ is the binary relation (→′ ◦→′′) ⊆ A× A defined by

a (→′ ◦→′′) c if and only if there exists some b ∈ A such that a→′ b and b→′′ c.
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For a binary relation → ⊆ A×A, we define:

→0 = {(a, a) | a ∈ A} identity
→i+1 = →i ◦→ i+ 1-fold composition
→+ =

⋃

i>0→
i transitive closure

→∗ =
⋃

i≥0→
i = →+ ∪→0 reflexive transitive closure

→= = →∪→0 reflexive closure
← = →−1 = {(b, c) | c→ b} inverse
↔ = →∪← symmetric closure
↔+ = (↔)+ transitive symmetric closure
↔∗ = (↔)∗ reflexive transitive symmetric closure

or equivalence closure

b ∈ A is reducible if there is a c such that b→ c.

b is in normal form (or irreducible) if it is not reducible.

c is a normal form of b if b→∗ c and c is in normal form.
Notation: c = b↓ if the normal form of b is unique.

A relation → is called

terminating if there is no infinite descending chain b0 → b1 → b2 → · · · .

normalizing if every b ∈ A has a normal form.

Lemma 1.2.1 If → is terminating, then it is normalizing.

Note: The reverse implication does not hold (see exercise).

1.3 Orderings

Important properties of binary relations:

Let M 6= ∅. A binary relation R ⊆M ×M is called

reflexive if R(x, x) for all x ∈M ,

irreflexive if ¬R(x, x) for all x ∈M ,

antisymmetric if R(x, y) and R(y, x) imply x = y for all x, y ∈M ,

transitive if R(x, y) and R(y, z) imply R(x, z) for all x, y, z ∈M ,

total if R(x, y) or R(y, x) or x = y for all x, y ∈M .
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A strict partial ordering ≻ on a set M 6= ∅ is a transitive and irreflexive binary relation
on M .

Notation:
≺ for the inverse relation ≻−1

� for the reflexive closure (≻ ∪=) of ≻

Let ≻ be a strict partial ordering on M ; let M ′ ⊆M .

a ∈M ′ is called minimal in M ′ if there is no b ∈M ′ with a ≻ b.

a ∈M ′ is called smallest in M ′ if b ≻ a for all b ∈M ′ \ {a}.

Analogously:

a ∈M ′ is called maximal in M ′ if there is no b ∈M ′ with a ≺ b.

a ∈M ′ is called largest in M ′ if b ≺ a for all b ∈M ′ \ {a}.

Notation:
M≺x = {y ∈ M | y ≺ x},
M�x = {y ∈ M | y � x}.

A subset M ′ ⊆M is called downward-closed if x ∈M ′ and x ≻ y implies y ∈M ′.

Well-Foundedness

Termination of reduction systems is strongly related to the concept of well-founded
orderings.

A strict partial ordering ≻ on M is called well-founded (or Noetherian) if there is no
infinite descending chain a0 ≻ a1 ≻ a2 ≻ · · · with ai ∈M .

Well-Foundedness and Termination

Lemma 1.3.1 If ≻ is a well-founded partial ordering and → ⊆ ≻, then → is terminat-
ing.

Proof. Suppose that→ ⊆ ≻ for some partial ordering ≻ and that→ is not terminating.
Then there exists an infinite descending chain b0 → b1 → b2 → · · · . Since → ⊆ ≻, we
have an infinite descending chain b0 ≻ b1 ≻ b2 ≻ · · · , hence ≻ is not well-founded. ✷

Lemma 1.3.2 If → is a terminating binary relation over A, then →+ is a well-founded
partial ordering.

Proof. Transitivity of →+ is obvious; irreflexivity and well-foundedness follow from
termination of →. ✷
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Well-Founded Orderings: Examples

Natural numbers: (N, >)

Lexicographic orderings: Let (M1,≻1), (M2,≻2) be well-founded orderings. Define their
lexicographic combination

≻ = (≻1,≻2)lex

on M1 ×M2 by

(a1, a2) ≻ (b1, b2) :⇔ a1 ≻1 b1 or (a1 = b1 and a2 ≻2 b2)

(analogously for more than two orderings). This again yields a well-founded ordering
(proof below).

Length-based ordering on words: For alphabets Σ with a well-founded ordering >Σ, the
relation ≻ defined as

w ≻ w′ :⇔ |w| > |w′| or (|w| = |w′| and w >Σ,lex w
′)

is a well-founded ordering on the set Σ∗ of finite words over the alphabet Σ.

Nonexamples:
(Z, >)
(N, <)
the lexicographic ordering on Σ∗

Basic Properties of Well-Founded Orderings

Lemma 1.3.3 (M,≻) is well-founded if and only if every nonempty M ′ ⊆ M has a
minimal element.

Proof. “⇐”: Suppose that (M,≻) is not well-founded. Then there is an infinite descend-
ing chain a0 ≻ a1 ≻ a2 ≻ · · · with ai ∈ M . Consequently, the subset M ′ = {ai | i ∈ N},
does not have a minimal element.

“⇒”: Suppose that the nonempty subset M ′ ⊆ M does not have a minimal element.
Choose a0 ∈ M ′ arbitrarily. Since for every ai ∈ M ′ there is a smaller ai+1 ∈ M ′

(otherwise ai would be minimal in M ′), there is an infinite descending chain a0 ≻ a1 ≻
a2 ≻ · · · ✷

Lemma 1.3.4 (M1,≻1) and (M2,≻2) are well-founded if and only if (M1 × M2, ≻)
with ≻ = (≻1,≻2)lex is well-founded.
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Proof. “⇒”: Suppose (M1 × M2, ≻) is not well-founded. Then there is an infinite
sequence (a0, b0) ≻ (a1, b1) ≻ (a2, b2) ≻ · · · .

Let A = {ai | i ≥ 0} ⊆ M1. Since (M1,≻1) is well-founded, A has a minimal element
an. But then B = {bi | i ≥ n} ⊆ M2 can not have a minimal element, contradicting the
well-foundedness of (M2,≻2).

“⇐”: obvious. ✷

Monotone Mappings

Let (M,≻) and (M ′,≻′) be strict partial orderings. A mapping ϕ : M → M ′ is called
monotone if a ≻ b implies ϕ(a) ≻′ ϕ(b) for all a, b ∈M .

Lemma 1.3.5 If ϕ is a monotone mapping from (M,≻) to (M ′,≻′) and (M ′,≻′) is
well-founded, then (M,≻) is well-founded.

Proof. Suppose that (M,≻) is not well-founded, then there exists an infinite descending
chain a0 ≻ a1 ≻ a2 ≻ · · · . Since ai ≻ ai+1 implies ϕ(ai) ≻

′ ϕ(ai+1), we obtain an infinite
descending chain ϕ(a0) ≻

′ ϕ(a1) ≻
′ ϕ(a2) ≻

′ . . . , contradicting the well-foundedness of
(M ′,≻′). ✷

Well-Founded Induction

Well-founded induction generalizes the usual induction over natural numbers or data
structures.

Theorem 1.3.6 (Well-Founded (or Noetherian) Induction) Let (M,≻) be a well-
founded ordering, let Q be a property of elements of M .

If for all m ∈M the implication

if Q(m′) for all m′ ∈ M such that m ≻ m′,
then Q(m).

is satisfied, then the property Q(m) holds for all m ∈M .

Proof. Let X = {m ∈ M | Q(m) false}. Suppose that X 6= ∅. Since (M,≻) is well-
founded, X has a minimal element m0. Hence for all m

′ ∈M with m′ ≺ m0 the property
Q(m′) holds. On the other hand, the implication which is presupposed for this theorem
holds in particular also for m0, hence Q(m0) must be true. Therefore m0 cannot be in
X , contradicting the assumption. ✷
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Well-Founded Recursion

Similarly, well-founded recursion generalizes the usual recursion over natural numbers
or data structures. We will need this concept only once in this lecture, but in one of the
main theorems.

Let M and S be sets, let N ⊆M , and let f : M → S be a function. Then the restriction
of f to N , denoted by f |N , is a function from N to S with f |N(x) = f(x) for all x ∈ N .

Theorem 1.3.7 (Well-Founded (or Noetherian) Recursion) Let (M,≻) be a well-
founded ordering, let S be a set. Let φ be a binary function that takes two arguments x
and g and maps them to an element of S, where x ∈ M and g is a function from M≺x

to S.

Then there exists exactly one function f : M → S such that for all x ∈M

f(x) = φ(x, f |M≺x)

Proof. The proof consists of four parts.

Part 1: For every downward-closed subset N ⊆ M there is at most one function f :
N → S such that f(x) = φ(x, f |N≺x) = φ(x, f |M≺x).

Proof: First observe that if N ⊆ M is downward-closed and x ∈ N , then N≺x = M≺x.
Assume that there exist a downward-closed subset N ⊆M and two different functions f1
and f2 from N to S with the property. Therefore, the set N ′ := {x ∈ N | f1(x) 6= f2(x)}
is nonempty. By well-foundedness, N ′ has a minimal element y. By minimality of y,
f1|M≺y = f2|M≺y . Therefore f1(y) = φ(y, f1|M≺y) = φ(y, f2|M≺y) = f2(y), contradicting
the assumption.

Part 2: If N1 and N2 are downward-closed subsets of M and the functions f1 : N1 → S
and f2 : N2 → S satisfy fi(x) = φ(x, fi|M≺x) for all x ∈ Ni (i = 1, 2), then f1(x) = f2(x)
for all x ∈ N1 ∩N2.

Proof: Define N0 := N1 ∩N2 and f ′
i = fi|N0

for i = 1, 2. Clearly N0 is downward-closed
and for all x ∈ N0 and i = 1, 2 we have f ′

i(x) = fi(x) = φ(x, fi|M≺x) = φ(x, f ′
i |M≺x). By

part 1, there is at most one function from N0 to S with this property, so f ′
1 = f ′

2, and
therefore f1(x) = f2(x) for all x ∈ N1 ∩N2.

Part 3: For every y ∈ M there exists a function fy : M�y → S such that fy(x) =
φ(x, fy|M≺x) for all x ∈M�y.

Proof: We use well-founded induction over ≻. Let y ∈M . By the induction hypothesis,
for every z ≺ y there exists a function fz : M

�z → S such that fz(x) = φ(x, fz|M≺x) for
all x ∈M�z. By part 2, all functions fz agree on the intersections of their domains. Define
the function fy : M

�y → S by fy(x) = fx(x) for x ≺ y and by fy(y) = φ(y, fy|M≺y). The
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function fy has the desired property for x = y by construction and for all x ≺ y by the
induction hypothesis (since fy(x) = fx(x) for x ≺ y and fx has the desired property).

Part 4: There exists a function f : M → S such that f(x) = φ(x, f |M≺x) for all x ∈M .

Proof: Define f : M → S by f(x) = fx(x).

The claim of the theorem follows now from part 1 (for N := M) and part 4. ✷

The well-founded recursion scheme generalizes terminating recursive programs.

Note that functions defined by well-founded recursion need not be computable, in par-
ticular since for many well-founded orderings the sets M≺x may be infinite.

1.4 Multisets

Let M be a set. A multiset S over M is a mapping S : M → N. We interpret S(m) as
the number of occurrences of elements m of the base set M within the multiset S.

Example. S = {a, a, a, b, b} is a multiset over {a, b, c}, where S(a) = 3, S(b) = 2,
S(c) = 0.

We say that m is an element of S if S(m) > 0.

We use set notation (∈, ⊆, ∪, ∩, etc.) with analogous meaning also for multisets, e.g.,

m ∈ S :⇔ S(m) > 0

(S1 ∪ S2)(m) := S1(m) + S2(m)

(S1 ∩ S2)(m) := min{S1(m), S2(m)}

(S1 − S2)(m) :=

{
S1(m)− S2(m) if S1(m) ≥ S2(m)
0 otherwise

S1 ⊆ S2 :⇔ S1(m) ≤ S2(m) for all m ∈M

A multiset S is called finite if the set {m ∈M | S(m) > 0} is finite.

From now on we only consider finite multisets.
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Multiset Orderings

Let (M,≻) be an abstract reduction system. The multiset extension of ≻ to multisets
over M is defined by

S1 ≻mul S2 if and only if

there exist multisets X and Y over M such that

∅ 6= X ⊆ S1,

S2 = (S1 −X) ∪ Y,

∀y ∈ Y ∃x ∈ X : x ≻ y

Theorem 1.4.1
(a) If ≻ is transitive, then ≻mul is transitive.

(b) If ≻ is irreflexive and transitive, then ≻mul is irreflexive.

(c) If ≻ is a well-founded ordering, then ≻mul is a well-founded ordering.

(d) If ≻ is a strict total ordering, then ≻mul is a strict total ordering.

Proof. See Baader and Nipkow, pages 22–24. ✷

The multiset extension as defined above is due to Dershowitz and Manna (1979).

There are several other ways to characterize the multiset extension of a binary relation.
The following one is due to Huet and Oppen (1980):

Let (M,≻) be an abstract reduction system. The (Huet–Oppen) multiset extension of
≻ to multisets over M is defined by

S1 ≻
HO
mul S2 if and only if

S1 6= S2 and

∀m ∈M :
(
S2(m) > S1(m)

⇒ ∃m′ ∈M : m′ ≻ m and S1(m
′) > S2(m

′)
)

A third way to characterize the multiset extension of a binary relation ≻ is to define it
as the transitive closure of the relation ≻1

mul given by

S1 ≻
1
mul S2 if and only if

there exists x ∈ S1 and a multiset Y over M such that

S2 = (S1 − {x}) ∪ Y,

∀y ∈ Y : x ≻ y

For strict partial orderings all three characterizations of ≻mul are equivalent:
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Theorem 1.4.2 If ≻ is a strict partial ordering, then
(a) ≻mul = ≻

HO
mul,

(b) ≻mul = (≻1
mul)

+.

Proof. (a) See Baader and Nipkow, pages 24–26. (b) Exercise. ✷

Note, however, that for an arbitrary binary relation ≻ all three relations ≻mul, ≻
HO
mul, and

(≻1
mul)

+ may be different.

2 Propositional Logic

Propositional logic

• logic of truth values,

• decidable (but NP-complete),

• can be used to describe functions over a finite domain,

• industry standard for many analysis/verification tasks (e.g., model checking).

2.1 Syntax

When we define a logic, we must define what formulas of the logic look like (syntax),
and what they mean (semantics). We start with the syntax.

Propositional formulas are built from

• propositional variables,

• logical connectives (e.g., ∧, ∨).

Propositional Variables

Let Π be a set of propositional variables.

We use letters P , Q, R, S to denote propositional variables.
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Propositional Formulas

FΠ is the set of propositional formulas over Π defined inductively as follows:

F,G ::= ⊥ (falsum)
| ⊤ (verum)
| P , P ∈ Π (atomic formula)
| (¬F ) (negation)
| (F ∧G) (conjunction)
| (F ∨G) (disjunction)
| (F → G) (implication)
| (F ↔ G) (equivalence)

Sometimes further connectives are used, for instance

(F ← G) (reverse implication)
(F ⊕G) (exclusive or)
(if F then G1 else G0) (if-then-else)

Notational Conventions

As a notational convention we assume that ¬ binds strongest, and we remove outermost
parentheses, so ¬P ∨Q is actually a shorthand for ((¬P ) ∨Q).

Instead of ((P ∧Q) ∧ R) we simply write P ∧Q ∧R (analogously for ∨).

For all other logical connectives, we will use parentheses when needed.

Formula Manipulation

Automated theorem proving is very much formula manipulation. We perform syntactic
operations on formulas to show semantic properties of formulas.

To precisely describe the manipulation of a formula, we introduce positions.

A position is a word over N. The set of positions of a formula F is inductively defined
by

pos(F ) := {ε} if F ∈ {⊤,⊥} or F ∈ Π
pos(¬F ) := {ε} ∪ {1p | p ∈ pos(F )}

pos(F ◦G) := {ε} ∪ {1p | p ∈ pos(F )} ∪ {2p | p ∈ pos(G)}
where ◦ ∈ {∧,∨,→,↔}.

13



The prefix order ≤ on positions is defined by p ≤ q if there is some p′ such that pp′ = q.

Note that the prefix order is partial, e.g., the positions 12 and 21 are not comparable,
they are “parallel,” see below.

By < we denote the strict part of ≤, that is, p < q if p ≤ q but not q ≤ p.

By ‖ we denote incomparable positions, that is, p ‖ q if neither p ≤ q nor q ≤ p.

We say that p is above q if p ≤ q, p is strictly above q if p < q, and p and q are parallel
if p ‖ q.

The size of a formula F is given by the cardinality of pos(F ): |F | := |pos(F )|.

The subformula of F at position p ∈ pos(F ) is recursively defined by

F |ε := F
(¬F )|1p := F |p

(F1 ◦ F2)|ip := Fi|p where i ∈ {1, 2}
and ◦ ∈ {∧,∨,→,↔}.

Finally, the replacement of a subformula at position p ∈ pos(F ) by a formula G is
recursively defined by

F [G]ε := G
(¬F )[G]1p := ¬(F [G]p)

(F1 ◦ F2)[G]1p := (F1[G]p ◦ F2)
(F1 ◦ F2)[G]2p := (F1 ◦ F2[G]p)

where ◦ ∈ {∧,∨,→,↔}.

Example 2.1.1 The set of positions for the formula F = (P → Q) → (P ∧ ¬R) is
pos(F ) = {ε, 1, 11, 12, 2, 21, 22, 221}.

The subformula at position 22 is F |22 = ¬R and replacing this formula by P ↔ Q results
in F [P ↔ Q]22 = (P → Q)→ (P ∧ (P ↔ Q)).

2.2 Semantics

In classical logic (dating back to Aristotle) there are only two truth values, “true” and
“false,” which we will denote, respectively, by 1 and 0.

There are multi-valued logics that have more than two truth values.
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Valuations

A propositional variable has no intrinsic meaning. The meaning of a propositional vari-
able needs to be defined by a valuation.

A Π-valuation is a function A : Π→ {0, 1} where {0, 1} is the set of truth values.

Truth Value of a Formula in A

Given a Π-valuation A : Π → {0, 1}, its extension to formulas A∗ : FΠ → {0, 1} is
defined inductively as follows:

A∗(⊥) = 0
A∗(⊤) = 1
A∗(P ) = A(P )
A∗(¬F ) = 1−A∗(F )

A∗(F ∧G) = min(A∗(F ),A∗(G))
A∗(F ∨G) = max(A∗(F ),A∗(G))
A∗(F → G) = max(1−A∗(F ),A∗(G))
A∗(F ↔ G) = if A∗(F ) = A∗(G) then 1 else 0

For simplicity, the extension A∗ of A is usually also denoted by A.

Note that formulas and truth values are disjoint classes of objects. Statements like P = 1
or F ∧G = 0 that equate formulas and truth values are nonsensical. A formula is never
equal to a truth value, but it has a truth value in some valuation A.

2.3 Models, Validity, and Satisfiability

Let F be a Π-formula.

We say that F is true in A (A is a model of F ; F is valid in A; F holds in A), written
A |= F , if A(F ) = 1.

We say that F is valid or that F is a tautology , written |= F , if A |= F for all Π-
valuations A.

F is called satisfiable if there exists an A such that A |= F . Otherwise F is called
unsatisfiable (or contradictory).
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Entailment and Equivalence

F entails (implies) G (or G is a consequence of F ), written F |= G, if for all Π-valuations
A we have

if A |= F then A |= G,

or equivalently

A(F ) ≤ A(G).

F and G are called equivalent, written F |=| G, if for all Π-valuations A we have

A |= F if and only if A |= G,

or equivalently

A(F ) = A(G).

F and G are called equisatisfiable if either both F and G are satisfiable, or both F and
G are unsatisfiable.

The notions defined above for formulas, such as satisfiability, validity, or entailment, are
extended to sets of formulas N by treating sets of formulas analogously to conjunctions
of formulas, e.g.:

A |= N if A |= G for all G ∈ N .

N |= F if for all Π-valuations A: if A |= N , then A |= F .

Note: Formulas are always finite objects; but sets of formulas may be infinite. There-
fore, it is in general not possible to replace a set of formulas by the conjunction of its
elements.

Proposition 2.3.1 F |= G if and only if |= (F → G).

Proof. (⇒) Suppose that F entails G. Let A be an arbitrary Π-valuation. We have to
show that A |= F → G. If A(F ) = 1, then A(G) = 1 (since F |= G), and hence A(F →
G) = max(1− 1, 1) = 1. Otherwise A(F ) = 0, then A(F → G) = max(1− 0,A(G)) = 1
independently of A(G). In both cases, A |= F → G.

(⇐) Suppose that F does not entail G. Then there exists a Π-valuation A such that
A |= F , but not A |= G. Consequently, A(F → G) = max(1−A(F ),A(G)) = max(1−
1, 0) = 0, so (F → G) does not hold in A. ✷

Proposition 2.3.2 F |=| G if and only if |= (F ↔ G).

Proof. Analogously to Prop. 2.3.1. ✷
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Validity vs. Unsatisfiability

Validity and unsatisfiability of formulas are just two sides of the same medal as explained
by the following proposition.

Proposition 2.3.3 F is valid if and only if ¬F is unsatisfiable.

Proof. (⇒) If F is valid, then A(F ) = 1 for every valuation A. Hence A(¬F ) =
1−A(F ) = 0 for every valuation A, so ¬F is unsatisfiable.

(⇐) Analogously. ✷

Hence to design a theorem prover (validity checker), it is sufficient to design a checker
for unsatisfiability.

In a similar way, entailment can be reduced to unsatisfiability and vice versa:

Proposition 2.3.4 G |= F if and only if G ∧ ¬F is unsatisfiable.
N |= F if and only if N ∪ {¬F} is unsatisfiable.

Proposition 2.3.5 G |= ⊥ if and only if G is unsatisfiable.
N |= ⊥ if and only if N is unsatisfiable.

Checking Unsatisfiability

Every formula F contains only finitely many propositional variables. Obviously, A(F )
depends only on the values of those finitely many variables in F in A.

If F contains n distinct propositional variables, then it is sufficient to check 2n valuations
to see whether F is satisfiable or not ⇒ truth table.

So the satisfiability problem is clearly decidable (but, by Cook’s Theorem, NP-complete).

Nevertheless, in practice, there are much better methods than truth tables to check the
satisfiability of a formula.
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Replacement Theorem

Proposition 2.3.6 Let A be a valuation, let F and G be formulas, and let H = H [F ]p
be a formula in which F occurs as a subformula at position p.

If A(F ) = A(G), then A(H [F ]p) = A(H [G]p).

Proof. The proof proceeds by induction over the length of p.

If p = ε, then H [F ]ε = F and H [G]ε = G, so A(H [F ]p) = A(F ) = A(G) = A(H [G]p)
by assumption.

If p = 1q or p = 2q, then H = ¬H1 or H = H1 ◦ H2 for ◦ ∈ {∧,∨,→,↔}. Assume
that p = 1q and that H = H1 ∧ H2, hence H [F ]p = H [F ]1q = H1[F ]q ∧ H2. By the
induction hypothesis, A(H1[F ]q) = A(H1[G]q). Hence A(H [F ]1q) = A(H1[F ]q ∧ H2) =
min(A(H1[F ]q),A(H2)) = min(A(H1[G]q),A(H2)) = A(H1[G]q ∧H2) = A(H [G]1q).

The case p = 2q and the other boolean connectives are handled analogously. ✷

Theorem 2.3.7 Let F and G be equivalent formulas, let H = H [F ]p be a formula in
which F occurs as a subformula at position p.

Then H [F ]p is equivalent to H [G]p.

Proof. We have to show that A(H [F ]p) = A(H [G]p) for every Π-valuation A.

Choose A arbitrarily. Since F and G are equivalent, we know that A(F ) = A(G). Hence,
by the previous proposition, A(H [F ]p) = A(H [G]p). ✷

Some Important Equivalences

Proposition 2.3.8 The following equivalences hold for all formulas F,G,H :

(F ∧ F ) |=| F
(F ∨ F ) |=| F (Idempotency)

(F ∧G) |=| (G ∧ F )
(F ∨G) |=| (G ∨ F ) (Commutativity)

(F ∧ (G ∧H)) |=| ((F ∧G) ∧H)
(F ∨ (G ∨H)) |=| ((F ∨G) ∨H) (Associativity)

(F ∧ (G ∨H)) |=| ((F ∧G) ∨ (F ∧H))
(F ∨ (G ∧H)) |=| ((F ∨G) ∧ (F ∨H)) (Distributivity)
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(F ∧ (F ∨G)) |=| F
(F ∨ (F ∧G)) |=| F (Absorption)

(¬¬F ) |=| F (Double Negation)

¬(F ∧G) |=| (¬F ∨ ¬G)
¬(F ∨G) |=| (¬F ∧ ¬G) (De Morgan’s Laws)

(F ∧G) |=| F if G is a tautology
(F ∨G) |=| ⊤ if G is a tautology
(F ∧G) |=| ⊥ if G is unsatisfiable
(F ∨G) |=| F if G is unsatisfiable (Tautology Laws)

(F ↔ G) |=| ((F → G) ∧ (G→ F ))
(F ↔ G) |=| ((F ∧G) ∨ (¬F ∧ ¬G)) (Equivalence)

(F → G) |=| (¬F ∨G) (Implication)

An Important Entailment

Proposition 2.3.9 The following entailment holds for all formulas F,G,H :

(F ∨H) ∧ (G ∨ ¬H) |= F ∨G (Generalized Resolution)

2.4 Normal Forms

Many theorem proving calculi do not operate on arbitrary formulas, but only on some
restricted class of formulas.

We define conjunctions of formulas as follows:
∧0

i=1 Fi = ⊤.
∧1

i=1 Fi = F1.
∧n+1

i=1 Fi =
∧n

i=1 Fi ∧ Fn+1 for n ≥ 1.

And analogously disjunctions:
∨0

i=1 Fi = ⊥.
∨1

i=1 Fi = F1.
∨n+1

i=1 Fi =
∨n

i=1 Fi ∨ Fn+1 for n ≥ 1.
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Literals and Clauses

A literal is either a propositional variable P or a negated propositional variable ¬P .

A clause is a (possibly empty) disjunction of literals.

CNF and DNF

A formula is in conjunctive normal form (CNF, also clausal normal form) if it is a
conjunction of disjunctions of literals (or in other words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF) if it is a disjunction of conjunctions of
literals.

Warning: definitions in the literature differ:

are complementary literals (e.g., P and ¬P ) permitted?
are duplicated literals permitted?
are empty disjunctions/conjunctions permitted?

Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:

A formula in CNF is valid if and only if each of its disjunctions contains a pair of
complementary literals P and ¬P .

Conversely, a formula in DNF is unsatisfiable if and only if each of its conjunctions
contains a pair of complementary literals P and ¬P .

On the other hand, checking the unsatisfiability of CNF formulas or the validity of DNF
formulas is coNP-complete.

Conversion to CNF/DNF

Proposition 2.4.1 For every formula there is an equivalent formula in CNF (and also
an equivalent formula in DNF).

Proof. We describe a (naive) algorithm to convert a formula to CNF.

Apply the following rules as long as possible (modulo commutativity of ∧ and ∨):

Step 1: Eliminate equivalences:

H [F ↔ G]p ⇒CNF H [(F → G) ∧ (G→ F )]p

Step 2: Eliminate implications:

H [F → G]p ⇒CNF H [¬F ∨G]p
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Step 3: Push negations inward:

H [¬(F ∨G)]p ⇒CNF H [¬F ∧ ¬G]p

H [¬(F ∧G)]p ⇒CNF H [¬F ∨ ¬G]p

Step 4: Eliminate multiple negations:

H [¬¬F ]p ⇒CNF H [F ]p

Step 5: Push disjunctions inward:

H [(F ∧ F ′) ∨G]p ⇒CNF H [(F ∨G) ∧ (F ′ ∨G)]p

Step 6: Eliminate ⊤ and ⊥:

H [F ∧ ⊤]p ⇒CNF H [F ]p

H [F ∧ ⊥]p ⇒CNF H [⊥]p

H [F ∨ ⊤]p ⇒CNF H [⊤]p

H [F ∨ ⊥]p ⇒CNF H [F ]p

H [¬⊥]p ⇒CNF H [⊤]p

H [¬⊤]p ⇒CNF H [⊥]p

Proving termination is easy for steps 2, 4, and 6; steps 1, 3, and 5 are a bit more
complicated.

For step 1, we can prove termination in the following way: We define a function µ1 from
formulas to positive integers such that µ1(⊥) = µ1(⊤) = µ1(P ) = 1, µ1(¬F ) = µ1(F ),
µ1(F ∧ G) = µ1(F ∨ G) = µ1(F → G) = µ1(F ) + µ1(G), and µ1(F ↔ G) = 2µ1(F ) +
2µ1(G) + 1. Observe that µ1 is constructed in such a way that µ1(F ) > µ1(G) implies
µ1(H [F ]) > µ1(H [G]) for all formulas F , G, and H . Furthermore, µ1 has the property
that swapping the arguments of some ∧ or ∨ in a formula F does not change the
value of µ1(F ). (This is important since the transformation rules can be applied modulo
commutativity of ∧ and ∨.). Using these properties, we can show that whenever a formula
H ′ is the result of applying the rule of step 1 to a formula H , then µ1(H) > µ1(H

′).
Since µ1 takes only positive integer values, step 1 must terminate.

Termination of steps 3 and 5 is proved similarly. For step 3, we use function µ2 from
formulas to positive integers such that µ2(⊥) = µ2(⊤) = µ2(P ) = 1, µ2(¬F ) = 2µ2(F ),
µ2(F ∧G) = µ2(F ∨G) = µ2(F → G) = µ2(F ↔ G) = µ2(F ) + µ2(G) + 1. Whenever a
formula H ′ is the result of applying a rule of step 3 to a formula H , then µ2(H) > µ2(H

′).
Since µ2 takes only positive integer values, step 3 must terminate.

For step 5, we use a function µ3 from formulas to positive integers such that µ3(⊥) =
µ3(⊤) = µ3(P ) = 1, µ3(¬F ) = µ3(F ) + 1, µ3(F ∧ G) = µ3(F → G) = µ3(F ↔ G) =
µ3(F ) + µ3(G) + 1, and µ3(F ∨G) = 2µ3(F )µ3(G). Again, if a formula H ′ is the result
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of applying a rule of step 5 to a formula H , then µ3(H) > µ3(H
′). Since µ3 takes only

positive integer values, step 5 terminates, too.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except that conjunctions
have to be pushed inward in step 5. ✷

Example 2.4.2 The following steps convert the formula (P ∨Q)↔ R to CNF:

(P ∨Q)↔ R

⇒CNF (1) ((P ∨Q)→ R) ∧ (R→ (P ∨Q))

⇒2
CNF (2) (¬(P ∨Q) ∨ R) ∧ (¬R ∨ (P ∨Q))

⇒CNF (3) ((¬P ∧ ¬Q) ∨ R) ∧ (¬R ∨ (P ∨Q))

⇒CNF (5) ((¬P ∨ R) ∧ (¬Q ∨ R)) ∧ (¬R ∨ (P ∨Q))

Exploiting the associativity and commutativity of ∧ and ∨, we obtain

(¬P ∨R) ∧ (¬Q ∨R) ∧ (¬R ∨ P ∨Q)

Negation Normal Form (NNF)

The formula after application of step 4 is said to be in Negation Normal Form, i.e., it
contains neither → nor ↔ and negation symbols only occur in front of propositional
variables (atoms).

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is exponential in the
size of the original one.

2.5 Improving the CNF Transformation

The goal

“Given a formula F , find an equivalent formula G in CNF”

is unpractical.

But if we relax the requirement to

“Given a formula F , find an equisatisfiable formula G in CNF”
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we can get an efficient transformation.

Literature:

Andreas Nonnengart and Christoph Weidenbach: Computing small clause normal forms,
in Handbook of Automated Reasoning, pages 335-367. Elsevier, 2001.

Christoph Weidenbach: Automated Reasoning (Chapter 2). Textbook draft, 2021.

Tseitin Transformation

Proposition 2.5.1 A formula H [F ]p is satisfiable if and only if H [Q]p ∧ (Q ↔ F ) is
satisfiable, where Q is a new propositional variable that works as an abbreviation for F .

Proof. “⇒”: Suppose that the Π-formula H [F ]p is satisfiable. Let A be a Π-valuation
such that A(H [F ]p) = 1. Let Q be a new propositional variable (that is, a variable
that is not contained in Π). Let Π′ = Π ∪ {Q} and let A′ be the Π′-valuation defined
by A′(P ) = A(P ) for all P ∈ Π and A′(Q) = A(F ). Since H [F ]p is a Π-formula, we
have A′(H [F ]p) = A(H [F ]p) = 1 and A′(F ) = A(F ). Therefore A′(Q) = A′(F ) and by
Prop. 2.3.6 A′(H [Q]p) = A

′(H [F ]p) = 1, thus A′(H [Q]p ∧ (Q↔ F )) = 1.

“⇐”: Let Π′ = Π ∪ {Q}. Suppose that the Π′-formula H [Q]p ∧ (Q ↔ F ) is satisfiable.
Let A′ be a Π′-valuation such that A′(H [Q]p ∧ (Q↔ F )) = 1. Then A′(H [Q]p) = 1 and
A′(Q) = A′(F ), so by Prop. 2.3.6 A′(H [F ]p) = A

′(H [Q]p) = 1. ✷

Satisfiability-preserving CNF transformation (Tseitin 1970):

Apply Prop. 2.5.1 recursively bottom up to all subformulas F in the original formula
(except ⊥, ⊤, and literals). This introduces a linear number of new propositional
variables Q and definitions Q↔ F .

Convert the resulting conjunction to CNF. This increases the size only by an additional
factor, since each formula Q↔ F yields at most four clauses in the CNF.

Example 2.5.2 We convert the formula (P ∨Q)↔ R to CNF using the Tseitin trans-
formation. First, we name the subformulas:

(P ∨Q)
︸ ︷︷ ︸

Q1

↔ R.

︸ ︷︷ ︸

Q2

Next, we compute the following equisatisfiable formula:

Q2 ∧ (Q2 ↔ (Q1 ↔ R)) ∧ (Q1 ↔ P ∨Q).

Finally, we apply the CNF transformation.
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2.6 The DPLL Procedure

Goal:
Given a propositional formula in CNF (or alternatively, a finite set N of clauses), check
whether it is satisfiable (and optionally: output one solution if it is satisfiable).

Preliminaries

Recall:

A |= C if and only if A |= L for some literal L ∈ C.

A |= N if and only if A |= C for all clauses C in N .

Assumptions:

Clauses contain neither duplicated literals nor complementary literals.

The order of literals in a clause is irrelevant.

⇒ Clauses behave like sets of literals.

Notation:

We use the notation C ∨ L to denote a clause with some literal L and a clause rest
C. Here L need not be the last literal of the clause and C may be empty.

L is the complementary literal of L, i.e., P = ¬P and ¬P = P .

Partial Valuations

Since we will construct satisfying valuations incrementally, we consider partial valuations
(that is, partial mappings A : Π→ {0, 1}).

Every partial valuation A corresponds to a set M of literals that does not contain
complementary literals, and vice versa:

A(L) is true if L ∈ M .

A(L) is false if L ∈M .

A(L) is undefined if neither L ∈ M nor L ∈M .

We will use A and M interchangeably.

A clause is true in a partial valuation A (or in a set M of literals) if one of its literals is
true; it is false (or “conflicting”) if all its literals are false; otherwise it is undefined (or
“unresolved”).
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Unit Clauses

Observation:
Let A be a partial valuation. If the set N contains a clause C such that all literals in C
but one are false in A, then the following properties are equivalent:

• there is a valuation that is a model of N and extends A.

• there is a valuation that is a model of N and extends A and makes the remaining
literal L of C true.

C is called a unit clause; L is called a unit literal.

Pure Literals

One more observation:
Let A be a partial valuation and P a variable that is undefined in A. If P occurs
only positively (or only negatively) in the unresolved clauses in N , then the following
properties are equivalent:

• there is a valuation that is a model of N and extends A.

• there is a valuation that is a model of N and extends A and assigns 1 (0) to P .

P is called a pure literal.

The Davis-Putnam-Logemann-Loveland Procedure

boolean DPLL(literal set M , clause set N) {
if (all clauses in N are true in M) return true;
elsif (some clause in N is false in M) return false;
elsif (N contains unit literal P ) return DPLL(M ∪ {P}, N);
elsif (N contains unit literal ¬P ) return DPLL(M ∪ {¬P}, N);
elsif (N contains pure literal P ) return DPLL(M ∪ {P}, N);
elsif (N contains pure literal ¬P ) return DPLL(M ∪ {¬P}, N);
else {

let P be some undefined variable in N ;
if (DPLL(M ∪ {¬P}, N)) return true;
else return DPLL(M ∪ {P}, N);

}

}

Initially, DPLL is called with an empty literal set and the clause set N .
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Example 2.6.1 We run the DPLL procedure on the clause set

N = {¬P ∨ R, ¬Q ∨R, ¬R ∨ P ∨Q}.

We start with M = ∅. Since there are no unit or pure literals, we arbitrarily set R to
false: M := {¬R}. Then ¬P ∨ R contains the unit literal ¬P , so M := {¬R, ¬P}.
Moreover, ¬Q ∨ R contains the unit literal ¬Q, so M := {¬R, ¬P , ¬Q}. At this point,
all clauses in N are true in M , so the procedure stops with the model M .

2.7 From DPLL to CDCL

The DPLL procedure can be improved significantly:

The pure literal check is only done while preprocessing (otherwise it is too expensive).

If a conflict is detected, information is reused by conflict analysis and learning.

The algorithm is implemented iteratively⇒ the backtrack stack is managed explicitly
(it may be possible and useful to backtrack more than one level).

The branching variable is not chosen randomly.

Under certain circumstances, the procedure is restarted.

The improved procedure is called CDCL: Conflict-Driven Clause Learning.

Literature:

Lintao Zhang and Sharad Malik: The Quest for Efficient Boolean Satisfiability Solvers,
Proc. CADE-18, LNAI 2392, pp. 295–312, Springer, 2002.

Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli: Solving SAT and SAT Modulo
Theories—From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T),
pp. 937–977, Journal of the ACM, 53(6), 2006.

Armin Biere, Marijn Heule, Hans van Maaren, Toby Walsh (eds.): Handbook of Satisfi-
ability, IOS Press, 2009

Daniel Le Berre’s slides at VTSA ’09: http://www.mpi-inf.mpg.de/vtsa09/.

See also Johannsen’s SAT Solving lecture.
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2.8 OBDDs

Goal:

Efficient manipulation of (equivalence classes of) propositional formulas.

Method: Minimized graph representation of decision trees, based on a fixed ordering
on propositional variables.

⇒ Canonical representation of formulas.

⇒ Satisfiability checking as a side effect.

Literature:

Randal E. Bryant: Graph-Based Algorithms for Boolean Function Manipulation, IEEE
Transactions on Computers, 35(8):677-691, 1986.

Randal E. Bryant: Symbolic Boolean Manipulation with Ordered Binary Decision Dia-
grams, ACM Computing Surveys, 24(3), September 1992, pp. 293-318.

Michael Huth and Mark Ryan: Logic in Computer Science: Modelling and Reasoning
about Systems, Chapter 6.1/6.2; Cambridge Univ. Press, 2000.

BDDs

BDD (Binary decision diagram):

Labeled DAG (directed acyclic graph).

Leaf nodes:

labeled with a truth value (0 or 1).

Nonleaf nodes (inner nodes):

labeled with a propositional variable,
exactly two outgoing edges, labeled with 0 ( ) and 1 ( )

P

Q

1 0

1

0

1
0

⇔

P

Q

1 0
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Every BDD node can be interpreted as a mapping from valuations to truth values:
Traverse the BDD from the given node to a leaf node; for any node labeled with P , take
the 0-edge or 1-edge depending on whether A(P ) is 0 or 1.

⇒ Compact representation of truth tables.

OBDDs

OBDD (Ordered BDD):

Let < be a total ordering of the propositional variables.

An OBDD w.r.t. < is a BDD where every edge from a nonleaf node leads either to a
leaf node or to a nonleaf node with a strictly larger label w.r.t. <.

OBDDs and formulas:

A leaf node 0 represents ⊥ (or any unsatisfiable formula).

A leaf node 1 represents ⊤ (or any valid formula).

If a nonleaf node v has the label P , and its 0-edge leads to a node representing
the formula F0, and its 1-edge leads to a node representing the formula F1, then v
represents the formula

F |=| if P then F1 else F0

|=| (P ∧ F1) ∨ (¬P ∧ F0)
|=| (P → F1) ∧ (¬P → F0)

Conversely:

Define F{P 7→ H} as the formula obtained from F by replacing every occurrence of
P in F by H .

For every formula F and propositional variable P :

F |=| (P ∧ F{P 7→ ⊤}) ∨ (¬P ∧ F{P 7→ ⊥})

(Shannon expansion of F , originally due to Boole).

Consequence: Every formula F can be represented by an OBDD.
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Reduced OBDDs

An OBDD is called reduced if it has

• no duplicated leaf nodes 0 0

• no duplicated nonleaf nodes P P

• no redundant tests P

Theorem 2.8.1 (Bryant 1986) Every OBDD can be converted into an equivalent re-
duced OBDD.

Example: Reducing an OBDD

P

Q Q

R R

0 1 0 1

⇒

P

Q Q

R R

0 1

P

Q Q

R R

0 1

⇒

P

Q Q

R

0 1

⇒

P

Q

R

0 1
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Reduced OBDDs

Assumptions from now on:

One fixed ordering >.

We consider only reduced OBDDs.

Theorem 2.8.2 (Bryant 1986) If v and v′ are two different nodes in a reduced OBDD,
then they represent nonequivalent formulas.

Proof. We use induction over the maximum of the numbers of nodes reachable from v
and v′, respectively. Let F and F ′ be the formulas represented by v and v′.

Case 1: v and v′ are nonleaf nodes labeled by different propositional variables P and P ′.
Without loss of generality, P < P ′.

Let v0 and v1 be the 0-successor and the 1-successor of v, and let F0 and F1 be formulas
represented by v0 and v1. We may assume without loss of generality that all propositional
variables occurring in F ′, F0, and F1 are larger than P . By reducedness, v0 6= v1, so by
induction, F0 6|=| F1. Hence there must be a valuation A such that A(F0) 6= A(F1).
Define valuations A0 and A1 by

A0(P ) = 0 A1(P ) = 1
A0(Q) = A(Q) A1(Q) = A(Q) for all Q 6= P

We know that the node v represents F |=| (P ∧ F1) ∨ (¬P ∧ F0), so A0(F ) = A0(F0) =
A(F0) and A1(F ) = A1(F1) = A(F1), and therefore A0(F ) 6= A1(F ). On the other hand,
P does not occur in F ′, therefore A0(F

′) = A1(F
′). So we must have A0(F ) 6= A0(F

′)
or A1(F ) 6= A1(F

′), which implies F 6|=| F ′.

Case 2: v and v′ are nonleaf nodes labeled by the same propositional variable.
Case 3: v is a nonleaf node, v′ is a nonleaf node, or vice versa.
Case 4: v and v′ are different leaf nodes.

Analogously. ✷

Corollary 2.8.3 F is valid if and only if it is represented by 1 . F is unsatisfiable if

and only if it is represented by 0 .
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Operations on OBDDs

Example:

Let ◦ be a binary connective.

Let P be the smallest propositional variable that occurs in F or G or both.

F ◦G |=| (P ∧ (F ◦G){P 7→ ⊤}) ∨ (¬P ∧ (F ◦G){P 7→ ⊥})

|=| (P ∧ (F{P 7→ ⊤} ◦G{P 7→ ⊤})
∨ (¬P ∧ (F{P 7→ ⊥} ◦G{P 7→ ⊥})))

⇒ Obvious recursive function on OBDD nodes
(needs memoizing for efficient implementation).

The size of the OBDD for F ◦ G is bounded by mn, where F has size m and G has
size n. (Size = number of nodes.)

With memoization, the time for computing F ◦G is also at most O(mn).

The size of an OBDD for a given formula depends crucially on the chosen ordering of
the propositional variables:

Let F = (P1 ∧ P2) ∨ (P3 ∧ P4) ∨ · · · ∨ (P2n−1 ∧ P2n).

P1 < P2 < P3 < P4 < · · · < P2n−1 < P2n: 2n+ 2 nodes.

P1 < P3 < · · · < P2n−1 < P2 < P4 < · · · < P2n: 2n+1 nodes.

Example: Variable Ordering in OBDDs

The reduced OBDD for (P ↔ Q) ∧ (R↔ S) with variable ordering P < Q < R < S.

P

Q Q

R

S S

0 1

The reduced OBDD for (P ↔ Q) ∧ (R↔ S) with variable ordering P < R < Q < S.
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P

R R

Q Q Q Q

S S

0 1

Operations on OBDDs

Even worse: There are (practically relevant) formulas for which the OBDD has expo-
nential size for every ordering of the propositional variables.

2.9 Other Calculi

FRAIGs (functionally reduced and-inverter graphs)
Ordered resolution
Tableau calculus
Hilbert calculus
Sequent calculus
Natural deduction

3 First-Order Logic

→First-order logic

• is expressive:
can be used to formalize mathematical concepts,
can be used to encode Turing machines,
but cannot axiomatize natural numbers or uncountable sets,

• has important decidable fragments,

• has interesting logical properties (model and proof theory).

First-order logic is also called (first-order) predicate logic.
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3.1 Syntax

Syntax:

• nonlogical symbols (domain-specific)
⇒ terms, atomic formulas

• logical connectives (domain-independent)
⇒ Boolean combinations, quantifiers

Signatures

A signature Σ = (Ω,Π) fixes an alphabet of nonlogical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0, written arity(f) = n,

• Π is a set of predicate symbols P with arity m ≥ 0, written arity(P ) = m.

Function symbols are also called operator symbols.
If n = 0 then f is also called a constant (symbol).
If m = 0 then P is also called a propositional variable.

We will usually use

b, c, d for constant symbols,

f , g, h for nonconstant function symbols,

P , Q, R, S for predicate symbols.

Convention: We will usually write f/n ∈ Ω instead of f ∈ Ω, arity(f) = n (analogously
for predicate symbols).

Refined concept for practical applications:
many-sorted signatures (corresponds to simple type systems in programming languages);
no big change from a logical point of view.

Variables

Predicate logic admits the formulation of abstract, schematic assertions. (Object) vari-
ables are the technical tool for schematization.

We assume that X is a given countably infinite set of symbols which we use to denote
variables.
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Terms

Terms over Σ and X (Σ-terms) are formed according to these syntactic rules:

s, t, u, v ::= x , x ∈ X (variable)
| f(s1, ..., sn) , f/n ∈ Ω (functional term)

By TΣ(X) we denote the set of Σ-terms (over X). A term not containing any variable
is called a ground term. By TΣ we denote the set of Σ-ground terms.

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this syntax:

A,B ::= P (s1, . . . , sm) , P/m ∈ Π (nonequational atom)
[

| (s ≈ t) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm of first-order logic
with equality . Admitting equality does not really increase the expressiveness of first-
order logic (see next part). But deductive systems where equality is treated specifically
are much more efficient.

Literals

L ::= A (positive literal)
| ¬A (negative literal)

Clauses

C,D ::= ⊥ (empty clause)
| L1 ∨ · · · ∨ Lk, k ≥ 1 (nonempty clause)

General First-Order Formulas

FΣ(X) is the set of first-order formulas over Σ defined as follows:
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F,G,H ::= ⊥ (falsum)
| ⊤ (verum)
| A (atomic formula)
| ¬F (negation)
| (F ∧G) (conjunction)
| (F ∨G) (disjunction)
| (F → G) (implication)
| (F ↔ G) (equivalence)
| ∀xF (universal quantification)
| ∃xF (existential quantification)

Notational Conventions

We omit parentheses according to the conventions for propositional logic.

∀x1, . . . , xn F and ∃x1, . . . , xn F abbreviate ∀x1 . . .∀xn F and ∃x1 . . .∃xn F .

We use infix, prefix, postfix, or mixfix notation with the usual operator precedences.

Examples:
s+ t ∗ u for +(s, ∗(t, u))

s ∗ u ≤ t+ v for ≤ (∗(s, u),+(t, v))
−s for −(s)
s! for !(s)
|s| for | |(s)
0 for 0()

Example: Peano Arithmetic

ΣPA = (ΩPA, ΠPA)
ΩPA = {0/0, +/2, ∗/2, s/1}
ΠPA = {</2}

Examples of formulas over this signature are

∀x, y ((x < y ∨ x ≈ y)↔ ∃z (x+ z ≈ y))
∃x∀y (x+ y ≈ y)
∀x, y (x ∗ s(y) ≈ x ∗ y + x)
∀x, y (s(x) ≈ s(y)→ x ≈ y)
∀x∃y (x < y ∧ ¬∃z(x < z ∧ z < y))
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Positions in Terms and Formulas

The set of positions is extended from propositional logic to first-order logic:

The positions of a term s (formula F ):

pos(x) = {ε},
pos(f(s1, . . . , sn)) = {ε} ∪

⋃n
i=1{ip | p ∈ pos(si)},

pos(P (t1, . . . , tn)) = {ε} ∪
⋃n

i=1{ip | p ∈ pos(ti)},

pos(∀xF ) = {ε} ∪ {1p | p ∈ pos(F )},
pos(∃xF ) = {ε} ∪ {1p | p ∈ pos(F )}.

The prefix order ≤, the subformula (subterm) operator, the formula (term) replacement
operator, and the size operator are extended accordingly.

Variables

The set of variables occurring in a term t is denoted by var(t) (and analogously for
atoms, literals, clauses, and formulas).

Bound and Free Variables

In QxF, Q ∈ {∃, ∀}, we call F the scope of the quantifier Qx. An occurrence of a variable
x is called bound if it is inside the scope of a quantifier Qx. Any other occurrence of a
variable is called free.

Formulas without free variables are called closed formulas (or sentential forms).

Formulas without variables are called ground.

Example:

∀y

scope of ∀y
︷ ︸︸ ︷

((∀x

scope of ∀x
︷ ︸︸ ︷

P (x) ) → R(x, y))

The occurrence of y is bound, as is the first occurrence of x. The second occurrence of
x is a free occurrence.
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Substitutions

Substitution is a fundamental operation on terms and formulas that occurs in all infer-
ence systems for first-order logic.

Substitutions are mappings

σ : X → TΣ(X)

such that the domain of σ, that is, the set

dom(σ) = {x ∈ X | σ(x) 6= x},

is finite. The set of variables introduced by σ, that is, the set of variables occurring in
one of the terms σ(x), with x ∈ dom(σ), is denoted by codom(σ).

Substitutions are often written as {x1 7→ s1, . . . , xn 7→ sn}, with xi pairwise distinct,
and then denote the mapping

{x1 7→ s1, . . . , xn 7→ sn}(y) =

{

si, if y = xi

y, otherwise

We also write xσ for σ(x).

The modification of a substitution σ at x is defined as follows:

σ[x 7→ t](y) =

{

t, if y = x

σ(y), otherwise

Why Substitution is Complicated

We define the application of a substitution σ to a term t or formula F by structural
induction over the syntactic structure of t or F by the equations below.

In the presence of quantification it is surprisingly complex: We must not only ensure
that bound variables are not replaced by σ. We must also make sure that the (free)
variables in the codomain of σ are not captured upon placing them into the scope of
a quantifier Qy. Hence the bound variable must be renamed into a “fresh,” that is,
previously unused, variable z.
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Application of a Substitution

“Homomorphic” extension of σ to terms and formulas:

f(s1, . . . , sn)σ = f(s1σ, . . . , snσ)

⊥σ = ⊥

⊤σ = ⊤

P (s1, . . . , sn)σ = P (s1σ, . . . , snσ)

(u ≈ v)σ = (uσ ≈ vσ)

¬Fσ = ¬(Fσ)

(F ◦G)σ = (Fσ ◦ Gσ) for each binary connective ◦

(QxF )σ = Qz (F σ[x 7→ z]) with z a fresh variable

If s = tσ for some substitution σ, we call the term s an instance of the term t, and we
call t a generalization of s (analogously for formulas).

3.2 Semantics

To give semantics to a logical system means to define a notion of truth for the formulas.
The concept of truth that we will now define for first-order logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values “true” and
“false” denoted by 1 and 0, respectively.

Algebras

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

A = (UA, (fA : Un
A → UA)f/n∈Ω, (PA ⊆ Um

A )P/m∈Π)

where UA 6= ∅ is a set, called the universe of A.

By Σ-Alg we denote the class of all Σ-algebras.

Σ-algebras generalize the valuations from propositional logic.
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Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be defined exter-
nally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment (over a given Σ-algebra A) is a function β : X → UA.

Variable assignments are the semantic counterparts of substitutions.

Value of a Term in A with respect to β

By structural induction we define

A(β) : TΣ(X)→ UA

as follows:

A(β)(x) = β(x), x ∈ X
A(β)(f(s1, . . . , sn)) = fA(A(β)(s1), . . . ,A(β)(sn)), f/n ∈ Ω

In the scope of a quantifier we need to evaluate terms with respect to modified assign-
ments. To that end, let β[x 7→ a] : X → UA, for x ∈ X and a ∈ UA, denote the
assignment

β[x 7→ a](y) =

{

a if x = y

β(y) otherwise

Truth Value of a Formula in A with respect to β

A(β) : FΣ(X)→ {0, 1} is defined inductively as follows:

A(β)(⊥) = 0

A(β)(⊤) = 1

A(β)(P (s1, . . . , sn)) = if (A(β)(s1), . . . ,A(β)(sn)) ∈ PA then 1 else 0

A(β)(s ≈ t) = if A(β)(s) = A(β)(t) then 1 else 0
A(β)(¬F ) = 1−A(β)(F )

A(β)(F ∧G) = min(A(β)(F ),A(β)(G))

A(β)(F ∨G) = max(A(β)(F ),A(β)(G))

A(β)(F → G) = max(1−A(β)(F ),A(β)(G))

A(β)(F ↔ G) = if A(β)(F ) = A(β)(G) then 1 else 0

A(β)(∀xF ) = min
a∈UA

{A(β[x 7→ a])(F )}

A(β)(∃xF ) = max
a∈UA

{A(β[x 7→ a])(F )}
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Example

The “standard” interpretation for Peano arithmetic:

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n+ 1

+N : (n,m) 7→ n+m

∗N : (n,m) 7→ n ∗m

<N = {(n,m) | n less than m}

Note that N is just one out of many possible ΣPA-interpretations.

Values over N for sample terms and formulas:

Under the assignment β : x 7→ 1, y 7→ 3 we obtain

N(β)(s(x) + s(0)) = 3
N(β)(x+ y ≈ s(y)) = 1
N(β)(∀x, y (x+ y ≈ y + x)) = 1
N(β)(∀z (z < y)) = 0
N(β)(∀x∃y (x < y)) = 1

Ground Terms and Closed Formulas

If t is a ground term, then A(β)(t) does not depend on β, that is, A(β)(t) = A(β ′)(t)
for every β and β ′.

Analogously, if F is a closed formula, then A(β)(F ) does not depend on β, that is,
A(β)(F ) = A(β ′)(F ) for every β and β ′.

An element a ∈ UA is called term-generated if a = A(β)(t) for some ground term t.

In general, not every element of an algebra is term-generated.

3.3 Models, Validity, and Satisfiability

F is true in A under assignment β:

A, β |= F :⇔ A(β)(F ) = 1

F is true in A (A is a model of F ; F is valid in A):

A |= F :⇔ A, β |= F for all β ∈ X → UA
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F is valid (or is a tautology):

|= F :⇔ A |= F for all A ∈ Σ-Alg

F is called satisfiable if there exist A and β such that A, β |= F . Otherwise F is called
unsatisfiable.

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F ), written F |= G, if for all A ∈ Σ-Alg
and β ∈ X → UA, we have

A, β |= F ⇒ A, β |= G

F and G are called equivalent, written F |=| G, if for all A ∈ Σ-Alg and β ∈ X → UA

we have

A, β |= F ⇔ A, β |= G

Proposition 3.3.1 F |= G if and only if F → G is valid

Proof. (⇒) Suppose that (F → G) is not valid. Then there exist an algebra A and
an assignment β such that A(β)(F → G) = 0, which means that A(β)(F ) = 1 and
A(β)(G) = 0, or in other words A, β |= F but not A, β |= G. Consequently, F |= G does
not hold.

(⇐) Suppose that F |= G does not hold. Then there exist an algebra A and an assign-
ment β such that A, β |= F but not A, β |= G. Therefore A(β)(F ) = 1 and A(β)(G) = 0,
which implies A(β)(F → G) = 0, so (F → G) is not valid. ✷

Proposition 3.3.2 F |=| G if and only if F ↔ G is valid.

Extension to sets of formulas N as in propositional logic, e.g.:

N |= F :⇔ for all A ∈ Σ-Alg and β ∈ X → UA:
if A, β |= G for all G ∈ N , then A, β |= F .
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Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the
following proposition.

Proposition 3.3.3 Let F and G be formulas, let N be a set of formulas. Then

(i) F is valid if and only if ¬F is unsatisfiable.

(ii) F |= G if and only if F ∧ ¬G is unsatisfiable.

(iii) N |= G if and only if N ∪ {¬G} is unsatisfiable.

Hence in order to design a theorem prover (validity checker), it is sufficient to design a
checker for unsatisfiability.

Substitution Lemma

Lemma 3.3.4 Let A be a Σ-algebra, let β be an assignment, let σ be a substitution.
Then for any Σ-term t

A(β)(tσ) = A(β ◦ σ)(t),

where β ◦ σ : X → UA is the assignment (β ◦ σ)(x) = A(β)(xσ).

Proof. We use induction over the structure of Σ-terms.

If t = x, then A(β ◦ σ)(x) = β ◦ σ(x) = A(β)(xσ) by definition of β ◦ σ.

If t = f(t1, . . . , tn), then A(β ◦ σ)(f(t1, . . . , tn)) = fA(A(β ◦ σ)(t1), . . . ,A(β ◦ σ)(tn)) =
fA(A(β)(t1σ), . . . ,A(β)(tnσ)) = A(β)(f(t1σ, . . . , tnσ)) = A(β)(f(t1, . . . , tn)σ) by induc-
tion. ✷

Proposition 3.3.5 Let A be a Σ-algebra, let β be an assignment, let σ be a substitu-
tion. Then for every Σ-formula F

A(β)(Fσ) = A(β ◦ σ)(F ) .

Corollary 3.3.6 A, β |= Fσ ⇔ A, β ◦ σ |= F

These theorems basically express that the syntactic concept of substitution corresponds
to the semantic concept of an assignment.
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Two Lemmas

Lemma 3.3.7 LetA be a Σ-algebra. Let F be a Σ-formula with free variables x1, . . . , xn.
Then

A |= ∀x1, . . . , xn F if and only if A |= F .

Proof. (⇒) Suppose that A |= ∀x1, . . . , xn F , that is, A(β)(∀x1, . . . , xn F ) = 1 for all
assignments β. By definition, that means

min
a1,...,an∈UA

{A(β[x1 7→ a1, . . . , xn 7→ an])(F )} = 1,

and therefore A(β[x1 7→ a1, . . . , xn 7→ an])(F ) = 1 for all a1, . . . , an ∈ UA.

Let γ be an arbitrary assignment. We have to show that A(γ)(F ) = 1. For every i ∈
{1, . . . , n} define ai = γ(xi), then γ = γ[x1 7→ a1, . . . , xn 7→ an], and thereforeA(γ)(F ) =
A(γ[x1 7→ a1, . . . , xn 7→ an])(F ) = 1.

(⇐) Suppose that A |= F , that is, A(γ)(F ) = 1 for all assignments γ.

Then in particular A(β[x1 7→ a1, . . . , xn 7→ an])(F ) = 1 for all a1, . . . , an ∈ UA (take
γ = β[x1 7→ a1, . . . , xn 7→ an]). Therefore

A(β)(∀x1, . . . , xn F ) = min
a1,...,an∈UA

{A(β[x1 7→ a1, . . . , xn 7→ an])(F )} = 1.

✷

Lemma 3.3.8 LetA be a Σ-algebra. Let F be a Σ-formula with free variables x1, . . . , xn.
Let σ be a substitution and let y1, . . . , ym be the free variables of Fσ. Then

A |= ∀x1, . . . , xn F implies A |= ∀y1, . . . , ym Fσ .

Proof. By the previous lemma, we have A |= ∀x1, . . . , xn F if and only if A |= F and
similarly A |= ∀y1, . . . , ym Fσ if and only if A |= Fσ. So it suffices to show that A |= F
implies A |= Fσ. Suppose that A |= F , that is, A(β)(F ) = 1 for all assignments β.
Then for every assignment γ, we have by Prop. 3.3.5 A(γ)(Fσ) = A(γ ◦ σ)(F ) = 1 (take
β = γ ◦ σ), and therefore A |= Fσ. ✷
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3.4 Algorithmic Problems

Validity(F ): |= F ?

Satisfiability(F ): F satisfiable?

Entailment(F ,G): does F entail G?

Model(A,F ): A |= F ?

Solve(A,F ): find an assignment β such that A, β |= F .

Solve(F ): find a substitution σ such that |= Fσ.

Abduce(F ): find G with “certain properties” such that G |= F .

Theory of an Algebra

Let A ∈ Σ-Alg. The (first-order) theory of A is defined as

Th(A) = {G ∈ FΣ(X) | A |= G}

Problem of axiomatizability:

Given an algebra A (or a class of algebras) can one axiomatize Th(A), that is, can one
write down a formula F (or a semidecidable set F of formulas) such that

Th(A) = {G | F |= G}?

Two Interesting Theories

Let ΣPres = ({0/0, s/1,+/2}, {<}) and N+ = (N, 0, s,+, <) its standard interpretation
on the natural numbers. Th(N+) is called Presburger arithmetic (M. Presburger, 1929).
(There is no essential difference when one, instead of N, considers the integer numbers
Z as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS, 16(3):323–332,
1978), and in 2EXPSPACE, using automata-theoretic methods (and there is a constant
c ≥ 0 such that Th(Z+) 6∈ NTIME(22

cn

)).

However, N∗ = (N, 0, s,+, ∗, <), the standard interpretation of ΣPA = ({0/0, s/1,+/2,
∗/2}, {<}), has as theory the so-called Peano arithmetic which is undecidable and not
even semidecidable.
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(Non)computability Results

1. For most signatures Σ, validity is undecidable for Σ-formulas.
(One can easily encode Turing machines in most signatures.)

2. Gödel’s completeness theorem:
For each signature Σ, the set of valid Σ-formulas is semidecidable.
(We will prove this by giving complete deduction systems.)

3. Gödel’s incompleteness theorem:
For Σ = ΣPA and N∗ = (N, 0, s,+, ∗, <), the theory Th(N∗) is not semidecidable.

These complexity results motivate the study of subclasses of formulas (fragments) of
first-order logic.

3.5 Normal Forms and Skolemization

Study of normal forms motivated by

• reduction of logical concepts,

• efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers. The subsequent
normal form transformations are intended to eliminate many of them.

Prenex Normal Form (Traditional)

Prenex formulas have the form

Q1x1 . . .Qnxn F,

where F is quantifier-free and Qi ∈ {∀, ∃}; we call Q1x1 . . .Qnxn the quantifier prefix
and F the matrix of the formula.

Computing prenex normal form by the reduction system ⇒P :

H [(F ↔ G)]p ⇒P H [(F → G) ∧ (G→ F )]p
H [¬QxF ]p ⇒P H [Qx¬F ]p

H [((QxF ) ◦ G)]p ⇒P H [Qy (F{x 7→ y} ◦ G)]p,
◦ ∈ {∧,∨}

H [((QxF )→ G)]p ⇒P H [Qy (F{x 7→ y} → G)]p,
H [(F ◦ (QxG))]p ⇒P H [Qy (F ◦ G{x 7→ y})]p,

◦ ∈ {∧,∨,→}

Here y is always assumed to be some fresh variable and Q denotes the quantifier dual
to Q, i.e., ∀ = ∃ and ∃ = ∀.
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Skolemization

Intuition: replacement of ∃y by a concrete choice function computing y from all the
arguments y depends on.

Transformation ⇒S

(to be applied outermost, not in subformulas):

∀x1, . . . , xn∃y F ⇒S ∀x1, . . . , xn F{y 7→ f(x1, . . . , xn)}

where f/n is a new function symbol (Skolem function).

Together: F ⇒∗
P G

︸︷︷︸

prenex
⇒∗

S H
︸︷︷︸

prenex, no ∃

Theorem 3.5.1 Let F , G, and H as defined above and closed. Then

(i) F and G are equivalent.

(ii) H |= G but the converse is not true in general.

(iii) G satisfiable (w.r.t. Σ-Alg) ⇔ H satisfiable (w.r.t. Σ′-Alg) where Σ′ = (Ω ∪
SKF ,Π) if Σ = (Ω,Π).

The Complete Picture

F ⇒∗
P Q1y1 . . .QnynG (G quantifier-free)

⇒∗
S ∀x1, . . . , xmH (m ≤ n, H quantifier-free)

⇒∗
CNF

∀x1, . . . , xm
︸ ︷︷ ︸

leave out

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸

clauses Ci
︸ ︷︷ ︸

F ′

N = {C1, . . . , Ck} is called the clausal (normal) form of F .
Note: The variables in the clauses are implicitly universally quantified.

Theorem 3.5.2 Let F be closed. Then F ′ |= F . (The converse is not true in general.)

Theorem 3.5.3 Let F be closed. Then F is satisfiable if and only if F ′ is satisfiable if
and only if N is satisfiable.
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Example 3.5.4 We clausify ¬∃x (∀y (P (x, y) ∨Q(y, x))):

¬∃x (∀y (P (x, y) ∨Q(y, x)))

⇒P ∀x (¬∀y (P (x, y) ∨Q(y, x)))

⇒P ∀x ∃y (¬(P (x, y) ∨Q(y, x)))

⇒S ∀x (¬(P (x, f1(x)) ∨Q(f1(x), x)))

⇒CNF ∀x (¬P (x, f1(x)) ∧ ¬Q(f1(x), x))

Thus N = {¬P (x, f1(x)), ¬Q(f1(x), x)}.

Optimization

The normal form algorithm described so far leaves lots of room for optimization. Note
that we only can preserve satisfiability anyway due to Skolemization.

• the size of the clausal normal form is exponential when done naively; the trans-
formations we already introduced for propositional logic avoid this exponential
growth;

• we want to preserve the original formula structure;

• we want small arity of Skolem functions.

See Nonnengart and Weidenbach 2001 for details.

3.6 Herbrand Interpretations

From now on we will consider first-order logic without equality. We assume that Ω
contains at least one constant symbol.

An Herbrand interpretation (over Σ) is a Σ-algebra A such that

• UA = TΣ (= the set of ground terms over Σ)

• fA : (s1, . . . , sn) 7→ f(s1, . . . , sn), f/n ∈ Ω

In other words, values are fixed to be ground terms and functions are fixed to be the term
constructors. Only predicate symbols P/m ∈ Π may be freely interpreted as relations
PA ⊆ Tm

Σ .

Proposition 3.6.1 Every set of ground atoms I uniquely determines an Herbrand in-
terpretation A via

(s1, . . . , sn) ∈ PA if and only if P (s1, . . . , sn) ∈ I

Thus we will identify Herbrand interpretations (over Σ) with sets of Σ-ground atoms.
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Existence of Herbrand Models

An Herbrand interpretation I is called an Herbrand model of F if I |= F .

The importance of Herbrand models lies in the following theorem, which we will prove
later in this lecture:

Let N be a set of (universally quantified) Σ-clauses. Then the following properties are
equivalent:

(1) N has a model.
(2) N has an Herbrand model (over Σ).
(3) GΣ(N) has an Herbrand model (over Σ).

where GΣ(N) = {Cσ ground clause | (∀~xC) ∈ N, σ : X → TΣ} is the set of ground
instances of N .

3.7 Inference Systems and Proofs

Inference systems Γ (proof calculi) are sets of tuples

(F1, . . . , Fn, Fn+1), n ≥ 0,

called inferences, and written

premises
︷ ︸︸ ︷

F1 · · · Fn

Fn+1
︸︷︷︸

conclusion

side condition

Clausal inference system: Premises and conclusions are clauses. One also considers in-
ference systems over other data structures.

Inference Systems

Inference systems Γ are shorthands for reduction systems over sets of formulas. If N is
a set of formulas, then

premises
︷ ︸︸ ︷

F1 · · · Fn

Fn+1
︸︷︷︸

conclusion

side condition
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is a shorthand for

N ∪ {F1, . . . , Fn} ⇒Γ N ∪ {F1, . . . , Fn} ∪ {Fn+1}
if side condition

Proofs

A proof in Γ of a formula F from a set of formulas N (called assumptions) is a sequence
F1, . . . , Fk of formulas where

(i) Fk = F ,

(ii) for all 1 ≤ i ≤ k: Fi ∈ N or there exists an inference

Fm1
· · · Fmn

Fi

in Γ, such that 0 ≤ mj < i, for 1 ≤ j ≤ n.

Soundness and Completeness

Provability ⊢Γ of F from N in Γ:

N ⊢Γ F if there exists a proof in Γ of F from N.

Γ is called sound if

F1 · · · Fn

F
∈ Γ implies F1, . . . , Fn |= F

Γ is called complete if

N |= F implies N ⊢Γ F

Γ is called refutationally complete if

N |= ⊥ implies N ⊢Γ ⊥

Proposition 3.7.1

(i) Let Γ be sound. Then N ⊢Γ F ⇒ N |= F .

(ii) If N ⊢Γ F then there exist finitely many F1, . . . , Fn ∈ N such that F1, . . . , Fn ⊢Γ F .
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Reduced Proofs

The definition of a proof of F given above admits sequences F1, . . . , Fk of formulas where
some Fi are not ancestors of Fk = F (i.e., some Fi are not actually used to derive F ).

A proof is called reduced if every Fi with i < k is an ancestor of Fk.

We obtain a reduced proof from a proof by marking first Fk and then recursively all the
premises used to derive a marked conclusion, and by deleting all nonmarked formulas in
the end.

Reduced Proofs as Trees

markings = formulas
leaves = assumptions and axioms

other nodes = inferences: conclusion = parent node
premises = child nodes

P (f(c))

P (f(c)) ∨Q(b)

P (f(c)) ∨Q(b) ¬P (f(c)) ∨ ¬P (f(c)) ∨Q(b)

¬P (f(c)) ∨Q(b) ∨Q(b)

¬P (f(c)) ∨Q(b)

Q(b) ∨Q(b)

Q(b) ¬P (f(c)) ∨ ¬Q(b)

¬P (f(c))

⊥

Mandatory vs. Admissible Inferences

It is useful to distinguish between two kinds of inferences:

• Mandatory (required) inferences:

Must be performed to ensure refutational completeness.

The fewer, the better.

• Optional (admissible) inferences:

May be performed if useful.

We will first consider only mandatory inferences.
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3.8 Ground (or Propositional) Resolution

We observe that propositional clauses and ground clauses are essentially the same, as
long as we do not consider equational atoms.

In this section we deal only with ground clauses.

Unlike in Part 2 we admit duplicated literals in clauses, i.e., we treat clauses as multisets
of literals, not as sets.

The Resolution Calculus Res

Resolution inference rule:

D ∨A C ∨ ¬A

D ∨ C

Terminology: D ∨ C: resolvent; A: resolved atom

(Positive) factorization inference rule:

C ∨ A ∨A

C ∨A

These are schematic inference rules; for each substitution of the schematic variables C,
D, and A, by ground clauses and ground atoms, respectively, we obtain an inference.

We treat “∨” as associative and commutative, hence A and ¬A can occur anywhere in
the clauses; moreover, when we write C ∨ A, etc., this includes unit clauses, that is,
C = ⊥.

An Example Refutation

1 ¬P (f(c)) ∨ ¬P (f(c)) ∨Q(b) (given)
2 P (f(c)) ∨Q(b) (given)
3 ¬P (g(b, c)) ∨ ¬Q(b) (given)
4 P (g(b, c)) (given)
5 ¬P (f(c)) ∨Q(b) ∨Q(b) (Res. 2 into 1)
6 ¬P (f(c)) ∨Q(b) (Fact. 5)
7 Q(b) ∨Q(b) (Res. 2 into 6)
8 Q(b) (Fact. 7)
9 ¬P (g(b, c)) (Res. 8 into 3)
10 ⊥ (Res. 4 into 9)
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Soundness of Resolution

Theorem 3.8.1 Ground first-order resolution is sound.

Proof. As in propositional logic. ✷

Note: In ground first-order logic we have (like in propositional logic):

1. B |= L1 ∨ · · · ∨ Ln if and only if there exists i: B |= Li.

2. B |= A or B |= ¬A.

This does not hold for formulas with variables.

3.9 Refutational Completeness of Resolution

How to show refutational completeness of ground resolution:

• We have to show: N |= ⊥ ⇒ N ⊢Res ⊥, or equivalently: If N 6⊢Res ⊥, then N has
a model.

• Idea: Suppose that we have computed sufficiently many inferences (and not derived
⊥).

• Now order the clauses in N according to some appropriate ordering, inspect the
clauses in ascending order, and construct a series of Herbrand interpretations.

• The limit interpretation can be shown to be a model of N .

Closure of Clause Sets under Res

Res(N) = {C | C is conclusion of an inference in Res

with premises in N}
Res0(N) = N

Resn+1(N) = Res(Resn(N)) ∪ Resn(N), for n ≥ 0
Res∗(N) =

⋃

n≥0Res
n(N)

N is called saturated (w.r.t. resolution) if Res(N) ⊆ N .

Proposition 3.9.1

(i) Res∗(N) is saturated.

(ii) Res is refutationally complete if and only if for each set N of ground clauses:

N |= ⊥ implies ⊥ ∈ Res∗(N)
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Proof. (i): We have to show that Res(Res∗(N)) ⊆ Res∗(N), or in other words, that
the conclusion of every inference in Res with premises in Res∗(N) is again contained in
Res∗(N). An inference in Res is either a resolution inference or a factorization inference.
Let us first consider a resolution inference with premises C1 ∈ Res∗(N) and C2 ∈
Res∗(N) and conclusion C. Since Res∗(N) =

⋃

n≥0Res
n(N), we know that there exist

j, k ≥ 0 such that C1 ∈ Resj(N) and C2 ∈ Resk(N). Without loss of generality assume
that j ≥ k. It is easy to see that in this case Resk(N) ⊆ Resj(N), hence C1 ∈ Resj(N)
and C2 ∈ Resj(N). Consequently, C ∈ Res(Resj(N)) ⊆ Resj+1(N) ⊆ Res∗(N).

Otherwise we have a factorization inference with premise C1 ∈ Res∗(N) and conclusion
C. Again we conclude that C1 ∈ Resj(N) for some j ≥ 0, hence C ∈ Res(Resj(N)) ⊆
Resj+1(N) ⊆ Res∗(N).

(ii) This part follows immediately from the fact that for every clause C we have N ⊢Res C
if and only if C ∈ Res∗(N). ✷

Orderings

Let ≻ be a strict partial ordering on M ; let M ′ be a multiset over M .

a ∈M ′ is called strictly maximal in M ′ if there is no b ∈M ′ − {a} with a � b.

The notions of maximal and strictly maximal elements coincide except that a maximal
element can have duplicates, whereas a strictly maximal element cannot.

Clause Orderings

1. We assume that ≻ is any fixed ordering on ground atoms that is total and well-
founded. (There exist many such orderings, e.g., the length-based ordering on
atoms when these are viewed as words over a suitable alphabet.)

2. Extend ≻ to an ordering ≻L on ground literals:

A ≻L B if A ≻ B
A ≻L ¬B if A ≻ B
¬A ≻L B if A ≻ B
¬A ≻L ¬B if A ≻ B
¬A ≻L A

3. Extend ≻L to an ordering ≻C on ground clauses:
≻C = (≻L)mul, the multiset extension of ≻L.

Notation: ≻ also for ≻L and ≻C.
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Example

Suppose A5 ≻ A4 ≻ A3 ≻ A2 ≻ A1 ≻ A0. Then:

A0 ∨ A1

≺ A1 ∨A1 ∨A2

≺ ¬A1 ∨ A2

≺ A1 ∨ ¬A2

≺ A1 ∨ ¬A2 ∨ ¬A2

≺ ¬A1 ∨A3 ∨ A4

≺ A3 ∨ ¬A4

≺ A1 ∨ ¬A5

Properties of the Clause Ordering

Proposition 3.9.2

1. The orderings on literals and clauses are total and well-founded.

2. Let C and D be clauses with A = maxatom(C), B = maxatom(D), where
maxatom(C) denotes the maximal atom in C.

(i) If A ≻ B then C ≻ D.

(ii) If A = B and A occurs negatively in C but only positively in D, then C ≻ D.

Stratified Structure of Clause Sets

Let B ≻ A. Clause sets are then stratified in this form:

· · · ∨A
A






· · · ∨A ∨ A all clauses C with maxatom(C) = A
¬A∨ · · ·≺ ...
· · · ∨B

B






· · · ∨B ∨ B all clauses C with maxatom(C) = B
¬B ∨ · · ·

54



Construction of Interpretations

Given: set N of ground clauses, atom ordering ≻.

Wanted: Herbrand interpretation I such that

I |= N if N is saturated and ⊥ 6∈ N

Construction according to ≻, starting with the smallest clause.

Main Ideas of the Construction

• Clauses are considered in the order given by ≻.

• When considering C, one already has an interpretation so far available (IC). Ini-
tially IC = ∅.

• If C is true in this interpretation, nothing needs to to be changed.

• Otherwise, one would like to change the interpretation such that C becomes true.

• Changes should, however, be monotone. One never deletes atoms from the inter-
pretation, and the truth value of clauses smaller than C should not change from
true to false.

• Hence, one adds ∆C = {A} if and only if C is false in IC , if A occurs positively
in C (adding A will make C become true) and if this occurrence in C is strictly
maximal in the ordering on literals (changing the truth value of A has no effect on
smaller clauses). Otherwise, ∆C = ∅.

• We say that the construction fails for a clause C if C is false in IC and ∆C = ∅.

• We will show: If there are clauses for which the construction fails, then some
inference with the smallest such clause (the so-called “minimal counterexample”)
has not been computed. Otherwise, the limit interpretation is a model of all clauses.

Construction of Candidate Interpretations

Let N,≻ be given. We define sets IC and ∆C for all ground clauses C over the given
signature inductively over ≻:

IC :=
⋃

C≻D ∆D

∆C :=







{A}, if C ∈ N , C = C ′ ∨A, A ≻ C ′, IC 6|= C

∅, otherwise
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We say that C produces A if ∆C = {A}.

Note that the definitions satisfy the conditions of Thm. 1.3.7; so they are well-defined
even if {D | C ≻ D} is infinite.

The candidate interpretation for N (w.r.t. ≻) is given as I≻N :=
⋃

C ∆C . (We also simply
write IN or I for I≻N if ≻ is either irrelevant or known from the context.)

Example

Let A5 ≻ A4 ≻ A3 ≻ A2 ≻ A1 ≻ A0 (max. literals in red).

Iter. Clause C IC ∆C Remarks

0 ¬A0 ∅ ∅ true in IC
1 A0 ∨A1 ∅ {A1} A1 maximal
2 A1 ∨A2 {A1} ∅ true in IC
3 ¬A1 ∨A2 {A1} {A2} A2 maximal
4 A0 ∨ ¬A1 ∨ A3 ∨A4 {A1, A2} {A4} A4 maximal
5 ¬A1 ∨ A3 ∨ ¬A4 {A1, A2, A4} ∅ max. lit. ¬A4 neg.;

min. counter-ex.
6 ¬A1 ∨A5 {A1, A2, A4} {A5}

I = {A1, A2, A4, A5} is not a model ⇒ there exists a counterexample.

Structure of N,≻

Let B ≻ A. Note that producing a new atom does not change the truth value of smaller
clauses.

possibly productive

· · · ∨A
A






· · · ∨A ∨ A all clauses C with maxatom(C) = A
¬A∨ · · ·≺ ...
· · · ∨B

B






· · · ∨B ∨ B all clauses C with maxatom(C) = B
¬B ∨ · · ·
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Some Properties of the Construction

Proposition 3.9.3

(i) If D = D′ ∨ ¬A, then no C � D produces A.

(ii) If ID |= D, then IC |= D for every C � D and I≻N |= D.

(iii) If D = D′ ∨ A produces A, then IC |= D for every C ≻ D and I≻N |= D.

(iv) If D = D′ ∨ A produces A, then IC 6|= D′ for every C � D and I≻N 6|= D′.

(v) If for every clause C ∈ N , C is productive or IC |= C, then I≻N |= N .

Proof. (i) If C produces A, then A � L for every literal L of C. On the other hand, D
contains ¬A, and ¬A ≻ A. Since ¬A ≻ L for every literal L of C, we obtain D ≻ C.

(ii) Suppose that ID |= D and C � D. If ID |= A for some positive literal A of D, then
A ∈ ID ⊆ IC ⊆ I≻N , so IC |= D and I≻N |= D. Otherwise ID |= ¬A for some negative
literal ¬A of D, hence A /∈ ID. By (i), no clause that is larger than or equal to D
produces A, so A /∈ IC and A /∈ I≻N . Again, IC |= D and I≻N |= D.

(iii) Obvious, since C ≻ D implies A ∈ ∆D ⊆ IC ⊆ I≻N .

(iv) If D = D′ ∨ A produces A, then A ≻ L for every literal L of D′ and ID 6|= A. Since
ID 6|= D, we have ID 6|= L for every literal L of D′. Let C � D. If L is a positive literal
A′, then A′ /∈ ID. Since all atoms in IC \ ID and I≻N \ ID are larger than or equal to
A, we get A′ /∈ IC and A′ /∈ I≻N . Otherwise L is a negative literal ¬A′, then obviously
A′ ∈ ID ⊆ IC ⊆ I≻N . In both cases L is false in IC and I≻N .

(v) By (ii) and (iii). ✷

Model Existence Theorem

Proposition 3.9.4 Let ≻ be a clause ordering. If N is saturated w.r.t. Res and ⊥ 6∈ N ,
then for every clause C ∈ N , C is productive or IC |= C.

Proof. Let N be saturated w.r.t. Res and ⊥ 6∈ N . Assume that the proposition does
not hold. By well-foundedness, there must exist a minimal clause C ∈ N (w.r.t. ≻) such
that C is neither productive nor IC |= C. As C 6= ⊥ there exists a maximal literal in C.
There are two possible reasons why C is not productive:

Case 1: The maximal literal ¬A is negative, i.e., C = C ′ ∨ ¬A. Then IC |= A and
IC 6|= C ′. So some D = D′ ∨A ∈ N with C ≻ D produces A, and IC 6|= D′. The inference

D′ ∨ A C ′ ∨ ¬A

D′ ∨ C ′

yields a clause D′ ∨ C ′ ∈ N that is smaller than C. As IC 6|= D′ ∨ C ′, we know that
D′ ∨C ′ is neither productive nor ID′∨C′ |= D′ ∨C ′. This contradicts the minimality of C.
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Case 2: The maximal literal A is positive, but not strictly maximal, i.e., C = C ′ ∨A∨A.
Then there is an inference

C ′ ∨ A ∨ A

C ′ ∨ A

that yields a smaller clause C ′ ∨A ∈ N . As IC 6|= C ′ ∨A, this clause is neither productive
nor IC′∨A |= C ′ ∨A. Since C ≻ C ′ ∨A, this contradicts the minimality of C. ✷

Theorem 3.9.5 (Bachmair and Ganzinger 1990) Let ≻ be a clause ordering. If N
is saturated w.r.t. Res and ⊥ 6∈ N , then I≻N |= N .

Proof. By Prop. 3.9.4 and part (v) of Prop. 3.9.3. ✷

Corollary 3.9.6 Let N be saturated w.r.t. Res . Then N |= ⊥ if and only if ⊥ ∈ N .

Compactness of Propositional Logic

Lemma 3.9.7 Let N be a set of propositional (or first-order ground) clauses. Then N
is unsatisfiable if and only if some finite subset N ′ ⊆ N is unsatisfiable.

Proof. The “if” part is trivial. For the “only if” part, assume that N be unsatisfiable.
Consequently, Res∗(N) is unsatisfiable as well. By refutational completeness of resolu-
tion, ⊥ ∈ Res∗(N). So there exists an n ≥ 0 such that ⊥ ∈ Resn(N), which means that
⊥ has a finite resolution proof. Now choose N ′ as the set of assumptions in this proof.

✷

Theorem 3.9.8 (Compactness for Propositional Formulas) Let S be a set of pro-
positional (or first-order ground) formulas. Then S is unsatisfiable if and only if some
finite subset S ′ ⊆ S is unsatisfiable.

Proof. The “if” part is again trivial. For the “only if” part, assume that S be unsatis-
fiable. Transform S into an equivalent set N of clauses. By the previous lemma, N has
a finite unsatisfiable subset N ′. Now choose for every clause C in N ′ one formula F of
S such that C is contained in the CNF of F . Let S ′ be the set of these formulas. ✷
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3.10 General Resolution

Propositional (ground) resolution:

refutationally complete,

in its most naive version: not guaranteed to terminate for satisfiable sets of clauses,
(improved versions do terminate, however)

inferior to the CDCL procedure.

But in contrast to the CDCL procedure, resolution can be easily extended to nonground
clauses.

Observation

If A is a model of an (implicitly universally quantified) clause C, then by Lemma 3.3.8
it is also a model of all (implicitly universally quantified) instances Cσ of C.

Consequently, if we show that some instances of clauses in a set N are unsatisfiable,
then we have also shown that N itself is unsatisfiable.

General Resolution through Instantiation

Idea: instantiate clauses appropriately:

P (z′, z′) ∨ ¬Q(z) ¬P (a, y) P (x′, b) ∨Q(f(x′, x))

P (a, a) ∨ ¬Q(f(a, b)) ¬P (a, a) ¬P (a, b) P (a, b) ∨Q(f(a, b))

¬Q(f(a, b)) Q(f(a, b))

⊥

{z′ 7→ a, z 7→ f(a, b)} {y 7→ a} {y 7→ b} {x′ 7→ a, x 7→ b}

Early approaches (Gilmore 1960, Davis and Putnam 1960):

Generate ground instances of clauses.

Try to refute the set of ground instances by resolution.
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If no contradiction is found, generate more ground instances.

Problems:

More than one instance of a clause can participate in a proof.

Even worse: There are infinitely many possible instances.

Observation:

Instantiation must produce complementary literals (so that inferences become possi-
ble).

Idea (Robinson 1965):

Do not instantiate more than necessary to get complementary literals
⇒ most general unifiers (mgu).

Calculus works with nonground clauses; inferences with nonground clauses represent
infinite sets of ground inferences which are computed simultaneously
⇒ lifting principle.

Computation of instances becomes a by-product of boolean reasoning.

P (z′, z′) ∨ ¬Q(z) ¬P (a, y) P (x′, b) ∨Q(f(x′, x))

P (a, a) ∨ ¬Q(z) ¬P (a, a) ¬P (a, b) P (a, b) ∨Q(f(a, x))

¬Q(z) Q(f(a, x))

¬Q(f(a, x)) Q(f(a, x))

⊥

{z′ 7→ a} {y 7→ a} {y 7→ b} {x′ 7→ a}

{z 7→ f(a, x)}

Unification

Let E = {s1
.
= t1, . . . , sn

.
= tn} (si, ti terms or atoms) be a multiset of equality problems.

A substitution σ is called a unifier of E if siσ = tiσ for all 1 ≤ i ≤ n.

If a unifier of E exists, then E is called unifiable.

A substitution σ is called more general than a substitution τ , denoted by σ ≤ τ , if
there exists a substitution ρ such that ρ ◦ σ = τ , where (ρ ◦ σ)(x) := (xσ)ρ is the
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composition of σ and ρ as mappings. (Note that ρ ◦ σ has a finite domain as required
for a substitution.)

If a unifier of E is more general than any other unifier of E, then we speak of a most
general unifier of E, denoted by mgu(E).

Proposition 3.10.1

(i) ≤ is a quasi-ordering on substitutions, and ◦ is associative.

(ii) If σ ≤ τ and τ ≤ σ (we write σ ∼ τ in this case), then xσ and xτ are equal up to
(bijective) variable renaming, for any x in X .

A substitution σ is called idempotent if σ ◦ σ = σ.

Proposition 3.10.2 σ is idempotent if and only if dom(σ) ∩ codom(σ) = ∅.

Rule-Based Naive Standard Unification

t
.
= t, E ⇒SU E

f(s1, . . . , sn)
.
= f(t1, . . . , tn), E ⇒SU s1

.
= t1, . . . , sn

.
= tn, E

f(. . .)
.
= g(. . .), E ⇒SU ⊥

if f 6= g

x
.
= t, E ⇒SU x

.
= t, E{x 7→ t}

if x ∈ var(E), x 6∈ var(t)

x
.
= t, E ⇒SU ⊥

if x 6= t, x ∈ var(t)

t
.
= x, E ⇒SU x

.
= t, E

if t 6∈ X

Properties of SU

If E = {x1
.
= u1, . . . , xk

.
= uk}, with xi pairwise distinct, xi 6∈ var(uj), then E is called

an (equational problem in) solved form representing the solution σE = {x1 7→ u1, . . . ,
xk 7→ uk}.

Proposition 3.10.3 If E is a solved form then σE is an mgu of E.

Theorem 3.10.4

1. If E ⇒SU E ′ then σ is a unifier of E if and only if σ is a unifier of E ′.
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2. If E
∗
⇒SU ⊥ then E is not unifiable.

3. If E
∗
⇒SU E ′ with E ′ in solved form, then σE′ is an mgu of E.

Proof. (1) We have to show this for each of the rules. Let us treat the case for the
fourth rule here. Suppose σ is a unifier of x

.
= t, that is, xσ = tσ. Thus, σ ◦ {x 7→

t} = σ[x 7→ tσ] = σ[x 7→ xσ] = σ. Therefore, for any equation u
.
= v in E: uσ = vσ

if and only if u{x 7→ t}σ = v{x 7→ t}σ. (2) and (3) follow by induction from (1) using
Proposition 3.10.3. ✷

Main Unification Theorem

Theorem 3.10.5 E is unifiable if and only if there is a most general unifier σ of E such
that σ is idempotent and dom(σ) ∪ codom(σ) ⊆ var(E).

Proof. The right-to-left implication is trivial. For the left-to-right implication we ob-
serve the following:

• ⇒SU is terminating. A suitable lexicographic ordering on the multisets E (with ⊥
minimal) shows this. Compare in this order:

(1) the number of variables that occur in E below a function or predicate symbol,
or on the right-hand side of an equation, or at least twice;

(2) the multiset of the sizes (numbers of symbols) of all equations in E;

(3) the number of nonvariable left-hand sides of equations in E.

• A system E that is irreducible w.r.t. ⇒SU is either ⊥ or a solved form.

• Therefore, reducing any E by SU will end (no matter what reduction strategy we
apply) in an irreducible E ′ having the same unifiers as E, and we can read off the
mgu (or nonunifiability) of E from E ′ (Theorem 3.10.4, Proposition 3.10.3).

• σ is idempotent because of the substitution in rule 4. dom(σ) ∪ codom(σ) ⊆
var(E), as no new variables are generated.

✷
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Example of SU

Example 3.10.6 We unify g(x, f(x)) and g(b, y) using standard unification:

g(x, f(x))
.
= g(b, y)

⇒SU x
.
= b, f(x)

.
= y

⇒SU x
.
= b, f(b)

.
= y

⇒SU x
.
= b, y

.
= f(b)

Resulting substitution: {x 7→ b, y 7→ f(b)}.

Exponential Growth of SU

Problem: Using ⇒SU , an exponential growth of terms is possible.

Example 3.10.7 We unify g(x, y, z) and g(f(y, y), f(z, z), f(a, a)) using SU:

g(x, y, z)
.
= g(f(y, y), f(z, z), f(a, a))

⇒SU x
.
= f(y, y), y

.
= f(z, z), z

.
= f(a, a)

⇒SU x
.
= f(f(z, z), f(z, z)), y

.
= f(z, z), z

.
= f(a, a)

⇒SU x
.
= f(f(f(a, a), f(a, a)), f(f(a, a), f(a, a))), y

.
= f(f(a, a), f(a, a)),

z
.
= f(a, a)

Resulting substitution: {x 7→ f(f(f(a, a), f(a, a)), f(f(a, a), f(a, a))), y 7→ f(f(a, a), f(a, a)), z 7→
f(a, a)}.

Rule-Based Polynomial Unification

The following unification algorithm avoids the exponential growth problem, at least if
the final solved form is represented as a DAG.

t
.
= t, E ⇒PU E

f(s1, . . . , sn)
.
= f(t1, . . . , tn), E ⇒PU s1

.
= t1, . . . , sn

.
= tn, E

f(. . .)
.
= g(. . .), E ⇒PU ⊥

if f 6= g

x
.
= y, E ⇒PU x

.
= y, E{x 7→ y}

if x ∈ var(E), x 6= y

x1
.
= t1, . . . , xn

.
= tn, E ⇒PU ⊥

if there are positions pi with
ti|pi = xi+1, tn|pn = x1

and some pi 6= ε
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x
.
= t, E ⇒PU ⊥

if x 6= t, x ∈ var(t)

t
.
= x, E ⇒PU x

.
= t, E

if t 6∈ X

x
.
= t, x

.
= s, E ⇒PU x

.
= t, t

.
= s, E

if t, s 6∈ X and |t| ≤ |s|

Properties of PU

Theorem 3.10.8

1. If E ⇒PU E ′ then σ is a unifier of E if and only if σ is a unifier of E ′.

2. If E
∗
⇒PU ⊥ then E is not unifiable.

3. If E
∗
⇒PU E ′ with E ′ in solved form, then σE′ is an mgu of E.

The solved form of⇒PU is different from the solved form obtained from⇒SU . To obtain
the unifier σE′, we have to sort the list of equality problems xi

.
= ti in such a way

that xi does not occur in tj for j < i, and then we have to compose the substitutions
{x1 7→ t1} ◦ · · · ◦ {xk 7→ tk}.

Example of PU

Example 3.10.9 We unify g(x, f(x)) and g(b, y) using polynomial unification:

g(x, f(x))
.
= g(b, y)

⇒PU x
.
= b, f(x)

.
= y

⇒PU x
.
= b, y

.
= f(x)

Resulting substitution: {x 7→ b} ◦ {y 7→ f(x)} = {x 7→ b, y 7→ f(b)}.

Polynomial Growth of PU

Example 3.10.10 We unify g(x, y, z) and g(f(y, y), f(z, z), f(a, a)) using PU:

g(x, y, z)
.
= g(f(y, y), f(z, z), f(a, a))

⇒PU x
.
= f(y, y), y

.
= f(z, z), z

.
= f(a, a)

= z
.
= f(a, a), y

.
= f(z, z), x

.
= f(y, y)

Resulting substitution: {z 7→ f(a, a)} ◦ {y 7→ f(z, z)} ◦ {x 7→ f(y, y)}.
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Resolution for General Clauses

We obtain the resolution inference rules for nonground clauses from the inference rules
for ground clauses by replacing equality by unifiability:

General resolution Res :

D ∨ B C ∨ ¬A

(D ∨ C)σ
if σ = mgu(A,B) [resolution]

C ∨ A ∨B

(C ∨ A)σ
if σ = mgu(A,B) [factorization]

For inferences with more than one premise, we assume that the variables in the premises
are (bijectively) renamed such that they become different to any variable in the other
premises. We do not formalize this. Which names one uses for variables is otherwise
irrelevant.

Example 3.10.11 Consider the clauses

P (z′, z′) ∨ ¬Q(z) (1)
¬P (a, y) (2)
P (x′, b) ∨Q(f(x′, x)) (3)

From (1) and (2), using “Resolution” we obtain ¬Q(z) (4).

From (3) and (2), using “Resolution” we obtain Q(f(a, x)) (5).

From (5) and (4), using “Resolution” we obtain the empty clause.

Lifting Lemma

Lemma 3.10.12 Let C and D be variable-disjoint clauses. If

D


y θ1

Dθ1

C


y θ2

Cθ2

C ′
[ground resolution]

then there exists a substitution ρ such that

D C

C ′′



y ρ

C ′ = C ′′ρ

[general resolution]
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An analogous lifting lemma holds for factorization.

Saturation of Sets of General Clauses

Corollary 3.10.13 LetN be a set of general clauses saturated under Res , i.e., Res(N) ⊆
N . Then also GΣ(N) is saturated, that is,

Res(GΣ(N)) ⊆ GΣ(N).

Proof. Without loss of generality, we may assume that clauses in N are pairwise
variable-disjoint. (Otherwise make them disjoint, and this renaming process changes
neither Res(N) nor GΣ(N).)

Let C ′ ∈ Res(GΣ(N)). Then either (i) there exist resolvable ground instances Dθ1 and
Cθ2 of N with resolvent C ′, or else (ii) C ′ is a factor of a ground instance Cθ of C.

Case (i): By the Lifting Lemma, D and C are resolvable with a resolvent C ′′ with
C ′′ρ = C ′, for a suitable substitution ρ. As C ′′ ∈ N by assumption, we obtain that
C ′ ∈ GΣ(N).

Case (ii): Similar. ✷

Soundness for General Clauses

Proposition 3.10.14 The general resolution calculus is sound.

Proof. We have to show that, if σ = mgu(A,B) then {∀~x (D ∨ B), ∀~y (C ∨ ¬A)} |=
∀~z (D ∨ C)σ and {∀~x (C ∨ A ∨ B)} |= ∀~z (C ∨ A)σ.

Let A be a model of ∀~x (D ∨B) and ∀~y (C ∨¬A). By Lemma 3.3.8, A is also a model of
∀~z (D ∨B)σ and ∀~z (C ∨¬A)σ and by Lemma 3.3.7, A is also a model of (D ∨B)σ and
(C ∨ ¬A)σ. Let β be an assignment. If A(β)(Bσ) = 0, then A(β)(Dσ) = 1. Otherwise
A(β)(Bσ) = A(β)(Aσ) = 1, hence A(β)(¬Aσ) = 0 and thereforeA(β)(Cσ) = 1. In both
cases A(β)((D ∨ C)σ) = 1, so A |= (D ∨ C)σ and by Lemma 3.3.7, A |= ∀~z (D ∨ C)σ.

The proof for factorization inferences is similar. ✷
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Herbrand’s Theorem

Lemma 3.10.15 Let N be a set of Σ-clauses, let A be an interpretation. Then A |= N
implies A |= GΣ(N).

Lemma 3.10.16 Let N be a set of Σ-clauses, let A be an Herbrand interpretation.
Then A |= GΣ(N) implies A |= N .

Proof. Let A be an Herbrand model of GΣ(N). We have to show that A |= ∀~x C for
all clauses ∀~x C in N . This is equivalent to A |= C, which in turn is equivalent to
A(β)(C) = 1 for all assignments β.

Choose β : X → UA arbitrarily. Since A is an Herbrand interpretation, β(x) is a ground
term for every variable x, so there is a substitution σ such that xσ = β(x) for all
variables x occurring in C. Now let γ be an arbitrary assignment, then for every variable
occurring in C we have (γ ◦ σ)(x) = A(γ)(xσ) = xσ = β(x) and consequently A(β)(C) =
A(γ ◦ σ)(C) = A(γ)(Cσ). Since Cσ ∈ GΣ(N) and A is an Herbrand model of GΣ(N),
we get A(γ)(Cσ) = 1, so A is a model of C. ✷

Theorem 3.10.17 (Herbrand) A set N of Σ-clauses is satisfiable if and only if it has
an Herbrand model over Σ.

Proof. The “⇐” part is trivial. For the “⇒” part let N 6|= ⊥. Since resolution is sound,
this implies that ⊥ 6∈ Res∗(N). Obviously, a ground instance of a clause has the same
number of literals as the clause itself, so we can conclude that ⊥ 6∈ GΣ(Res

∗(N)). Since
Res∗(N) is saturated, GΣ(Res

∗(N)) is saturated as well by Cor. 3.10.13. Now IGΣ(Res∗(N))

is an Herbrand interpretation over Σ and by Thm. 3.9.5 it is a model of GΣ(Res
∗(N)).

By Lemma 3.10.16, every Herbrand model of GΣ(Res
∗(N)) is a model of Res∗(N). Now

N ⊆ Res∗(N), so IGΣ(Res
∗(N)) |= N . ✷

Corollary 3.10.18 A set N of Σ-clauses is satisfiable if and only if its set of ground
instances GΣ(N) is satisfiable.

Proof. The “⇒” part follows directly from Lemma 3.10.15. For the “⇐” part as-
sume that GΣ(N) is satisfiable. By Thm. 3.10.17 GΣ(N) has an Herbrand model. By
Lemma 3.10.16, every Herbrand model of GΣ(N) is a model of N . ✷
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Refutational Completeness of General Resolution

Theorem 3.10.19 Let N be a set of general clauses that is saturated w.r.t. Res . Then
N |= ⊥ if and only if ⊥ ∈ N .

Proof. The “⇐” part is trivial. For the “⇒” part assume that N is saturated, that
is, Res(N) ⊆ N . By Corollary 3.10.13, GΣ(N) is saturated as well, i.e., Res(GΣ(N)) ⊆
GΣ(N). By Cor. 3.10.18, N |= ⊥ implies GΣ(N) |= ⊥. By the refutational completeness
of ground resolution, GΣ(N) |= ⊥ implies ⊥ ∈ GΣ(N), so ⊥ ∈ N . ✷

3.11 Theoretical Consequences

We get some classical results on properties of first-order logic as easy corollaries.

The Theorem of Löwenheim-Skolem

Theorem 3.11.1 (Löwenheim–Skolem) Let Σ be a countable signature and let S
be a set of closed Σ-formulas. Then S is satisfiable if and only if S has a model over a
countable universe.

Proof. If both X and Σ are countable, then S can be at most countably infinite. Now
generate, maintaining satisfiability, a set N of clauses from S. This extends Σ by at most
countably many new Skolem functions to Σ′. As Σ′ is countable, so is TΣ′ , the universe
of Herbrand-interpretations over Σ′. Now apply Theorem 3.10.17. ✷

There exist more refined versions of this theorem. For instance, one can show that if S
has some infinite model, then S has a model with a universe of cardinality κ for every
κ that is larger than or equal to the cardinalty of the signature Σ.

Compactness of Predicate Logic

Theorem 3.11.2 (Compactness Theorem for First-Order Logic) Let S be a set
of closed first-order formulas. S is unsatisfiable ⇔ some finite subset S ′ ⊆ S is unsatis-
fiable.

Proof. The “⇐” part is trivial. For the “⇒” part let S be unsatisfiable and let N be
the set of clauses obtained by Skolemization and CNF transformation of the formulas in
S. Clearly Res∗(N) is unsatisfiable. By Theorem 3.10.19, ⊥ ∈ Res∗(N), and therefore
⊥ ∈ Resn(N) for some n ∈ N. Consequently, ⊥ has a finite resolution proof B of
depth ≤ n. Choose S ′ as the subset of formulas in S such that the corresponding clauses
contain the assumptions (leaves) of B. ✷
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3.12 Ordered Resolution with Selection

Motivation: Search space for Res very large.

Ideas for improvement:

1. In the completeness proof (Model Existence Theorem 3.9.5) one only needs to
resolve and factor maximal atoms
⇒ if the calculus is restricted to inferences involving maximal atoms, the proof
remains correct
⇒ ordering restrictions

2. In the proof, it does not really matter with which negative literal an inference is
performed
⇒ choose a negative literal don’t-care-nondeterministically
⇒ selection

Ordering Restrictions

In the completeness proof one only needs to resolve and factor maximal atoms. Therefore
the proof remains correct if we impose ordering restrictions on ground inferences.

(Ground) Ordered Resolution:

D ∨A C ∨ ¬A

D ∨ C

if A ≻ L for all L in D and ¬A � L for all L in C.

(Ground) Ordered Factorization:

C ∨ A ∨A

C ∨A

if A � L for all L in C.

Problem: How to extend this to nonground inferences?

In the completeness proof, we talk about (strictly) maximal literals of ground clauses.

In the nonground calculus, we have to consider those literals that correspond to (strictly)
maximal literals of ground instances.

An ordering ≻ on atoms (or terms) is called stable under substitutions if A ≻ B implies
Aσ ≻ Bσ.

Note:
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• We can not require that A ≻ B if and only if Aσ ≻ Bσ for all σ, because this is
not computable.

• We can not require that ≻ is total on nonground atoms, because this would be
incompatible with stability under substitution.

Consequence: In the ordering restrictions for nonground inferences, we have to replace
≻ by 6� and � by 6≺.

Ordered Resolution:

D ∨B C ∨ ¬A

(D ∨ C)σ

if σ = mgu(A,B) and Bσ 6� Lσ for all L in D and ¬Aσ 6≺ Lσ for all L in C.

Ordered Factorization:

C ∨ A ∨B

(C ∨ A)σ

if σ = mgu(A,B) and Aσ 6≺ Lσ for all L in C.

Selection Functions

Selection functions can be used to override ordering restrictions for individual clauses.

A selection function is a mapping

sel : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨A

Intuition:

• If a clause has at least one selected literal, compute only inferences that involve a
selected literal.

• If a clause has no selected literals, compute only inferences that involve a maximal
literal.
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Resolution Calculus Res≻sel

The resolution calculus Res≻sel is parameterized by

• a selection function sel

• and a well-founded ordering ≻ on atoms that is total on ground atoms and stable
under substitutions.

(Ground) Ordered Resolution with Selection:

D ∨A C ∨ ¬A

D ∨ C

if the following conditions are satisfied:

(i) A ≻ L for all L in D;

(ii) nothing is selected in D ∨ A by sel;

(iii) ¬A is selected in C ∨ ¬A, or nothing is selected in C ∨ ¬A and ¬A � L for all L
in C.

(Ground) Ordered Factorization with Selection:

C ∨ A ∨A

C ∨A

if the following conditions are satisfied:

(i) A � L for all L in C;

(ii) nothing is selected in C ∨A ∨A by sel.

The extension from ground inferences to nonground inferences is analogous to ordered
resolution (replace ≻ by 6� and � by 6≺). Again we assume that ≻ is stable under
substitutions.

Ordered Resolution with Selection:

D ∨B C ∨ ¬A

(D ∨ C)σ

if the following conditions are satisfied:

(i) σ = mgu(A,B);

(ii) Bσ 6� Lσ for all L in D;

(iii) nothing is selected in D ∨ B by sel;
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(iv) ¬A is selected in C ∨ ¬A, or nothing is selected in C ∨ ¬A and ¬Aσ 6≺ Lσ for all
L in C.

Ordered Factorization with Selection:

C ∨ A ∨B

(C ∨ A)σ

if the following conditions are satisfied:

(i) σ = mgu(A,B);

(ii) Aσ 6≺ Lσ for all L in C;

(iii) nothing is selected in C ∨A ∨B by sel.

Lifting Lemma for Res≻sel

Lemma 3.12.1 Let C and D be variable-disjoint clauses. If

D


y θ1

Dθ1

C


y θ2

Cθ2

C ′
[ground inference in Res≻sel]

and if sel(Dθ1) ≃ sel(D), sel(Cθ2) ≃ sel(C) (that is, “corresponding” literals are se-
lected), then there exists a substitution ρ such that

D C

C ′′


y ρ

C ′ = C ′′ρ

[inference in Res≻sel]

An analogous lifting lemma holds for factorization.

Saturation of Sets of General Clauses

Corollary 3.12.2 LetN be a set of general clauses saturated under Res≻sel, i.e., Res
≻
sel(N) ⊆

N . Then there exists a selection function sel′ such that sel|N = sel′|N and GΣ(N) is also
saturated, i.e.,

Res≻sel′(GΣ(N)) ⊆ GΣ(N).
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Proof. We first define the selection function sel′ such that sel′(C) = sel(C) for all
clauses C ∈ GΣ(N) ∩ N . For C ∈ GΣ(N) \ N we choose a fixed but arbitrary clause
D ∈ N with C ∈ GΣ(D) and define sel′(C) to be those occurrences of literals that are
ground instances of the occurrences selected by sel in D. Then proceed as in the proof
of Cor. 3.10.13 using the lifting lemma above. ✷

Soundness and Refutational Completeness

Theorem 3.12.3 Let ≻ be an atom ordering and sel a selection function such that
Res≻sel(N) ⊆ N . Then

N |= ⊥ ⇔ ⊥ ∈ N

Proof. The “⇐” part is trivial. For the “⇒” part consider first the propositional
level: Construct a candidate interpretation IN as for unrestricted resolution, except that
clauses C in N that have selected literals are never productive (even if they are false in
IC and if their maximal atom occurs only once and is positive). The result for general
clauses follows using Corollary 3.12.2. ✷

What Do We Gain?

Search spaces become smaller:

1 P ∨Q

2 P ∨ ¬Q

3 ¬P ∨Q

4 ¬P ∨ ¬Q

5 Q ∨Q Res 1, 3
6 Q Fact 5
7 ¬P Res 6, 4
8 P Res 6, 2
9 ⊥ Res 8, 7

We assume P ≻ Q
and sel as indicated by
X . The maximal lit-
eral in a clause is de-
picted in red.

Rotation redundancy can be avoided:

From

C1 ∨ A C2 ∨ ¬A ∨ B
C1 ∨ C2 ∨B C3 ∨ ¬B

C1 ∨ C2 ∨ C3
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we can obtain by rotation

C1 ∨ A
C2 ∨ ¬A ∨ B C3 ∨ ¬B

C2 ∨ ¬A ∨ C3

C1 ∨ C2 ∨ C3

another proof of the same clause. In large proofs many rotations are possible. However,
if A ≻ B, then the second proof does not fulfill the ordering restrictions.

3.13 Redundancy

So far: local restrictions of the resolution inference rules using orderings and selection
functions.

Is it also possible to delete clauses altogether? Under which circumstances are clauses
unnecessary (e.g., if they are tautologies)?

Intuition: If a clause is guaranteed to be neither a minimal counterexample nor produc-
tive, then we do not need it.

A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not necessarily in N). C is
called redundant w.r.t. N if there exist C1, . . . , Cn ∈ N , n ≥ 0, such that Ci ≺ C and
C1, . . . , Cn |= C.

Redundancy for general clauses: C is called redundant w.r.t. N if all ground instances
Cσ of C are redundant w.r.t. GΣ(N).

Intuition: If a ground clause C is redundant and all clauses smaller than C hold in IC ,
then C holds in IC (so C is neither a minimal counterexample nor productive).

Notation: The set of all clauses that are redundant w.r.t. N is denoted by Red(N).

Note: The same ordering ≻ is used for ordering restrictions and for redundancy (and for
the completeness proof).

Examples of Redundancy

In general, redundancy is undecidable. Decidable approximations are sufficient for us,
however.

Proposition 3.13.1 Some redundancy criteria:

• C tautology (i.e., |= C) ⇒ C redundant w.r.t. any set N .
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• Cσ ⊂ D ⇒ D redundant w.r.t. N ∪ {C}.

(Under certain conditions one may also use nonstrict subsumption, but this requires a
slightly more complicated definition of redundancy.)

Saturation up to Redundancy

N is called saturated up to redundancy (w.r.t. Res≻sel) if

Res≻sel(N \Red(N)) ⊆ N ∪ Red(N)

Theorem 3.13.2 Let N be saturated up to redundancy. Then

N |= ⊥ ⇔ ⊥ ∈ N

Proof (Sketch).
(i) Ground case: Consider the construction of the candidate interpretation I≻N for Res≻sel.

If a clause C ∈ N is redundant, then there exist C1, . . . , Cn ∈ N , n ≥ 0, such that
Ci ≺ C and C1, . . . , Cn |= C.

If IC |= Ci by minimality, then IC |= C.

In particular, C is not productive.

⇒ Redundant clauses are not used as premises for “essential” inferences.

By saturation, the conclusion D′ ∨ C ′ of a resolution inference is contained in N
(as before) or in Red(N). In the first case, minimality of C ensures that D′ ∨ C ′ is
productive or ID′∨C′ |= D′ ∨ C ′; in the second case, it ensures that ID′∨C′ |= D′ ∨ C ′.
So in both cases we get a contradiction (analogously for factorization). The rest of the
proof works as before.

(ii) Lifting: no additional problems over the proof of Theorem 3.12.3. ✷

Monotonicity Properties of Redundancy

When we want to delete redundant clauses during a derivation, we have to ensure that
redundant clauses remain redundant in the rest of the derivation.

Theorem 3.13.3

(i) N ⊆M ⇒ Red(N) ⊆ Red(M)

(ii) M ⊆ Red(N)⇒ Red(N) ⊆ Red(N \M)
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Proof. (i) Obvious.

(ii) For ground clause sets N , the well-foundedness of the multiset extension of the clause
ordering implies that every clause in Red(N) is entailed by smaller clauses in N that are
themselves not in Red(N).

For general clause sets N , the result follows from the fact that every clause in GΣ(N) \
Red(GΣ(N)) is an instance of a clause in N \ Red(N). ✷

Recall that Red(N) may include clauses that are not in N .

Computing Saturated Sets

Redundancy is preserved when, during a theorem proving derivation one adds new
clauses or deletes redundant clauses. This motivates the following definitions:

A run of the resolution calculus is a sequence N0 ⊢ N1 ⊢ N2 ⊢ · · · , such that
(i) Ni |= Ni+1, and
(ii) all clauses in Ni \Ni+1 are redundant w.r.t. Ni+1.

In other words, during a run we may add a new clause if it follows from the old ones,
and we may delete a clause if it is redundant w.r.t. the remaining ones.

For a run, we define N∞ =
⋃

i≥0

⋂

j≥iNj .The set N∞ of all persistent clauses is called
the limit of the run.

Lemma 3.13.4 Let N0 ⊢ N1 ⊢ N2 ⊢ · · · be a run. Then Red(Ni) ⊆ Red(
⋃

i≥0Ni) and
Red(Ni) ⊆ Red(N∞) for every i.

Proof. Omitted. ✷

Corollary 3.13.5 Ni ⊆ N∞ ∪ Red(N∞) for every i.

Proof. If C ∈ Ni \ N∞, then there is a k ≥ i such that C ∈ Nk \ Nk+1, so C must be
redundant w.r.t. Nk+1. Consequently, C is redundant w.r.t. N∞. ✷

Even if a set N is inconsistent, it could happen that ⊥ is never derived, because some
required inference is never computed.

The following definition rules out such runs:

A run is called fair if the conclusion of every inference from clauses in N∞ \Red(N∞) is
contained in some Ni ∪ Red(Ni).
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Lemma 3.13.6 If a run is fair, then its limit is saturated up to redundancy.

Proof. If the run is fair, then the conclusion of every inference from nonredundant
clauses in N∞ is contained in some Ni ∪ Red(Ni), and therefore contained in N∞ ∪
Red(N∞). Hence N∞ is saturated up to redundancy. ✷

Theorem 3.13.7 (Refutational Completeness: Dynamic View) Let N0 ⊢ N1 ⊢
N2 ⊢ · · · be a fair run, let N∞ be its limit. Then N0 has a model if and only if ⊥ /∈ N∞.

Proof. (⇐): By fairness, N∞ is saturated up to redundancy. If ⊥ /∈ N∞, then it has an
Herbrand model. Since every clause in N0 is contained in N∞ or redundant w.r.t. N∞,
this model is also a model of GΣ(N0) and therefore a model of N0.

(⇒): Obvious, since N0 |= N∞. ✷

Simplifications

In theory, the definition of a run permits to add arbitrary clauses that are entailed by
the current ones.

In practice, we restrict to two cases:

• We add conclusions of Res≻sel-inferences from nonredundant premises.
❀ necessary to guarantee fairness

• We add clauses that are entailed by the current ones if this makes other clauses
redundant:

N ∪ {C} ⊢ N ∪ {C,D} ⊢ N ∪ {D}

if N ∪ {C} |= D and C ∈ Red(N ∪ {D}).

Net effect: C is simplified to D.
❀ useful to get easier/smaller clause sets

Notation for simplification rules:

C1 . . . Cn

D1 . . . Dm

means

N ∪ {C1, . . . , Cn} ⊢ N ∪ {D1, . . . , Dm}

Examples of simplification techniques:

77



• Deletion of duplicated literals:

C ∨ L ∨ L

C ∨ L

• Subsumption resolution:

D ∨ L C ∨Dσ ∨ Lσ

D ∨ L C ∨Dσ

3.14 Hyperresolution

There are many variants of resolution.

One well-known example is hyperresolution (Robinson 1965):

Assume that several negative literals are selected in a clause C. If we perform an
inference with C, then one of the selected literals is eliminated.

Suppose that the remaining selected literals of C are again selected in the conclusion.
Then we must eliminate the remaining selected literals one by one by further resolution
steps.

Hyperresolution replaces these successive steps by a single inference. As for Res≻sel, the
calculus is parameterized by an atom ordering ≻ and a selection function sel.

D1 ∨ B1 . . . Dn ∨ Bn C ∨ ¬A1 ∨ . . . ∨ ¬An

(D1 ∨ . . . ∨Dn ∨ C)σ

with σ = mgu(A1
.
= B1, . . . , An

.
= Bn) if

(i) Biσ strictly maximal in Diσ, 1 ≤ i ≤ n;

(ii) nothing is selected in Di;

(iii) the indicated occurrences of the ¬Ai are exactly the ones selected by sel, or nothing
is selected in the right premise and n = 1 and ¬A1σ is maximal in Cσ.

Similarly to resolution, hyperresolution has to be complemented by a factorization in-
ference.

As we have seen, hyperresolution can be simulated by iterated binary resolution.

However, this yields intermediate clauses which HR might not derive.
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3.15 Implementing Resolution: The Main Loop

Standard approach:

Select one clause (“Given clause”).

Find many partner clauses that can be used in inferences together with the “given
clause” using an appropriate index data structure.

Compute the conclusions of these inferences; add them to the set of clauses.

The set of clauses is split into two subsets:

• WO = “Worked-off” (or “active”) clauses: Have already been selected as “given
clause.”

• U = “Usable” (or “passive”) clauses: Have not yet been selected as “given clause.”

During each iteration of the main loop:

Select a new given clause C from U ;
U := U \ {C}.

Find partner clauses Di from WO ;
New := Conclusions of inferences from {Di | i ∈ I} ∪ C where one premise is C;
U := U ∪ New ;
WO := WO ∪ {C}

⇒ At any time, all inferences between clauses in WO have been computed.

⇒ The procedure is fair if no clause remains in U forever.

Additionally:

Try to simplify C using WO . (Skip the remainder of the iteration if C can be elimi-
nated.)

Try to simplify (or even eliminate) clauses from WO using C.

Design decision: should one also simplify U using C?

Yes ❀ “Otter loop”:
Advantage: simplifications of U may be useful to derive the empty clause.

No ❀ “DISCOUNT loop”:
Advantage: clauses in U are really passive; only clauses inWO have to be kept in index
data structure. (Hence: can use index data structure for which retrieval is faster, even
if update is slower and space consumption is higher.)
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3.16 Summary: Resolution Theorem Proving

• Resolution is a machine-oriented calculus.

• Using unification, the enumeration of instances becomes a by-product of inference
computation.

• Parameters: atom ordering ≻ and selection function sel. On the nonground level,
ordering constraints can (only) be solved approximatively.

• Completeness proof by constructing candidate interpretations from productive
clauses C ∨ A, A ≻ C.

• Local restrictions of inferences via ≻ and sel
⇒ fewer proof variants.

• Global restrictions of the search space via redundancy
⇒ computing with “smaller”/“easier” clause sets.
(In practice: simplification and detection of redundant clauses uses 90% of the
prover runtime.)

• Termination on many decidable fragments.

• However, not good enough for dealing with orderings, equality, and more specific
algebraic theories (lattices, abelian groups, rings, fields)
⇒ further specialization of inference systems required.

3.17 Semantic Tableaux

Literature:

M. Fitting: First-Order Logic and Automated Theorem Proving, Springer-Verlag, New
York, 1996, chapters 3, 6, 7.

R. M. Smullyan: First-Order Logic, Dover Publ., New York, 1968, revised 1995.

Like resolution, semantic tableaux were developed in the 1960s, independently by Zbig-
niew Lis and Raymond Smullyan on the basis of work by Gentzen in the 1930s and of
Beth in the 1950s.

80



Idea

Idea (for the propositional case):

A set {F ∧G} ∪ N of formulas has a model if and only if {F ∧G, F , G} ∪ N has a
model.

A set {F ∨G} ∪ N of formulas has a model if and only if {F ∨G, F} ∪ N or
{F ∨G, G} ∪N has a model.

(and similarly for other connectives).

To avoid duplication, represent sets as paths of a tree.

Continue splitting until two complementary formulas are found ⇒ inconsistency de-
tected.

A Tableau for {P ∧ ¬(Q ∨ ¬R), ¬Q ∨ ¬R}

1. P ∧ ¬(Q ∨ ¬R)
2. ¬Q ∨ ¬R

3. ¬Q
5. P
6. ¬(Q ∨ ¬R)
7. ¬Q
8. ¬¬R
9. R

4. ¬R
10. P
11. ¬(Q ∨ ¬R)

This tableau is not
“maximal”;
however, the first
“path” is. This
path is not
“closed”; hence the
set {1, 2} is
satisfiable. (These
notions will all be
defined below.)

Properties

Properties of tableau calculi:

analytic: inferences correspond closely to the logical meaning of the symbols.

goal-oriented: inferences operate directly on the goal to be proved.

global: some inferences affect the entire proof state (set of formulas), as we will see
later.
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Propositional Expansion Rules

Expansion rules are applied to the formulas in a tableau and expand the tableau at a
leaf. We append the conclusions of a rule (horizontally or vertically) at a leaf whenever
the premise of the expansion rule matches a formula appearing anywhere on the path
from the root to that leaf.

Negation Elimination

¬¬F
F

¬⊤
⊥

¬⊥
⊤

α-Expansion
(for formulas that are essentially conjunctions: append subformulas α1 and α2 one
on top of the other)

α

α1

α2

β-Expansion
(for formulas that are essentially disjunctions:
append β1 and β2 horizontally, i.e., branch into β1 and β2)

β

β1 | β2

Classification of Formulas

conjunctive disjunctive
α α1 α2 β β1 β2

F ∧G F G ¬(F ∧G) ¬F ¬G
¬(F ∨G) ¬F ¬G F ∨G F G
¬(F → G) F ¬G F → G ¬F G

We assume that the binary connective ↔ has been eliminated in advance.

Tableaux: Notions

A semantic tableau is a marked (by formulas), finite, unordered tree and inductively
defined as follows: Let {F1, . . . , Fn} be a set of formulas.
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(i) The tree consisting of a single path

F1
...
Fn

is a tableau for {F1, . . . , Fn}. (We do not draw edges if nodes have only one suc-
cessor.)

(ii) If T is a tableau for {F1, . . . , Fn} and if T ′ results from T by applying an expansion
rule then T ′ is also a tableau for {F1, . . . , Fn}.

Note: We may also consider the limit tableau of a tableau expansion; this can be an
infinite tree.

A path (from the root to a leaf) in a tableau is called closed if it either contains ⊥ or
else it contains both some formula F and its negation ¬F . Otherwise the path is called
open.

A tableau is called closed if all paths are closed.

A tableau proof for F is a closed tableau for {¬F}.

A path π in a tableau is called maximal if for each formula F on π that is neither a
literal nor ⊥ nor ⊤ there exists a node in π at which the expansion rule for F has been
applied.

In that case, if F is a formula on π, π also contains:

(i) α1 and α2 if F is a α-formula,

(ii) β1 or β2 if F is a β-formula, and

(iii) F ′ if F is a negation formula, and F ′ the conclusion of the corresponding elimination
rule.

A tableau is called maximal if each path is closed or maximal.

A tableau is called strict if for each formula the corresponding expansion rule has been
applied at most once on each path containing that formula.

A tableau is called clausal if each of its formulas is a clause.
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An Example Proof

One starts out from the negation of the formula to be proved.

1. ¬
(
(P → (Q→ R))→ ((P ∨ S)→ ((Q→ R) ∨ S))

)

2. (P → (Q→ R)) [11]
3. ¬((P ∨ S)→ ((Q→ R) ∨ S)) [12]
4. P ∨ S [31]
5. ¬((Q→ R) ∨ S)) [32]
6. ¬(Q→ R) [51]
7. ¬S [52]

8. ¬P [21] 9. Q→ R [22]

10. P [41] 11. S [42]

There are three paths, each of them closed.

Properties of Propositional Tableaux

We assume that T is a tableau for {F1, . . . , Fn}.

Theorem 3.17.1 {F1, . . . , Fn} satisfiable ⇔ some path (i.e., the set of its formulas) in
T is satisfiable.

Proof. (⇐) Trivial, since every path contains in particular F1, . . . , Fn.
(⇒) By induction over the structure of T . ✷

Corollary 3.17.2 T closed ⇒ {F1, . . . , Fn} unsatisfiable

Theorem 3.17.3 Every strict propositional tableau expansion is finite.

Proof. New formulas resulting from expansion are⊥, ⊤, or subformulas of the expanded
formula (modulo de Morgan’s law), so the number of formulas that can occur is finite.
By strictness, on each path a formula can be expanded at most once. Therefore, each
path is finite, and a finitely branching tree with finite paths is finite by König’s lemma.

✷

Conclusion: Strict and maximal tableaux can be effectively constructed.
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Refutational Completeness

A set H of propositional formulas is called a Hintikka set if

(1) there is no P ∈ Π with P ∈ H and ¬P ∈ H;

(2) ⊥ /∈ H, ¬⊤ /∈ H;

(3) if ¬¬F ∈ H, then F ∈ H;

(4) if α ∈ H, then α1 ∈ H and α2 ∈ H;

(5) if β ∈ H, then β1 ∈ H or β2 ∈ H.

Lemma 3.17.4 (Hintikka’s Lemma) Every Hintikka set is satisfiable.

Proof. Let H be a Hintikka set. Define a valuation A by A(P ) = 1 if P ∈ H and
A(P ) = 0 otherwise. Then show that A(F ) = 1 for all F ∈ H by induction over the size
of formulas. ✷

Theorem 3.17.5 Let π be a maximal open path in a tableau. Then the set of formulas
on π is satisfiable.

Proof. We show that set of formulas on π is a Hintikka set: Conditions (3), (4), (5)
follow from the fact that π is maximal; conditions (1) and (2) follow from the fact that
π is open and from maximality for the second negation elimination rule. ✷

Theorem 3.17.6 {F1, . . . , Fn} satisfiable ⇔ there exists no closed strict tableau for
{F1, . . . , Fn}.

Proof. (⇒) Clear by Cor. 3.17.2.
(⇐) Let T be a strict maximal tableau for {F1, . . . , Fn} and let π be an open path
in T . By the previous theorem, the set of formulas on π is satisfiable, and hence by
Theorem 3.17.1 the set {F1, . . . , Fn}, is satisfiable. ✷
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Consequences

The validity of a propositional formula F can be established by constructing a strict
maximal tableau for {¬F}:

• T closed ⇔ F valid.

• It suffices to test complementarity of paths w.r.t. atomic formulas (cf. reasoning
in the proof of Theorem 3.17.5).

• Which of the potentially many strict maximal tableaux one computes does not
matter. In other words, tableau expansion rules can be applied don’t-care nonde-
terministically (“proof confluence”).

• The expansion strategy, however, can have a dramatic impact on the tableau size.

A Variant of the β-Rule

Since F ∨G |=| F ∨ (G ∧ ¬F ), the β expansion rule

β

β1 | β2

can be replaced by the following variant:

β

β1

∣
∣
∣
∣

β2

¬β1

The variant β-rule can lead to much shorter proofs, but it is not always beneficial.

In general, it is most helpful if ¬β1 can be at most (iteratively) α-expanded.

3.18 Semantic Tableaux for First-Order Logic

There are two ways to extend the tableau calculus to quantified formulas:

• using ground instantiation,

• using free variables.
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Tableaux with Ground Instantiation

Classification of quantified formulas:

universal existential
γ γ(t) δ δ(t)
∀xF F{x 7→ t} ∃xF F{x 7→ t}
¬∃xF ¬F{x 7→ t} ¬∀xF ¬F{x 7→ t}

Idea:

Replace universally quantified formulas by appropriate ground instances.

γ-expansion

γ

γ(t)
where t is some ground term

δ-expansion

δ

δ(c)
where c is a new Skolem constant

Skolemization becomes part of the calculus and needs not necessarily be applied in a
preprocessing step. Of course, one could do Skolemization beforehand, and then the
δ-rule would not be needed.

Note:

Skolem constants are sufficient:
In a δ-formula ∃xF , ∃ is the outermost quantifier and x is the only free variable in F .

Problems:

Having to guess ground terms is impractical.

Even worse, we may have to guess several ground instances, since strictness for γ is
incomplete. For instance, constructing a closed tableau for

{∀x (P (x)→ P (f(x))), P (b), ¬P (f(f(b)))}

is impossible without applying γ-expansion twice on one path.
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Free-Variable Tableaux

An alternative approach:

Delay the instantiation of universally quantified variables.

Replace universally quantified variables by new free variables.

Intuitively, the free variables are universally quantified outside of the entire tableau.

γ-expansion

γ

γ(x)
where x is a new free variable

δ-expansion

δ
δ(f(x1, . . . , xn))

where f is a new Skolem function, and the xi are the free variables in δ

Application of expansion rules has to be supplemented by a substitution rule:

(iii) If T is a tableau for {F1, . . . , Fn} and if σ is a substitution, then Tσ is also a
tableau for {F1, . . . , Fn}.

The substitution rule may, potentially, modify all the formulas of a tableau. This feature
is what makes the tableau method a global proof method. (Resolution, by comparison,
is a local method.)

One can show that it is sufficient to consider substitutions σ for which there is a path in
T containing two literals ¬A and B such that σ = mgu(A,B). Such tableaux are called
AMGU-Tableaux.

Example of a Free-Variable Tableau

1. ¬
(
∃w∀x P (x, w, f(x, w))→ ∃w∀x∃y P (x, w, y)

)

2. ∃w∀x P (x, w, f(x, w)) 11 [α]
3. ¬∃w∀x∃y P (x, w, y) 12 [α]
4. ∀x P (x, c, f(x, c)) 2(c) [δ]
5. ¬∀x∃y P (x, v1, y) 3(v1) [γ]
6. ¬∃y P (b(v1), v1, y) 5(b(v1)) [δ]
7. P (v2, c, f(v2, c)) 4(v2) [γ]
8. ¬P (b(v1), v1, v3) 6(v3) [γ]

7 and 8 are complementary (modulo unification):

{v2
.
= b(v1), c

.
= v1, f(v2, c)

.
= v3}
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is solvable with an mgu σ = {v1 7→ c, v2 7→ b(c), v3 7→ f(b(c), c)}, and hence, Tσ is a
closed (linear) tableau for the formula in 1.

Free-Variable Tableaux

Problem:

Strictness for γ is still incomplete. For instance, constructing a closed tableau for

{∀x (P (x)→ P (f(x))), P (b), ¬P (f(f(b)))}

is impossible without applying γ-expansion twice on one path.

Semantic Tableaux vs. Resolution

• Tableaux: global, goal-oriented, “backward.”

• Resolution: local, “forward.”

• Goal-orientation is a clear advantage if only a small subset of a large set of formulas
is necessary for a proof. (Note that resolution provers saturate also those parts of
the clause set that are irrelevant for proving the goal.)

• Resolution can be combined with more powerful redundancy elimination methods;
because of its global nature this is more difficult for the tableau method.

• Resolution can be refined to work well with equality; for tableaux this seems to be
impossible.

• On the other hand tableau calculi can be easily extended to other logics; in par-
ticular tableau provers are very successful in modal and description logics.

4 First-Order Logic with Equality

Equality is the most important relation in mathematics and functional programming.

In principle, problems in first-order logic with equality can be handled by any prover for
first-order logic without equality, as follows.
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4.1 Handling Equality Naively

Proposition 4.1.1 Let F be a closed first-order formula with equality. Let ∼ /∈ Π be
a new predicate symbol. The set Eq(Σ) contains the formulas

∀x (x ∼ x)
∀x, y (x ∼ y → y ∼ x)

∀x, y, z (x ∼ y ∧ y ∼ z → x ∼ z)
∀~x, ~y (x1 ∼ y1 ∧ · · · ∧ xn ∼ yn → f(x1, . . . , xn) ∼ f(y1, . . . , yn))
∀~x, ~y (x1 ∼ y1 ∧ · · · ∧ xm ∼ ym ∧ P (x1, . . . , xm)→ P (y1, . . . , ym))

for every f/n ∈ Ω and P/m ∈ Π. Let F̃ be the formula that one obtains from F if every
occurrence of ≈ is replaced by ∼. Then F is satisfiable if and only if Eq(Σ) ∪ {F̃} is
satisfiable.

Proof. Let Σ = (Ω,Π), let Σ1 = (Ω,Π ∪ {∼/2}).

For the “only if” part assume that F is satisfiable and let A be a Σ-model of F . Then we
define a Σ1-algebra B in such a way that B and A have the same universe, fB = fA for
every f ∈ Ω, PB = PA for every P ∈ Π, and ∼B is the identity relation on the universe.
It is easy to check that B is a model of both F̃ and of Eq(Σ).

For the “if” part assume that the Σ1-algebra B = (UB, (fB : Un
B → UB)f∈Ω, (PB ⊆

Um
B )P∈Π∪{∼}) is a model of Eq(Σ) ∪ {F̃}. Then the interpretation ∼B of ∼ in B is a

congruence relation on UB with respect to the functions fB and the predicates PB.

We will now construct a Σ-algebra A from B and the congruence relation ∼B. Let [a]
be the congruence class of an element a ∈ UB with respect to ∼B. The universe UA of
A is the set {[a] | a ∈ UB} of congruence classes of the universe of B. For a function
symbol f ∈ Ω, we define fA([a1], . . . , [an]) = [fB(a1, . . . , an)], and for a predicate symbol
P ∈ Π, we define ([a1], . . . , [an]) ∈ PA if and only if (a1, . . . , an) ∈ PB. Observe that
this is well-defined: If we take different representatives of the same congruence class,
we get the same result by congruence of ∼B. For any A-assignment γ choose some B-
assignment β such that B(β)(x) ∈ A(γ)(x) for every x, then for every Σ-term t we have
A(γ)(t) = [B(β)(t)], and analogously for every Σ-formula G, A(γ)(G) = B(β)(G̃). Both
properties can easily shown by structural induction. Therefore, A is a model of F . ✷

An analogous proposition holds for sets of closed first-order formulas with equality.

By giving the equality axioms explicitly, first-order problems with equality can in prin-
ciple be solved by a standard resolution or tableaux prover.

But this is unfortunately not efficient (mainly due to the transitivity and congruence
axioms).

Equality is theoretically difficult: First-order functional programming is Turing-complete.
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But resolution theorem provers cannot even solve equational problems that are intu-
itively easy.

Consequence: To handle equality efficiently, knowledge must be integrated into the the-
orem prover.

Roadmap

How to proceed:

• This part: Equations (unit clauses with equality).

Term rewrite systems.
Knuth–Bendix completion.

• Next part: Equational clauses.

Combining resolution and Knuth–Bendix completion. → Superposition.

4.2 Rewrite Systems

Let E be a set of (implicitly universally quantified) equations.

The rewrite relation →E ⊆ TΣ(X)× TΣ(X) is defined by

s→E t if and only if there exist (l ≈ r) ∈ E, p ∈ pos(s),
and σ : X → TΣ(X),
such that s|p = lσ and t = s[rσ]p.

An instance of the lhs (left-hand side) of an equation is called a redex (reducible expres-
sion). Contracting a redex means replacing it with the corresponding instance of the rhs
(right-hand side) of the rule.

An equation l ≈ r is also called a rewrite rule if l is not a variable and var(l) ⊇ var(r).

Notation: l → r.

A set of rewrite rules is called a term rewrite system (TRS).

We say that a set of equations E or a TRS R is terminating if the rewrite relation →E

or →R has this property.

(Analogously for other properties of abstract reduction systems.)

Note: If E is terminating, then it is a TRS.
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E-Algebras

Let E be a set of universally quantified equations. A model of E is also called an E-
algebra.

If E |= ∀~x (s ≈ t), i.e., ∀~x (s ≈ t) is valid in all E-algebras, we write this also as s ≈E t.

Goal:
Use the rewrite relation→E to express the semantic consequence relation syntactically:

s ≈E t if and only if s↔∗
E t.

Let E be a set of equations over TΣ(X). The following inference system allows us to
derive consequences of E:

E ⊢ t ≈ t (Reflexivity)
for every t ∈ TΣ(X)

E ⊢ t ≈ t′

E ⊢ t′ ≈ t
(Symmetry)

E ⊢ t ≈ t′ E ⊢ t′ ≈ t′′

E ⊢ t ≈ t′′
(Transitivity)

E ⊢ t1 ≈ t′1 . . . E ⊢ tn ≈ t′n
E ⊢ f(t1, . . . , tn) ≈ f(t′1, . . . , t

′
n)

(Congruence)

E ⊢ tσ ≈ t′σ (Instance)
if (t ≈ t′) ∈ E and σ : X → TΣ(X)

Lemma 4.2.1 The following properties are equivalent:

(i) s↔∗
E t

(ii) E ⊢ s ≈ t is derivable.

Proof. (i)⇒(ii): s ↔E t implies E ⊢ s ≈ t by induction on the depth of the position
where the equation is applied; then s ↔∗

E t implies E ⊢ s ≈ t by induction on the
number of rewrite steps in s↔∗

E t.

(ii)⇒(i): By induction on the size (number of symbols) of the derivation for E ⊢ s ≈ t.
✷

Constructing a quotient algebra:

Let X be a set of variables.

For t ∈ TΣ(X) let [t] = {t′ ∈ TΣ(X) | E ⊢ t ≈ t′} be the congruence class of t.
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Define a Σ-algebra TΣ(X)/E (abbreviated by T ) as follows:

UT = {[t] | t ∈ TΣ(X)}.

fT ([t1], . . . , [tn]) = [f(t1, . . . , tn)] for f/n ∈ Ω.

Lemma 4.2.2 fT is well-defined: If [ti] = [t′i], then [f(t1, . . . , tn)] = [f(t′1, . . . , t
′
n)].

Proof. Follows directly from the Congruence rule for ⊢. ✷

Lemma 4.2.3 T = TΣ(X)/E is an E-algebra.

Proof. Let ∀x1 . . . xn(s ≈ t) be an equation in E; let β be an arbitrary assignment.

We have to show that T (β)(∀~x (s ≈ t)) = 1, or equivalently, that T (γ)(s) = T (γ)(t) for
all γ = β[ xi 7→ [vi] | 1 ≤ i ≤ n ] with [vi] ∈ UT .

Let σ = {x1 7→ v1, . . . , xn 7→ vn}, then we get by structural induction that uσ ∈ T (γ)(u)
for every u ∈ TΣ({x1, ..., xn}). In particular, sσ ∈ T (γ)(s) and tσ ∈ T (γ)(t).

By the Instance rule, E ⊢ sσ ≈ tσ is derivable, hence T (γ)(s) = [sσ] = [tσ] = T (γ)(t).
✷

Lemma 4.2.4 Let X be a countably infinite set of variables; let s, t ∈ TΣ(Y ). If
TΣ(X)/E |= ∀~x (s ≈ t), then E ⊢ s ≈ t is derivable.

Proof. Without loss of generality, we assume that all variables in ~x are contained in X .
(Otherwise, we rename the variables in the equation. Since X is countably infinite, this is
always possible.) Assume that T |= ∀~x (s ≈ t), i.e., T (β)(∀~x (s ≈ t)) = 1. Consequently,
T (γ)(s) = T (γ)(t) for all γ = β[ xi 7→ [vi] | 1 ≤ i ≤ n ] with [vi] ∈ UT .

Choose vi := xi, then by structural induction [u] = T (γ)(u) for every u ∈ TΣ({x1, ..., xn}),
so [s] = T (γ)(s) = T (γ)(t) = [t]. Therefore E ⊢ s ≈ t is derivable by definition of T .

✷

Theorem 4.2.5 (“Birkhoff’s Theorem”) Let X be a countably infinite set of vari-
ables, let E be a set of (universally quantified) equations. Then the following properties
are equivalent for all s, t ∈ TΣ(X):

(i) s↔∗
E t.

(ii) E ⊢ s ≈ t is derivable.

(iii) s ≈E t, i.e., E |= ∀~x (s ≈ t).

(iv) TΣ(X)/E |= ∀~x (s ≈ t).
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Proof. (i)⇔(ii): Lemma 4.2.1.

(ii)⇒(iii): By induction on the size of the derivation for E ⊢ s ≈ t.

(iii)⇒(iv): Obvious, since T = TΣ(X)/E is an E-algebra.

(iv)⇒(ii): Lemma 4.2.4. ✷

4.3 Confluence

Let (A,→) be an abstract reduction system.

b and c ∈ A are joinable if there is an a such that b→∗ a←∗ c.
Notation: b ↓ c.

The relation → is called

Church–Rosser if b↔∗ c implies b ↓ c;

confluent if b←∗ a→∗ c implies b ↓ c;

locally confluent if b← a→ c implies b ↓ c;

convergent if it is confluent and terminating.

Theorem 4.3.1 The following properties are equivalent:

(i) → has the Church–Rosser property.

(ii) → is confluent.

Proof. (i)⇒(ii): trivial.

(ii)⇒(i): by induction on the number of peaks in the derivation b↔∗ c. ✷

Lemma 4.3.2 If → is confluent, then every element has at most one normal form.

Proof. Suppose that some element a ∈ A has normal forms b and c, then b←∗ a→∗ c.
If → is confluent, then b →∗ d ←∗ c for some d ∈ A. Since b and c are normal forms,
both derivations must be empty, hence b →0 d ←0 c, so b, c, and d must be identical.

✷

Corollary 4.3.3 If → is normalizing and confluent, then every element b has a unique
normal form.

Proposition 4.3.4 If→ is normalizing and confluent, then b↔∗ c if and only if b↓ = c↓.

Proof. Either using Thm. 4.3.1 or directly by induction on the length of the derivation
of b↔∗ c. ✷
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Confluence and Local Confluence

Theorem 4.3.5 (“Newman’s Lemma”) If a terminating relation → is locally con-
fluent, then it is confluent.

Proof. Let → be a terminating and locally confluent relation. Then →+ is a well-
founded ordering. Define φ(a) ⇔

(
∀b, c : b←∗ a→∗ c⇒ b ↓ c

)
.

We prove φ(a) for all a ∈ A by well-founded induction over →+:

Case 1: b←0 a→∗ c: trivial.

Case 2: b←∗ a→0 c: trivial.

Case 3: b←∗ b′ ← a→ c′ →∗ c: use local confluence, then use the induction hypothesis.
✷

Rewrite Relations

Corollary 4.3.6 If E is convergent (i.e., terminating and confluent), then s ≈E t if and
only if s↔∗

E t if and only if s↓E = t↓E .

Corollary 4.3.7 If E is finite and convergent, then ≈E is decidable.

Reminder:
If E is terminating, then it is confluent if and only if it is locally confluent.

Problems:

Show local confluence of E.

Show termination of E.

Transform E into an equivalent set of equations that is locally confluent and termi-
nating.
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4.4 Critical Pairs

Showing local confluence (sketch):

Problem: If t1 ←E t0 →E t2, does there exist a term s such that t1 →
∗
E s←∗

E t2?

If the two rewrite steps happen in different subtrees (disjoint redexes): yes.

If the two rewrite steps happen below each other (overlap at or below a variable
position): yes.

If the left-hand sides of the two rules overlap at a nonvariable position: needs further
investigation.

Question:
Are there rewrite rules l1 → r1 and l2 → r2 such that some subterm l1|p and l2 have
a common instance (l1|p)σ1 = l2σ2?

Observation:
If we assume without loss of generality that the two rewrite rules do not have common
variables, then only a single substitution is necessary: (l1|p)σ = l2σ.

Further observation:
The mgu of l1|p and l2 subsumes all unifiers σ of l1|p and l2.

Let li → ri (i ∈ {1, 2}) be two rewrite rules in a TRS R whose variables have been
renamed such that var(l1) ∩ var(l2) = ∅. (Recall that var(li) ⊇ var(ri).)

Let p ∈ pos(l1) be a position such that l1|p is not a variable and σ is an mgu of l1|p and
l2.

Then r1σ ← l1σ → (l1σ)[r2σ]p.

〈r1σ, (l1σ)[r2σ]p〉 is called a critical pair of R.

The critical pair is joinable (or: converges) if r1σ ↓R (l1σ)[r2σ]p.

Theorem 4.4.1 (“Critical Pair Theorem”) A TRS R is locally confluent if and
only if all its critical pairs are joinable.

Proof. “only if”: Obvious, since joinability of a critical pair is a special case of local
confluence.

“if”: Suppose s rewrites to t1 and t2 using rewrite rules li → ri ∈ R at positions
pi ∈ pos(s), where i ∈ {1, 2}. Without loss of generality, we can assume that the two
rules are variable disjoint, hence s|pi = liθ and ti = s[riθ]pi.

We distinguish between two cases: Either p1 and p2 are in disjoint subtrees (p1 ‖ p2) or
one is a prefix of the other (without loss of generality, p1 ≤ p2).
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Case 1: p1 ‖ p2.

Then s = s[l1θ]p1[l2θ]p2, and therefore t1 = s[r1θ]p1[l2θ]p2 and t2 = s[l1θ]p1 [r2θ]p2 .

Let t0 = s[r1θ]p1[r2θ]p2. Then clearly t1 →R t0 using l2 → r2 and t2 →R t0 using
l1 → r1.

Case 2: p1 ≤ p2.

Case 2.1: p2 = p1q1q2, where l1|q1 is some variable x.

In other words, the second rewrite step takes place at or below a variable in the first
rule. Suppose that x occurs m times in l1 and n times in r1 (where m ≥ 1 and n ≥ 0).

Then t1 →
∗
R t0 by applying l2 → r2 at all positions p1q

′q2, where q′ is a position of x in
r1.

Conversely, t2 →
∗
R t0 by applying l2 → r2 at all positions p1qq2, where q is a position of

x in l1 different from q1, and by applying l1 → r1 at p1 with the substitution θ′, where
θ′ = θ[x 7→ (xθ)[r2θ]q2 ].

Case 2.2: p2 = p1p, where p is a nonvariable position of l1.

Then s|p2 = l2θ and s|p2 = (s|p1)|p = (l1θ)|p = (l1|p)θ, so θ is a unifier of l2 and l1|p.

Let σ be the mgu of l2 and l1|p, then θ = τ ◦ σ and 〈r1σ, (l1σ)[r2σ]p〉 is a critical pair.

By assumption, it is joinable, so r1σ →
∗
R v ←∗

R (l1σ)[r2σ]p.

Consequently, t1 = s[r1θ]p1 = s[r1στ ]p1 →
∗
R s[vτ ]p1 and t2 = s[r2θ]p2 = s[(l1θ)[r2θ]p]p1 =

s[(l1στ)[r2στ ]p]p1 = s[((l1σ)[r2σ]p)τ ]p1 →
∗
R s[vτ ]p1 .

This completes the proof of the Critical Pair Theorem. ✷

Note: Critical pairs between a rule and (a renamed variant of) itself must be considered—
except if the overlap is at the root (i.e., p = ε).

Corollary 4.4.2 A terminating TRS R is confluent if and only if all its critical pairs
are joinable.

Proof. By Newman’s Lemma and the Critical Pair Theorem. ✷

Corollary 4.4.3 For a finite terminating TRS, confluence is decidable.

Proof. For every pair of rules and every nonvariable position in the first rule, there is
at most one critical pair 〈u1, u2〉.

Reduce every ui to some normal form u′
i. If u

′
1 = u′

2 for every critical pair, then R is
confluent; otherwise there is some nonconfluent situation u′

1 ←
∗
R u1 ←R s→R u2 →

∗
R u′

2.
✷
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Critical Pairs: Example

We compute the critical pairs for the following rewrite system and determine whether
they are joinable:

f(g(f(x)))→ x (1) f(g(x))→ g(f(x)) (2)

• Between (1) at position 11 and a renamed copy of (1):
σ = {x 7→ g(f(x′))},
g(f(x′))← f(g(f(g(f(x′)))))→ f(g(x′)),
critical pair: 〈g(f(x′)), f(g(x′))〉, joinable at f(g(x′)).

• Between (1) at position ε and a renamed copy of (2):
σ = {x′ 7→ f(x)},
x← f(g(f(x)))→ g(f(f(x))),
critical pair: 〈x, g(f(f(x)))〉, not joinable.

• Between (1) at position 11 and a renamed copy of (2):
σ = {x 7→ g(x′)},
f(g(g(f(x′))))← f(g(f(g(x′))))→ g(x′),
critical pair: 〈f(g(g(f(x′)))), g(x′)〉, joinable at g(x′).

4.5 Termination

Termination problems:

Given a finite TRS R and a term t, are all R-reductions starting from t terminating?

Given a finite TRS R, are all R-reductions terminating?

Proposition 4.5.1 Both termination problems for TRSs are undecidable in general.

Proof. Encode Turing machines using rewrite rules and reduce the (uniform) halting
problems for TMs to the termination problems for TRSs. ✷

Consequence:

Decidable criteria for termination are not complete.
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Two Scenarios

Depending on the application, the TRS whose termination we want to show can be

(i) fixed and known in advance, or

(ii) evolving (e.g., generated by some saturation process).

Methods for case (ii) are also usable for case (i). Many methods for case (i) are not
usable for case (ii).

We will focus on case (ii).

Reduction Orderings

Goal:

Given a finite TRS R, show termination of R by looking at finitely many rules l →
r ∈ R, rather than at infinitely many possible replacement steps s→R s′.

A binary relation ⊐ over TΣ(X) is called compatible with Σ-operations if s ⊐ s′ implies
f(t1, . . . , s, . . . , tn) ⊐ f(t1, . . . , s

′, . . . , tn) for all f ∈ Ω and s, s′, ti ∈ TΣ(X).

Lemma 4.5.2 The relation ⊐ is compatible with Σ-operations if and only if s ⊐ s′

implies t[s]p ⊐ t[s′]p for all s, s′, t ∈ TΣ(X) and p ∈ pos(t).

Note: compatible with Σ-operations = compatible with contexts.

A binary relation ⊐ over TΣ(X) is called stable under substitutions if s ⊐ s′ implies
sσ ⊐ s′σ for all s, s′ ∈ TΣ(X) and substitutions σ.

A binary relation ⊐ is called a rewrite relation if it is compatible with Σ-operations and
stable under substitutions.

Example: If R is a TRS, then →R is a rewrite relation.

A strict partial ordering over TΣ(X) that is a rewrite relation is called rewrite ordering.

A well-founded rewrite ordering is called reduction ordering.

Theorem 4.5.3 A TRS R terminates if and only if there exists a reduction ordering ≻
such that l ≻ r for every rule l → r ∈ R.

Proof. “if”: s →R s′ if and only if s = t[lσ]p, s
′ = t[rσ]p. If l ≻ r, then lσ ≻ rσ and

therefore t[lσ]p ≻ t[rσ]p. This implies →R ⊆ ≻. Since ≻ is a well-founded ordering, →R

is terminating.

“only if”: Define ≻ =→+
R. If →R is terminating, then ≻ is a reduction ordering. ✷
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The Interpretation Method

Proving termination by interpretation:

Let A be a Σ-algebra; let ≻ be a well-founded strict partial ordering on its universe.

Define the ordering ≻A over TΣ(X) by s ≻A t if and only if A(β)(s) ≻ A(β)(t) for all
assignments β : X → UA.

Is ≻A a reduction ordering?

Lemma 4.5.4 ≻A is stable under substitutions.

Proof. Let s ≻A s′, that is, A(β)(s) ≻ A(β)(s′) for all assignments β : X → UA. Let
σ be a substitution. We have to show that A(γ)(sσ) ≻ A(γ)(s′σ) for all assignments
γ : X → UA. Choose β = γ ◦ σ, then by the substitution lemma, A(γ)(sσ) = A(β)(s) ≻
A(β)(s′) = A(γ)(s′σ). Therefore sσ ≻A s′σ. ✷

A function φ : Un
A → UA is called monotone (with respect to ≻) if a ≻ a′ implies

φ(b1, . . . , a, . . . , bn) ≻ φ(b1, . . . , a
′, . . . , bn) for all a, a

′, bi ∈ UA.

Lemma 4.5.5 If the interpretation fA of every function symbol f is monotone w.r.t. ≻,
then ≻A is compatible with Σ-operations.

Proof. Let s ≻A s′, that is, A(β)(s) ≻ A(β)(s′) for all β : X → UA. Let β : X → UA

be an arbitrary assignment. Then

A(β)(f(t1, . . . , s, . . . , tn)) = fA(A(β)(t1), . . . ,A(β)(s), . . . ,A(β)(tn))

≻ fA(A(β)(t1), . . . ,A(β)(s
′), . . . ,A(β)(tn))

= A(β)(f(t1, . . . , s
′, . . . , tn))

Therefore f(t1, . . . , s, . . . , tn) ≻A f(t1, . . . , s
′, . . . , tn). ✷

Theorem 4.5.6 If the interpretation fA of every function symbol f is monotone w.r.t.≻,
then ≻A is a reduction ordering.

Proof. By the previous two lemmas, ≻A is a rewrite relation. If there were an infinite
chain s1 ≻A s2 ≻A . . . , then it would correspond to an infinite chain A(β)(s1) ≻
A(β)(s2) ≻ · · · (with β chosen arbitrarily). Thus ≻A is well-founded. Irreflexivity and
transitivity are proved similarly. ✷
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Polynomial Orderings

Polynomial orderings:

Instance of the interpretation method:

The carrier set UA is N or some subset of N.

With every function symbol f/n we associate a polynomial Pf(X1, . . . , Xn) ∈ N[X1,
. . . , Xn] with coefficients in N and indeterminates X1, . . . , Xn. Then we define fA(a1,
. . . , an) = Pf(a1, . . . , an) for ai ∈ UA.

Requirement 1:

If a1, . . . , an ∈ UA, then fA(a1, . . . , an) ∈ UA. (Otherwise, A would not be a Σ-algebra.)

Requirement 2:

fA must be monotone (w.r.t. ≻).

From now on:

UA = {n ∈ N | n ≥ 1}.

If arity(f) = 0, then Pf is a constant ≥ 1.

If arity(f) = n ≥ 1, then Pf is a polynomial P (X1, . . . , Xn) such that every Xi occurs
in some monomial m · Xj1

1 · · ·X
jk
k with exponent at least 1 and nonzero coefficient

m ∈ N.

⇒ Requirements 1 and 2 are satisfied.

The mapping from function symbols can be extended to terms: A term t containing the
variables x1, . . . , xn yields a polynomial Pt with indeterminates X1, . . . , Xn (where Xi

corresponds to β(xi)).

Example:

Ω = {b/0, f/1, g/3}
Pb = 3, Pf (X1) = X2

1 , Pg(X1, X2, X3) = X1 +X2X3.

Let t = g(f(b), f(x), y), then Pt(X, Y ) = 9 +X2Y .

Given polynomials P,Q in N[X1, . . . , Xn], we write P > Q if P (a1, . . . , an) > Q(a1, . . . , an)
for all a1, . . . , an ∈ UA.

Clearly, s ≻A t if and only if Ps > Pt if and only if Ps − Pt > 0.

Question: Can we check Ps − Pt > 0 automatically?

Hilbert’s 10th Problem:
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Given a polynomial P ∈ Z[X1, . . . , Xn] with integer coefficients, is P = 0 for some
n-tuple of natural numbers?

Theorem 4.5.7 Hilbert’s 10th Problem is undecidable.

Proposition 4.5.8 Given a polynomial interpretation and two terms s, t, it is unde-
cidable whether Ps > Pt.

Proof. By reduction of Hilbert’s 10th Problem. ✷

One easy case:

If we restrict to linear polynomials, deciding whether Ps − Pt > 0 is trivial:
∑

kiai + k > 0 for all a1, . . . , an ≥ 1 if and only if

ki ≥ 0 for all i ∈ {1, . . . , n},

and
∑

ki + k > 0

Another possible solution:

Test whether Ps(a1, . . . , an) > Pt(a1, . . . , an) for all a1, . . . , an ∈ {x ∈ R | x ≥ 1}.

This is decidable (but hard). Since UA ⊆ {x ∈ R | x ≥ 1}, it implies Ps > Pt.

Alternatively:

Use fast overapproximations.

Simplification Orderings

The proper subterm ordering ⊲ is defined by s ⊲ t if and only if s|p = t for some position
p 6= ε of s.

A rewrite ordering ≻ over TΣ(X) is called simplification ordering if it has the subterm
property: s ⊲ t implies s ≻ t for all s, t ∈ TΣ(X).

Example:

Let Remb be the rewrite system Remb = {f(x1, . . . , xn)→ xi | f/n ∈ Ω, 1 ≤ i ≤ n}.

Define ⊲emb =→+
Remb

and Demb =→∗
Remb

(“homeomorphic embedding relation”).

⊲emb is a simplification ordering.

Lemma 4.5.9 If ≻ is a simplification ordering, then s ⊲emb t implies s ≻ t and s Demb t
implies s � t.
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Proof. Since ≻ is transitive and � is transitive and reflexive, it suffices to show that
s →Remb

t implies s ≻ t. By definition, s →Remb
t if and only if s = s[lσ] and t = s[rσ]

for some rule l → r ∈ Remb. Obviously, l ⊲ r for all rules in Remb, hence l ≻ r. Since ≻
is a rewrite relation, s = s[lσ] ≻ s[rσ] = t. ✷

Goal:

Show that every simplification ordering is well-founded (and therefore a reduction
ordering).

Note: This works only for finite signatures.

To fix this for infinite signatures, the definition of simplification orderings and the
definition of embedding have to be modified.

Theorem 4.5.10 (“Kruskal’s Theorem”) Let Σ be a finite signature, and let X be
a finite set of variables. Then for every infinite sequence t1, t2, t3, . . . there are indices
j > i such that tj Demb ti. (Demb is called a well-partial-ordering (wpo).)

Proof. See Baader and Nipkow, pages 113–115. ✷

Theorem 4.5.11 (Dershowitz) If Σ is a finite signature, then every simplification
ordering ≻ on TΣ(X) is well-founded (and therefore a reduction ordering).

Proof. Suppose that t1 ≻ t2 ≻ t3 ≻ · · · is an infinite descending chain.

First assume that there is an x ∈ var(ti+1) \ var(ti). Let σ = {x 7→ ti}, then ti+1σ D

xσ = ti and therefore ti = tiσ ≻ ti+1σ � ti, contradicting irreflexivity.

Consequently, var(ti) ⊇ var(ti+1) and ti ∈ TΣ(V ) for all i, where V is the finite set var(t1).
By Kruskal’s Theorem, there are i < j with ti Eemb tj . Hence ti � tj , contradicting
ti ≻ tj . ✷

There are reduction orderings that are not simplification orderings and terminating TRSs
that are not contained in any simplification ordering.

Example:

Let R = {f(f(x))→ f(g(f(x)))}.

R terminates and →+
R is therefore a reduction ordering.

Assume that →R were contained in a simplification ordering ≻. Then f(f(x)) →R

f(g(f(x))) implies f(f(x)) ≻ f(g(f(x))), and f(g(f(x))) Demb f(f(x)) implies f(g(f(x))) �
f(f(x)), hence f(f(x)) ≻ f(f(x)).
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Path Orderings

Let Σ = (Ω,Π) be a finite signature, let ≻ be a strict partial ordering (“precedence”)
on Ω.

The lexicographic path ordering ≻lpo on TΣ(X) induced by ≻ is defined by: s ≻lpo t if

(1) t ∈ var(s) and t 6= s, or

(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(a) si �lpo t for some i, or

(b) f ≻ g and s ≻lpo tj for all j, or

(c) f = g, s ≻lpo tj for all j, and (s1, . . . , sm) (≻lpo)lex (t1, . . . , tn).

where (≻lpo)lex is the m-fold lexicographic combination of ≻lpo

(note that f = g implies m = n).

Lemma 4.5.12 s ≻lpo t implies var(s) ⊇ var(t).

Proof. By induction on |s|+ |t| and case analysis. ✷

Theorem 4.5.13 ≻lpo is a simplification ordering on TΣ(X).

Proof. Show transitivity, subterm property, stability under substitutions, compatibility
with Σ-operations, and irreflexivity, usually by induction on the sum of the term sizes
and case analysis. Details: Baader and Nipkow, pages 119–120. ✷

Theorem 4.5.14 If the precedence ≻ is total, then the lexicographic path ordering ≻lpo

is total on ground terms, i.e., for all s, t ∈ TΣ(∅): s ≻lpo t ∨ t ≻lpo s ∨ s = t.

Proof. By induction on |s|+ |t| and case analysis. ✷

Recapitulation:

Let Σ = (Ω,Π) be a finite signature, let ≻ be a strict partial ordering (“precedence”) on
Ω. The lexicographic path ordering ≻lpo on TΣ(X) induced by ≻ is defined by: s ≻lpo t
if

(1) t ∈ var(s) and t 6= s, or

(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(a) si �lpo t for some i, or
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(b) f ≻ g and s ≻lpo tj for all j, or

(c) f = g, s ≻lpo tj for all j, and (s1, . . . , sm) (≻lpo)lex (t1, . . . , tn).

There are several possibilities to compare subterms in (2)(c):

• compare list of subterms lexicographically left-to-right (“lexicographic path order-
ing (lpo),” Kamin and Lévy)

• compare list of subterms lexicographically right-to-left (or according to some per-
mutation π)

• compare multiset of subterms using the multiset extension (“multiset path ordering
(mpo),” Dershowitz)

• with each function symbol f/n ∈ Ω with n ≥ 1 associate a status ∈ {mul} ∪ {lexπ |
π : {1, . . . , n} → {1, . . . , n}} and compare according to that status (“recursive path
ordering (rpo) with status”)

Example 4.5.15 Consider the following set of equations:

f(h(h(x))) ≈ h(f(f(x)))

g(g(x)) ≈ f(h(f(h(h(f(x))))))

f(h(x)) ≈ f(f(x))

Using the lpo with the precedence g ≻ h ≻ f , the left-hand side of each equation is
greater than the corresponding right-hand side.

The Knuth–Bendix Ordering

Let Σ = (Ω,Π) be a finite signature, let ≻ be a strict partial ordering (“precedence”)
on Ω, let w : Ω ∪ X → R+

0 be a weight function such that the following admissibility
conditions are satisfied:

w(x) = w0 ∈ R+ for all variables x ∈ X ; w(c) ≥ w0 for all constants c ∈ Ω.

If w(f) = 0 for some f/1 ∈ Ω, then f ≻ g for all g/n ∈ Ω with f 6= g.

The weight function w can be extended to terms recursively:

w(f(t1, . . . , tn)) = w(f) +
∑

1≤i≤n

w(ti)

or alternatively

w(t) =
∑

x∈var(t)

w(x) ·#(x, t) +
∑

f∈Ω

w(f) ·#(f, t)
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where #(a, t) is the number of occurrences of a in t.

The Knuth–Bendix ordering ≻kbo on TΣ(X) induced by ≻ and w is defined by: s ≻kbo t
if

(1) #(x, s) ≥ #(x, t) for all variables x and w(s) > w(t), or

(2) #(x, s) ≥ #(x, t) for all variables x, w(s) = w(t), and

(a) t = x, s = fn(x) for some n ≥ 1, or

(b) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and f ≻ g, or

(c) s = f(s1, . . . , sm), t = f(t1, . . . , tm), and (s1, . . . , sm) (≻kbo)lex (t1, . . . , tm).

Theorem 4.5.16 The Knuth–Bendix ordering induced by ≻ and w is a simplification
ordering on TΣ(X).

Proof. See Baader and Nipkow, pages 125–129. ✷

Example 4.5.17 Consider the following set of equations:

f(h(h(x))) ≈ h(f(f(x)))

g(g(x)) ≈ f(h(f(h(h(f(x))))))

f(h(x)) ≈ f(f(x))

Using the kbo with weight 100 for g, weight 10 for h, weight 1 for f and variables,
and an arbitrary precedence, the left-hand side of each equation is greater than the
corresponding right-hand side.

Remark

If Π 6= ∅, then all the term orderings described in this section can also be used to compare
nonequational atoms by treating predicate symbols like function symbols.

4.6 Knuth–Bendix Completion

Completion:

Goal: Given a set E of equations, transform E into an equivalent convergent set R of
rewrite rules.
(If R is finite: decision procedure for E.)
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Knuth–Bendix Completion: Idea

How to ensure termination?

Fix a reduction ordering ≻ and construct R in such a way that →R ⊆ ≻ (i.e., l ≻ r
for every l → r ∈ R).

How to ensure confluence?

Check that all critical pairs are joinable.

Note: Every critical pair 〈s, t〉 can be made joinable by adding s→ t or t→ s to R.

(Actually, we first add s ≈ t to E and later try to turn it into a rule that is contained
in ≻; this gives us more freedom.)

Knuth–Bendix Completion: Inference Rules

The completion procedure is presented as a set of inference rules working on a set of
equations E and a set of rules R: E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ · · · .

At the beginning, E = E0 is the input set and R = R0 is empty. At the end, E should
be empty; then R is the result.

For each step E,R ⊢ E ′, R′, the equational theories of E ∪R and E ′ ∪R′ agree: ≈E∪R =
≈E′∪R′ .

Notations:

The formula s
.
≈ t denotes either s ≈ t or t ≈ s.

CP(R) denotes the set of all critical pairs between rules in R.

Orient:

E ∪ {s
.
≈ t}, R

E, R ∪ {s→ t}
if s ≻ t

Note: There are equations s ≈ t that cannot be oriented, i.e., neither s ≻ t nor t ≻ s.

Trivial equations cannot be oriented—but we do not need them anyway:

Delete:

E ∪ {s ≈ s}, R

E, R
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Critical pairs between rules in R are turned into additional equations:

Deduce:

E, R

E ∪ {s ≈ t}, R
if 〈s, t〉 ∈ CP(R).

Note: If 〈s, t〉 ∈ CP(R), then s←R u→R t and hence R |= s ≈ t.

The following inference rules are not strictly necessary, but are very useful (e.g., to
eliminate joinable critical pairs and to cope with equations that cannot be oriented):

Simplify-Eq:

E ∪ {s
.
≈ t}, R

E ∪ {u ≈ t}, R
if s→R u.

Simplification of the right-hand side of a rule is unproblematic:

R-Simplify-Rule:

E, R ∪ {s→ t}

E, R ∪ {s→ u}
if t→R u.

Simplification of the left-hand side may influence orientability and orientation. Therefore,
it yields an equation:

L-Simplify-Rule:

E, R ∪ {s→ t}

E ∪ {u ≈ t}, R

if s→R u using a rule l → r ∈ R
such that s ⊐ l (see below).

For technical reasons, the lhs of s → t may only be simplified using a rule l → r if
l → r cannot be simplified using s → t, that is, if s ⊐ l, where the encompassment
quasi-ordering ⊐

∼ is defined by

s ⊐∼ l if s|p = lσ for some p and σ

and ⊐ = ⊐
∼ \

⊏
∼ is the strict part of ⊐∼.

Lemma 4.6.1 ⊐ is a well-founded strict partial ordering.

Lemma 4.6.2 If E,R ⊢ E ′, R′, then ≈E∪R = ≈E′∪R′ .

Lemma 4.6.3 If E,R ⊢ E ′, R′ and →R ⊆ ≻, then →R′ ⊆ ≻.
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Note: Like in ordered resolution, simplification should be preferred to deduction:

• Simplify/delete whenever possible.

• Otherwise, orient an equation if possible.

• Last resort: compute critical pairs.

Knuth–Bendix Completion: Example

We apply the Knuth–Bendix procedure to the set of equations

add(zero, zero) ≈ zero (1) add(x, succ(y)) ≈ succ(add(x, y)) (2)
add(succ(x), y) ≈ succ(add(x, y)) (3)

using the lpo with the precedence add ≻ succ ≻ zero.

We first apply “Orient” to (1)–(3), resulting in the rewrite rules

add(zero, zero)→ zero (4) add(x, succ(y))→ succ(add(x, y)) (5)
add(succ(x), y)→ succ(add(x, y)) (6)

add(zero, zero)→ zero (4) add(x, succ(y))→ succ(add(x, y)) (5)
add(succ(x), y)→ succ(add(x, y)) (6)

Then we apply “Deduce” between (5) and a renamed copy of (6):

succ(add(succ(x), y)) ≈ succ(add(x, succ(y))) (7)

We can now apply “Simplify-Eq” to both sides of (7) using (6) and (5):

succ(succ(add(x, y))) ≈ succ(succ(add(x, y))) (8)

This last equation is trivial and can be deleted using “Delete.”

All critical pairs have been checked. The resulting term rewrite system is {(4), (5), (6)}.

Knuth–Bendix Completion: Correctness Proof

What can happen if we run the completion procedure on a set E of equations?

(1) We reach a state where no more inference rules are applicable and E is not empty.
⇒ Failure (try again with another ordering?)

(2) We reach a state where E is empty and all critical pairs between the rules in the
current R have been checked.

(3) The procedure runs forever.
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To treat these cases simultaneously, we need some definitions.

A (finite or infinite sequence) E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ · · · with R0 = ∅ is called a run
of the completion procedure with input E0 and ≻.

For a run, E∪ =
⋃

i≥0Ei and R∪ =
⋃

i≥0Ri.

The sets of persistent equations or rules of the run are E∞ =
⋃

i≥0

⋂

j≥iEj and R∞ =
⋃

i≥0

⋂

j≥iRj .

Note: If the run is finite and ends with En, Rn, then E∞ = En and R∞ = Rn.

A run is called fair if CP (R∞) ⊆ E∪ (i.e., if every critical pair between persisting rules
is computed at some step of the derivation).

Goal:

Show: If a run is fair and E∞ is empty, then R∞ is convergent and equivalent to E0.

In particular: If a run is fair and E∞ is empty, then ≈E0
= ≈E∪∪R∪

=↔∗
E∪∪R∪

= ↓R∞
.

General assumptions from now on:

E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ · · · is a fair run.

R0 and E∞ are empty.

A proof of s ≈ t in E∪ ∪ R∪ is a finite sequence (s0, . . . , sn) such that s = s0, t = sn,
and for all i ∈ {1, . . . , n}:

(1) si−1 ↔E∪
si, or

(2) si−1 →R∪
si, or

(3) si−1 ←R∪
si.

The pairs (si−1, si) are called proof steps.

A proof is called a rewrite proof in R∞ if there is a k ∈ {0, . . . , n} such that si−1 →R∞
si

for 1 ≤ i ≤ k and si−1 ←R∞
si for k + 1 ≤ i ≤ n

Idea (Bachmair, Dershowitz, Hsiang):

Define a well-founded ordering on proofs such that for every proof that is not a rewrite
proof in R∞ there is an equivalent smaller proof.

Consequence: For every proof there is an equivalent rewrite proof in R∞.

We associate a cost c(si−1, si) with every proof step as follows:

(1) If si−1 ↔E∪
si, then c(si−1, si) = ({si−1, si},−,−), where the first component is a

multiset of terms and − denotes an arbitrary (irrelevant) term.
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(2) If si−1 →R∪
si using l → r, then c(si−1, si) = ({si−1}, l, si).

(3) If si−1 ←R∪
si using l → r, then c(si−1, si) = ({si}, l, si−1).

Proof steps are compared using the lexicographic combination of the multiset exten-
sion of the reduction ordering ≻, the encompassment ordering ⊐, and the reduction
ordering ≻.

The cost c(P ) of a proof P is the multiset of the costs of its proof steps.

The proof ordering ≻C compares the costs of proofs using the multiset extension of the
proof step ordering.

Lemma 4.6.4 ≻C is a well-founded ordering.

Lemma 4.6.5 Let P be a proof in E∪ ∪ R∪. If P is not a rewrite proof in R∞, then
there exists an equivalent proof P ′ in E∪ ∪R∪ such that P ≻C P ′.

Proof. If P is not a rewrite proof in R∞, then it contains

(a) a proof step that is in E∪, or
(b) a proof step that is in R∪ \R∞, or
(c) a subproof si−1 ←R∞

si →R∞
si+1 (peak).

We show that in all three cases the proof step or subproof can be replaced by a smaller
subproof:

Case (a): A proof step using an equation s
.
≈ t is in E∪. This equation must be deleted

during the run.

If s
.
≈ t is deleted using Orient:
. . . si−1 ↔E∪

si . . . =⇒ . . . si−1 →R∪
si . . .

If s
.
≈ t is deleted using Delete:

. . . si−1 ↔E∪
si−1 . . . =⇒ . . . si−1 . . .

If s
.
≈ t is deleted using Simplify-Eq:
. . . si−1 ↔E∪

si . . . =⇒ . . . si−1 →R∪
s′ ↔E∪

si . . .

Case (b): A proof step using a rule s → t is in R∪ \ R∞. This rule must be deleted
during the run.

If s→ t is deleted using R-Simplify-Rule:
. . . si−1 →R∪

si . . . =⇒ . . . si−1 →R∪
s′ ←R∪

si . . .

If s→ t is deleted using L-Simplify-Rule:
. . . si−1 →R∪

si . . . =⇒ . . . si−1 →R∪
s′ ↔E∪

si . . .

Case (c): A subproof has the form si−1 ←R∞
si →R∞

si+1.
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If there is no overlap or a noncritical overlap:
. . . si−1 ←R∞

si →R∞
si+1 . . . =⇒ . . . si−1 →

∗
R∞

s′ ←∗
R∞

si+1 . . .

If there is a critical pair that has been added using “Deduce”:
. . . si−1 ←R∞

si →R∞
si+1 . . . =⇒ . . . si−1 ↔E∪

si+1 . . .

In all cases, checking that the replacement subproof is smaller than the replaced sub-
proof is routine. ✷

Theorem 4.6.6 Let E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ · · · be a fair run and let R0 and E∞

be empty. Then

(1) every proof in E∪ ∪ R∪ is equivalent to a rewrite proof in R∞,

(2) R∞ is equivalent to E0, and

(3) R∞ is convergent.

Proof. (1) By well-founded induction on ≻C using the previous lemma.

(2) Clearly ≈E∪∪R∪
= ≈E0

. Since R∞ ⊆ R∪, we get ≈R∞
⊆ ≈E∪∪R∪

. On the other hand,
by (1), ≈E∪∪R∪

⊆ ≈R∞
.

(3) Since →R∞
⊆ ≻, R∞ is terminating. By (1), R∞ is confluent. ✷

4.7 Unfailing Completion

Classical completion:

Try to transform a set E of equations into an equivalent convergent TRS.

Fail if an equation can be neither oriented nor deleted.

Unfailing completion (Bachmair, Dershowitz, and Plaisted):

If an equation cannot be oriented, we can still use orientable instances for rewriting.

Note: If ≻ is total on ground terms, then every ground instance of an equation is
trivial or can be oriented.

Goal: Derive a ground convergent set of equations.

Let E be a set of equations, let ≻ be a reduction ordering.

We define the relation →E≻ by

s→E≻ t if there exist (u ≈ v) ∈ E or (v ≈ u) ∈ E,
p ∈ pos(s), and σ : X → TΣ(X),
such that s|p = uσ and t = s[vσ]p and uσ ≻ vσ.
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Note: →E≻ is terminating by construction.

From now on let ≻ be a reduction ordering that is total on ground terms.

E is called ground convergent w.r.t. ≻ if for all ground terms s and t with s↔∗
E t there

exists a ground term v such that s→∗
E≻ v ←∗

E≻ t. (Analogously for E ∪R.)

As for standard completion, we establish ground convergence by computing critical
pairs.

However, the ordering ≻ is not total on nonground terms. Since sθ ≻ tθ implies s 6� t,
we approximate ≻ on ground terms by 6� on arbitrary terms.

Let ui
.
≈ vi (i = 1, 2) be equations in E whose variables have been renamed such that

var(u1
.
≈ v1) ∩ var(u2

.
≈ v2) = ∅. Let p ∈ pos(u1) be a position such that u1|p is not a

variable, σ is an mgu of u1|p and u2, and uiσ 6� viσ (i = 1, 2). Then 〈v1σ, (u1σ)[v2σ]p〉 is
called a semicritical pair of E with respect to ≻.

The set of all semicritical pairs of E is denoted by SP≻(E).

Semicritical pairs of E ∪ R are defined analogously.

Note: In contrast to critical pairs, it may be necessary to consider overlaps of an equation
with itself at the top. For instance, if E = {f(x) ≈ g(y)}, then 〈g(y), g(y′)〉 is a
semicritical pair.

The “Deduce” rule now takes the following form:

Deduce:

E, R

E ∪ {s ≈ t}, R
if 〈s, t〉 ∈ SP≻(E ∪R).

Moreover, the fairness criterion for runs is replaced by

SP≻(E∞ ∪R∞) ⊆ E∪

(i.e., if every semicritical pair between persisting rules or equations is computed at some
step of the derivation).

Analogously to Thm. 4.6.6 we obtain now the following theorem:

Theorem 4.7.1 Let E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ · · · be a fair run. Let R0 = ∅. Then

(1) E∞ ∪ R∞ is equivalent to E0, and

(2) E∞ ∪ R∞ is ground convergent.
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Moreover one can show that whenever there exists a reduced convergent R such that
≈E0

= ↓R and →R ∈ ≻, then for every fair and simplifying run E∞ = ∅ and R∞ = R
up to variable renaming.

Here R is called reduced if for every l → r ∈ R, both l and r are irreducible w.r.t. R \
{l → r}. A run is called simplifying if R∞ is reduced, and for all equations u ≈ v ∈ E∞,
u and v are incomparable w.r.t. ≻ and irreducible w.r.t. R∞.

Unfailing completion is refutationally complete for equational theories:

Theorem 4.7.2 Let E be a set of equations, let ≻ be a reduction ordering that is total
on ground terms. For any two terms s and t, let ŝ and t̂ be the terms obtained from
s and t by replacing all variables by Skolem constants. Let eq/2, true/0 and false/0
be new operator symbols such that true and false are smaller than all other terms. Let
E0 = E ∪ {eq(ŝ, t̂) ≈ true , eq(x, x) ≈ false}. If E0, ∅ ⊢ E1, R1 ⊢ E2, R2 ⊢ · · · is a fair run
of unfailing completion, then s ≈E t if and only if some Ei ∪ Ri contains true ≈ false.

Outlook:

Combine ordered resolution and unfailing completion to get a calculus for equational
clauses:

compute inferences between (strictly) maximal literals as in ordered resolution,
compute overlaps between maximal sides of equations as in unfailing completion

⇒ Superposition calculus.

5 Superposition

First-order calculi considered so far:

Resolution: for first-order clauses without equality.

(Unfailing) Knuth–Bendix completion: for unit equations.

Goal:

Combine the ideas of ordered resolution (overlap maximal literals in a clause) and
Knuth–Bendix completion (overlap maximal sides of equations) to get a calculus for
equational clauses.
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5.1 Recapitulation

First-order logic:

Atom: either P (s1, . . . , sm) with P ∈ Π or s ≈ t.

Literal: atom or negated atom.

Clause: (possibly empty) disjunction of literals (all variables implicitly universally
quantified).

Refutational theorem proving:

For refutational theorem proving, it suffices to consider sets of clauses: every first-
order formula F can be translated into a set of clauses N such that F is unsatisfiable
if and only if N is unsatisfiable.

In the nonequational case, unsatisfiability can for instance be checked using the (or-
dered) resolution calculus.

(Ordered) resolution: inference rules:

Ground case: Nonground case:

Resolution:
D′ ∨ A C ′ ∨ ¬A

D′ ∨ C ′

D′ ∨A C ′ ∨ ¬A′

(D′ ∨ C ′)σ

where σ = mgu(A,A′).

Factoring:
C ′ ∨ A ∨ A

C ′ ∨ A

C ′ ∨A ∨A′

(C ′ ∨A)σ

where σ = mgu(A,A′).

Ordering restrictions:

Let ≻ be a well-founded and total ordering on ground atoms.

Literal ordering ≻L: compares literals by comparing lexicographically first the respec-
tive atoms using ≻ and then their polarities (negative > positive).

Clause ordering ≻C: compares clauses by comparing their multisets of literals using
the multiset extension of ≻L.

Ordering restrictions (ground case):

Inference are necessary only if the following conditions are satisfied:
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– The left premise of a “Resolution” inference is not larger than or equal to the
right premise.

– The literals that are involved in the inferences ([¬]A) are maximal in the respec-
tive clauses (strictly maximal for the left premise of “Resolution”).

Ordering restrictions (nonground case):

Define the atom ordering ≻ also for nonground atoms.

Need stability under substitutions: A ≻ B implies Aσ ≻ Bσ.

Note: ≻ cannot be total on nonground atoms.

For literals involved in inferences, we have the same maximality requirements as in
the ground case.

Resolution is (even with ordering restrictions) refutationally complete:

Dynamic view of refutational completeness:

If N is unsatisfiable (N |= ⊥), then fair derivations from N produce ⊥.

Static view of refutational completeness:

If N is saturated, then N is unsatisfiable if and only if ⊥ ∈ N .

Proving refutational completeness for the ground case:

We have to show:

IfN is saturated (i.e., if sufficiently many inferences have been computed), and ⊥ /∈ N ,
then N has a model.

Constructing a candidate interpretation:

Suppose that N be saturated and ⊥ /∈ N . We inspect all clauses in N in ascending
order and construct a sequence of Herbrand interpretations (starting with the empty
interpretation—all atoms are false).

If a clause C is false in the current interpretation, and has a positive and strictly maximal
literal A, then extend the current interpretation such that C becomes true: add A to
the current interpretation. (Then C is called productive.)

Otherwise, leave the current interpretation unchanged.

The sequence of interpretations has the following properties:

(1) If an atom is true in some interpretation, then it remains true in all future inter-
pretations.
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(2) If a clause is true at the time where it is inspected, then it remains true in all
future interpretations.

(3) If a clause C = C ′ ∨A is productive, then C remains true and C ′ remains false in
all future interpretations.

Show by induction: If N is saturated and ⊥ /∈ N , then every clause in N is either true
at the time when it is inspected or productive.

Note:
For the induction proof, it is not necessary that the conclusion of an inference is contained
in N . It is sufficient that it is redundant w.r.t. N .

N is called saturated up to redundancy if the conclusion of every inference from clauses
in N \Red(N) is contained in N ∪Red(N).

Proving refutational completeness for the nonground case:

If Ciθ is a ground instance of the clause Ci for i ∈ {0, . . . , n} and

Cn · · · C1

C0

and

Cnθ, . . . , C1θ

C0θ

are inferences, then the latter inference is called a ground instance of the former.

For a set N of clauses, let GΣ(N) be the set of all ground instances of clauses in N .

Construct the interpretation from the set GΣ(N) of all ground instances of clauses
in N :

N is saturated and does not contain ⊥
⇒ GΣ(N) is saturated and does not contain ⊥
⇒ GΣ(N) has a Herbrand model I
⇒ I is a model of N .

It is possible to encode an arbitrary predicate P using a function fP and a new con-
stant true :

P (t1, . . . , tn) ❀ fP (t1, . . . , tn) ≈ true

¬ P (t1, . . . , tn) ❀ ¬ fP (t1, . . . , tn) ≈ true

In equational logic it is therefore sufficient to consider the case that Π = ∅, i.e., equality
is the only predicate symbol.

Abbreviation: s 6≈ t instead of ¬ s ≈ t.
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5.2 The Superposition Calculus—Informally

Conventions:

From now on: Π = ∅ (equality is the only predicate).

Inference rules are to be read modulo symmetry of the equality symbol.

We will first explain the ideas and motivations behind the superposition calculus and
its completeness proof. Precise definitions will be given later.

Ground inference rules:

Pos. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[t] ≈ s′

D′ ∨ C ′ ∨ s[t′] ≈ s′

Neg. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[t] 6≈ s′

D′ ∨ C ′ ∨ s[t′] 6≈ s′

Equality Resolution:
C ′ ∨ s 6≈ s

C ′

(Note: We will need one further inference rule.)

Ordering wishlist:

Like in resolution, we want to perform only inferences between (strictly) maximal
literals.

Like in completion, we want to perform only inferences between (strictly) maximal
sides of literals.

Like in resolution, in inferences with two premises, the left premise should not be
larger than the right one.

Like in resolution and completion, the conclusion should then be smaller than the
larger premise.

The ordering should be total on ground literals.

Consequences:

The literal ordering must depend primarily on the larger term of an equation.

As in the resolution case, negative literals must be slightly larger than the correspond-
ing positive literals.
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Additionally, we need the following property: If s ≻ t ≻ u, then s 6≈ u must be larger
than s ≈ t. In other words, we must compare first the larger term, then the polarity,
and finally the smaller term.

The following construction has the required properties:

Let ≻ be a reduction ordering that is total on ground terms.

To a positive literal s ≈ t, we assign the multiset {s, t}, to a negative literal s 6≈ t
the multiset {s, s, t, t}. The literal ordering ≻L compares these multisets using the
multiset extension of ≻.

The clause ordering ≻C compares clauses by comparing their multisets of literals using
the multiset extension of ≻L.

Constructing a candidate interpretation:

We want to use roughly the same ideas as in the completeness proof for resolution.

However, a Herbrand interpretation does not work for equality: The equality symbol ≈
must be interpreted by equality in the interpretation.

Solution: Productive clauses contribute ground rewrite rules to a TRS R.

The interpretation has the universe TΣ(∅)/R = TΣ(∅)/≈R; a ground atom s ≈ t holds
in the interpretation if and only if s ≈R t if and only if s↔∗

R t.

We will construct R in such a way that it is terminating and confluent. In this case,
s ≈R t if and only if s ↓R t.

One problem:

The completeness proof for the resolution calculus depends on the following property:

If C = C ′ ∨ A with a strictly maximal and positive literal A is false in the current
interpretation, then adding A to the current interpretation cannot make any literal of
C ′ true.

This property does not hold for superposition:

Let b ≻ c ≻ d. Assume that the current rewrite system (representing the current
interpretation) contains the rule c→ d. Now consider the clause b ≈ d ∨ b ≈ c.
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We need a further inference rule to deal with clauses of this kind, either the “Merging
Paramodulation” rule of Bachmair and Ganzinger or the following “Equality Factoring”
rule due to Nieuwenhuis:

Equality Factoring:
C ′ ∨ s ≈ t′ ∨ s ≈ t

C ′ ∨ t 6≈ t′ ∨ s ≈ t′

What do the nonground versions of the inference rules for superposition look like?

Main idea as in the resolution calculus:

Replace identity by unifiability. Apply the mgu to the resulting clause. In the ordering
restrictions, use 6� instead of ≻.

However:

As in Knuth–Bendix completion, we do not want to consider overlaps at or below a
variable position.

Consequence: There are inferences between ground instances Dθ and Cθ of clauses D
and C which are not ground instances of inferences between D and C.

Such inferences have to be treated in a special way in the completeness proof.

5.3 The Superposition Calculus—Formally

Until now, we have seen most of the ideas behind the superposition calculus and its
completeness proof.

We will now start again from the beginning giving precise definitions and some proofs.

Inference rules:

Pos. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[u] ≈ s′

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ

where σ = mgu(t, u) and
u is not a variable.

Neg. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[u] 6≈ s′

(D′ ∨ C ′ ∨ s[t′] 6≈ s′)σ

where σ = mgu(t, u) and
u is not a variable.
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Equality Resolution:
C ′ ∨ s 6≈ s′

C ′σ

where σ = mgu(s, s′).

Equality Factoring:
C ′ ∨ s′ ≈ t′ ∨ s ≈ t

(C ′ ∨ t 6≈ t′ ∨ s ≈ t′)σ

where σ = mgu(s, s′).

Theorem 5.3.1 All inference rules of the superposition calculus are sound, i.e., for
every rule

Cn · · · C1

C0

we have {C1, . . . , Cn} |= C0.

Proof. Omitted. ✷

Orderings:

Let ≻ be a reduction ordering that is total on ground terms.

To a positive literal s ≈ t, we assign the multiset {s, t}, to a negative literal s 6≈ t
the multiset {s, s, t, t}. The literal ordering ≻L compares these multisets using the
multiset extension of ≻.

The clause ordering ≻C compares clauses by comparing their multisets of literals using
the multiset extension of ≻L.

Inferences have to be computed only if the following ordering restrictions are satisfied
(after applying the unifier to the premises):

– In superposition inferences, the left premise is not greater than or equal to the
right one.

– The last literal in each premise is maximal in the respective premise, i.e., there
exists no greater literal (strictly maximal for positive literals in superposition in-
ferences, i.e., there exists no greater or equal literal).

– In these literals, the lhs is neither smaller than nor equal to the rhs (except in
equality resolution inferences).
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A ground clause C is called redundant w.r.t. a set of ground clauses N if it follows from
clauses in N that are smaller than C.

A clause is redundant w.r.t. a set of clauses N if all its ground instances are redundant
w.r.t. GΣ(N).

The set of all clauses that are redundant w.r.t. N is denoted by Red(N).

N is called saturated up to redundancy if the conclusion of every inference from clauses
in N \Red(N) is contained in N ∪Red(N).

The Superposition Calculus: Example

We consider the clause set (Bentkamp et al., CACM 2023)

x ≈ zero ∨ div(one, x) ≈ inv(x) (1)
pi 6≈ zero (2)

abs(div(one, pi)) 6≈ abs(inv(pi)) (3)

using an lpo with the precedence abs > div > inv > pi > one > zero.

From (1) and (3), we obtain via “Negative Superposition” pi ≈ zero ∨ abs(inv(pi)) 6≈
abs(inv(pi)) (4). From (4), we obtain via “Equality Resolution” pi ≈ zero (5). From (5)
and (2), we obtain via “Negative Superposition” zero 6≈ zero (6). From (6), we obtain
via “Equality Resolution” the empty clause.

5.4 Superposition: Refutational Completeness

For a set E of ground equations, TΣ(∅)/E is an E-interpretation (or E-algebra) with
universe {[t] | t ∈ TΣ(∅)}.

One can show (similar to the proof of Birkhoff’s Theorem) that for every ground equation
s ≈ t we have TΣ(∅)/E |= s ≈ t if and only if s↔∗

E t.

In particular, if E is a convergent set of rewrite rules R and s ≈ t is a ground equation,
then TΣ(∅)/R |= s ≈ t if and only if s ↓R t. By abuse of terminology, we say that an
equation or clause is valid (or true) in R if and only if it is true in TΣ(∅)/R.

Construction of candidate interpretations (Bachmair and Ganzinger 1990):

Let N be a set of clauses not containing ⊥. Using induction on the clause ordering we
define sets of rewrite rules EC and RC for all C ∈ GΣ(N) as follows:

Assume that ED has already been defined for all D ∈ GΣ(N) with D ≺C C. Then
RC =

⋃

D≺CC
ED.

The set EC contains the rewrite rule s→ t if
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(a) C = C ′ ∨ s ≈ t.

(b) s ≈ t is strictly maximal in C.

(c) s ≻ t.

(d) C is false in RC .

(e) C ′ is false in RC ∪ {s→ t}.

(f) s is irreducible w.r.t. RC .

In this case, C is called productive. Otherwise EC = ∅.

Finally, R∞ =
⋃

D∈GΣ(N)ED.

Example: We use the lpo with the precedence f ≻ e ≻ d ≻ c ≻ b ≻ a (max. side of max.
literals in red).

Let N = {d ≈ c, b ≈ a ∨ e 6≈ c, b 6≈ b ∨ f(b) ≈ a, f(c) ≈ b, f(b) ≈ a ∨ f(c) 6≈ b,
f(b) ≈ a∨ f(d) 6≈ b} be a clause set saturated w.r.t. the ground superposition calculus.

The next table shows each iteration of the candidate interpretation construction for
N .

Iter. Clause C RC EC

0 d ≈ c ∅ {d→ c}
1 b ≈ a ∨ e 6≈ c {d→ c} ∅
2 b 6≈ b ∨ f(b) ≈ a {d→ c} {f(b)→ a}
3 f(c) ≈ b {d→ c, f(b)→ a} {f(c)→ b}
4 f(b) ≈ a ∨ f(c) 6≈ b {d→ c, f(b)→ a, f(c)→ b} ∅
5 f(b) ≈ a ∨ f(d) 6≈ b {d→ c, f(b)→ a, f(c)→ b} ∅

At each iteration i + 1, the term rewriting system consists of the union of the rewrite
rules RC and the “epsilon” EC of iteration i. The interpretation R∞ = {d→ c, f(b)→
a, f(c)→ b} after iteration 5 is a model of N .

Lemma 5.4.1 If EC = {s→ t} and ED = {u→ v}, then s ≻ u if and only if C ≻C D.

Proof. (⇒): By condition (b), s ≈ t is strictly maximal in C and u ≈ v is strictly
maximal in D, and since the literal ordering is total on ground literals, this implies that
all other literals in C or in D are actually smaller than s ≈ t or u ≈ v, respectively.

Moreover, s ≻ t and u ≻ v by condition (c). Therefore s ≻ u implies {s, t} ≻mul {u, v}.
Hence s ≈ t ≻L u ≈ v �L L for every literal L of D, and thus C ≻C D.

(⇐): Let C ≻C D, then ED ⊆ RC . By condition (f), s must be irreducible w.r.t. RC , so
s 6= u.
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Assume that s 6≻ u. By totality, this implies s � u, and since s 6= u, we obtain s ≺ u.
But then C ≺C D can be shown in the same way as in the (⇒)-part, contradicting the
assumption. ✷

Corollary 5.4.2 The rewrite systems RC and R∞ are convergent (i.e., terminating and
confluent).

Proof. By condition (c), s ≻ t for all rules s → t in RC and R∞, so RC and R∞ are
terminating.

Furthermore, it is easy to check that there are no critical pairs between any two rules:
Assume that there are rules u → v in ED and s → t in EC such that u is a subterm
of s. As ≻ is a reduction ordering that is total on ground terms, we get u ≺ s and
therefore D ≺C C and ED ⊆ RC . But then s would be reducible by RC , contradicting
condition (f).

Now the absence of critical pairs implies local confluence, and termination and local
confluence imply confluence. ✷

Lemma 5.4.3 If D �C C and EC = {s→ t}, then s ≻ u for every term u occurring in
a negative literal in D and s � u for every term u occurring in a positive literal in D.

Proof. If s � u for some term u occurring in a negative literal u 6≈ v in D, then
{u, u, v, v} ≻mul {s, t}. So u 6≈ v ≻L s ≈ t �L L for every literal L of C, and therefore
D ≻C C.

Similarly, if s ≺ u for some term u occurring in a positive literal u ≈ v in D, then
{u, v} ≻mul {s, t}. So u ≈ v ≻L s ≈ t �L L for every literal L of C, and therefore
D ≻C C. ✷

Corollary 5.4.4 If D ∈ GΣ(N) is true in RD, then D is true in R∞ and RC for all
C ≻C D.

Proof. If a positive literal of D is true in RD, then this is obvious.

Otherwise, some negative literal s 6≈ t of D must be true in RD, hence s 6 ↓RD
t. As the

rules in R∞ \RD have left-hand sides that are larger than s and t, they cannot be used
in a rewrite proof of s ↓ t, hence s 6 ↓RC

t and s 6 ↓R∞
t. ✷

Corollary 5.4.5 If D = D′ ∨ u ≈ v is productive, then D′ is false and D is true in R∞

and RC for all C ≻C D.
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Proof. Obviously, D is true in R∞ and RC for all C ≻C D.

Since all negative literals of D′ are false in RD, it is clear that they are false in R∞ and
RC . For the positive literals u′ ≈ v′ of D′, condition (e) ensures that they are false in
RD ∪ {u → v}. Since u′ � u and v′ � u and all rules in R∞ \ RD have left-hand sides
that are larger than u, these rules cannot be used in a rewrite proof of u′ ↓ v′, hence
u′ 6 ↓RC

v′ and u′ 6 ↓R∞
v′. ✷

Lemma 5.4.6 (“Lifting Lemma”) Let C be a clause and let θ be a substitution such
that Cθ is ground. Then every equality resolution or equality factoring inference from
Cθ is a ground instance of an inference from C.

Proof. Omitted. ✷

Lemma 5.4.7 (“Lifting Lemma”) Let D = D′ ∨ u ≈ v and C = C ′ ∨ [¬] s ≈ t be
two clauses (without common variables) and let θ be a substitution such that Dθ and
Cθ are ground.

If there is a superposition inference between Dθ and Cθ where uθ and some subterm of
sθ are overlapped, and uθ does not occur in sθ at or below a variable position of s, then
the inference is a ground instance of a superposition inference from D and C.

Proof. Omitted. ✷

Theorem 5.4.8 (“Model Construction”) Let N be a set of clauses that is saturated
up to redundancy and does not contain the empty clause. Then we have for every ground
clause Cθ ∈ GΣ(N):

(i) ECθ = ∅ if and only if Cθ is true in RCθ.

(ii) If Cθ is redundant w.r.t. GΣ(N), then it is true in RCθ.

(iii) Cθ is true in R∞ and in RD for every D ∈ GΣ(N) with D ≻C Cθ.

Proof. We use induction on the clause ordering ≻C and assume that (i)–(iii) are already
satisfied for all clauses in GΣ(N) that are smaller than Cθ. Note that the “if” part of
(i) is obvious from the construction and that condition (iii) follows immediately from (i)
and Corollaries 5.4.4 and 5.4.5. So it remains to show (ii) and the “only if” part of (i).

Case 1: Cθ is redundant w.r.t. GΣ(N).

If Cθ is redundant w.r.t. GΣ(N), then it follows from clauses in GΣ(N) that are smaller
than Cθ. By part (iii) of the induction hypothesis, these clauses are true in RCθ. Hence
Cθ is true in RCθ.
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Case 2: xθ is reducible by RCθ.

Suppose there is a variable x occurring in C such that xθ is reducible by RCθ, say
xθ →RCθ

w. Let the substitution θ′ be defined by xθ′ = w and yθ′ = yθ for every variable
y 6= x. The clause Cθ′ is smaller than Cθ. By part (iii) of the induction hypothesis, it
is true in RCθ. By congruence, every literal of Cθ is true in RCθ if and only if the
corresponding literal of Cθ′ is true in RCθ; hence Cθ is true in RCθ.

Case 3: Cθ contains a maximal negative literal.

Suppose that Cθ does not fall into Case 1 or 2 and that Cθ = C ′θ ∨ sθ 6≈ s′θ, where
sθ 6≈ s′θ is maximal in Cθ. If sθ ≈ s′θ is false in RCθ, then Cθ is clearly true in RCθ and
we are done. So assume that sθ ≈ s′θ is true in RCθ, that is, sθ ↓RCθ

s′θ. Without loss
of generality, sθ � s′θ.

Case 3.1: sθ = s′θ.

If sθ = s′θ, then there is an “Equality Resolution” inference

C ′θ ∨ sθ 6≈ s′θ

C ′θ
.

As shown in the Lifting Lemma, this is an instance of an “Equality Resolution” inference

C ′ ∨ s 6≈ s′

C ′σ

where C = C ′ ∨ s 6≈ s′ is contained in N and θ = ρ ◦ σ. (Without loss of generality,
σ is idempotent, therefore C ′θ = C ′σρ = C ′σσρ = C ′σθ, so C ′θ is a ground instance
of C ′σ.) Since Cθ is not redundant w.r.t. GΣ(N), C is not redundant w.r.t. N . As N
is saturated up to redundancy, the conclusion C ′σ of the inference from C is contained
in N ∪ Red(N). Therefore, C ′θ is either contained in GΣ(N) and smaller than Cθ, or it
follows from clauses in GΣ(N) that are smaller than itself (and therefore smaller than
Cθ). By the induction hypothesis, clauses in GΣ(N) that are smaller than Cθ are true
in RCθ, thus C

′θ and Cθ are true in RCθ.

Case 3.2: sθ ≻ s′θ.

If sθ ↓RCθ
s′θ and sθ ≻ s′θ, then sθ must be reducible by some rule in some EDθ ⊆ RCθ.

(Without loss of generality we assume that C and D are variable disjoint; so we can use
the same substitution θ.) Let Dθ = D′θ ∨ tθ ≈ t′θ with EDθ = {tθ → t′θ}. Since Dθ is
productive, D′θ is false in RCθ. Besides, by part (ii) of the induction hypothesis, Dθ is
not redundant w.r.t. GΣ(N), so D is not redundant w.r.t. N . Note that tθ cannot occur
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in sθ at or below a variable position of s, say xθ = w[tθ], since otherwise Cθ would be
subject to Case 2 above. Consequently, the “Negative Superposition” inference

D′θ ∨ tθ ≈ t′θ C ′θ ∨ sθ[tθ] 6≈ s′θ

D′θ ∨ C ′θ ∨ sθ[t′θ] 6≈ s′θ

is a ground instance of a “Negative Superposition” inference fromD and C. By saturation
up to redundancy, its conclusion is either contained in GΣ(N) and smaller than Cθ, or
it follows from clauses in GΣ(N) that are smaller than itself (and therefore smaller than
Cθ). By the induction hypothesis, these clauses are true in RCθ, thus D′θ ∨ C ′θ ∨
sθ[t′θ] 6≈ s′θ is true in RCθ. Since D′θ and sθ[t′θ] 6≈ s′θ are false in RCθ, both C ′θ and
Cθ must be true.

Case 4: Cθ does not contain a maximal negative literal.

Suppose that Cθ does not fall into Cases 1 to 3. Then Cθ can be written as C ′θ ∨ sθ ≈
s′θ, where sθ ≈ s′θ is a maximal literal of Cθ. If ECθ = {sθ→ s′θ} or C ′θ is true in RCθ

or sθ = s′θ, then there is nothing to show, so assume that ECθ = ∅ and that C ′θ is false
in RCθ. Without loss of generality, sθ ≻ s′θ.

Case 4.1: sθ ≈ s′θ is maximal in Cθ, but not strictly maximal.

If sθ ≈ s′θ is maximal in Cθ, but not strictly maximal, then Cθ can be written as
C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ, where tθ = sθ and t′θ = s′θ. In this case, there is a
“Equality Factoring” inference

C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ

C ′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θ

This inference is a ground instance of an inference from C. By saturation, its conclusion
is true in RCθ. Trivially, t

′θ = s′θ implies t′θ ↓RCθ
s′θ, so t′θ 6≈ s′θ must be false and Cθ

must be true in RCθ.

Case 4.2: sθ ≈ s′θ is strictly maximal in Cθ and sθ is reducible.

Suppose that sθ ≈ s′θ is strictly maximal in Cθ and sθ is reducible by some rule in
EDθ ⊆ RCθ. Let Dθ = D′θ ∨ tθ ≈ t′θ and EDθ = {tθ → t′θ}. Since Dθ is productive,
Dθ is not redundant and D′θ is false in RCθ. We can now proceed in essentially the
same way as in Case 3.2: If tθ occurred in sθ at or below a variable position of s,
say xθ = w[tθ], then Cθ would be subject to Case 2 above. Otherwise, the “Positive
Superposition” inference

D′θ ∨ tθ ≈ t′θ C ′θ ∨ sθ[tθ] ≈ s′θ

D′θ ∨ C ′θ ∨ sθ[t′θ] ≈ s′θ
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is a ground instance of a “Positive Superposition” inference from D and C. By saturation
up to redundancy, its conclusion is true in RCθ. Since D′θ and C ′θ are false in RCθ,
sθ[t′θ] ≈ s′θ must be true in RCθ. On the other hand, tθ ≈ t′θ is true in RCθ, so by
congruence, sθ[tθ] ≈ s′θ and Cθ are true in RCθ.

Case 4.3: sθ ≈ s′θ is strictly maximal in Cθ and sθ is irreducible.

Suppose that sθ ≈ s′θ is strictly maximal in Cθ and sθ is irreducible by RCθ. Then there
are three possibilities: Cθ can be true in RCθ, or C

′θ can be true in RCθ ∪ {sθ → s′θ},
or ECθ = {sθ → s′θ}. In the first and the third case, there is nothing to show. Let us
therefore assume that Cθ is false in RCθ and C ′θ is true in RCθ ∪ {sθ → s′θ}. Then
C ′θ = C ′′θ ∨ tθ ≈ t′θ, where the literal tθ ≈ t′θ is true in RCθ ∪ {sθ → s′θ} and false
in RCθ. In other words, tθ ↓RCθ∪{sθ→s′θ} t

′θ, but not tθ ↓RCθ
t′θ. Consequently, there is a

rewrite proof of tθ →∗ u←∗ t′θ by RCθ ∪ {sθ → s′θ} in which the rule sθ → s′θ is used at
least once. Without loss of generality we assume that tθ � t′θ. Since sθ ≈ s′θ ≻L tθ ≈ t′θ
and sθ ≻ s′θ we can conclude that sθ � tθ ≻ t′θ. But then there is only one possibility
how the rule sθ → s′θ can be used in the rewrite proof: We must have sθ = tθ and
the rewrite proof must have the form tθ → s′θ →∗ u ←∗ t′θ, where the first step uses
sθ → s′θ and all other steps use rules from RCθ. Consequently, s

′θ ≈ t′θ is true in RCθ.
Now observe that there is an “Equality Factoring” inference

C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ

C ′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θ

whose conclusion is true in RCθ by saturation. Since the literal t′θ 6≈ s′θ must be false in
RCθ, the rest of the clause must be true in RCθ, and therefore Cθ must be true in RCθ,
contradicting our assumption. This concludes the proof of the theorem. ✷

A Σ-interpretation A is called term-generated if for every b ∈ UA there is a ground term
t ∈ TΣ(∅) such that b = A(β)(t).

Lemma 5.4.9 Let N be a set of (universally quantified) Σ-clauses and let A be a term-
generated Σ-interpretation. Then A is a model of GΣ(N) if and only if it is a model
of N .

Proof. (⇒): Let A |= GΣ(N); let (∀~xC) ∈ N . Then A |= ∀~xC iff A(γ[xi 7→ ai])(C) = 1
for all γ and ai. Choose ground terms ti such that A(γ)(ti) = ai; define θ such that
xiθ = ti, then A(γ[xi 7→ ai])(C) = A(γ ◦ θ)(C) = A(γ)(Cθ) = 1 since Cθ ∈ GΣ(N).

(⇐): Let A be a model of N ; let ∀~xC ∈ N and Cθ ∈ GΣ(N). Then A |= ∀~xC and
therefore A |= C. Consequently A(γ)(Cθ) = A(γ ◦ θ)(C) = 1. ✷

Theorem 5.4.10 (Refutational Completeness: Static View) Let N be a set of
clauses that is saturated up to redundancy. Then N has a model if and only if N
does not contain the empty clause.
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Proof. If ⊥ ∈ N , then obviously N does not have a model. If ⊥ /∈ N , then the interpre-
tation R∞ (that is, TΣ(∅)/R∞) is a model of all ground instances in GΣ(N) according
to part (iii) of the model construction theorem. As TΣ(∅)/R∞ is term-generated, it is a
model of N . ✷

So far, we have considered only inference rules that add new clauses to the current set
of clauses (corresponding to the “Deduce” rule of Knuth–Bendix completion).

In other words, we have derivations of the form N0 ⊢ N1 ⊢ N2 ⊢ · · · , where each Ni+1 is
obtained from Ni by adding the consequence of some inference from clauses in Ni.

Under which circumstances are we allowed to delete (or simplify) a clause during the
derivation?

A run of the superposition calculus is a sequence N0 ⊢ N1 ⊢ N2 ⊢ · · · such that
(i) Ni |= Ni+1, and
(ii) all clauses in Ni \Ni+1 are redundant w.r.t. Ni+1.

In other words, during a run we may add a new clause if it follows from the old ones,
and we may delete a clause if it is redundant w.r.t. the remaining ones.

For a run, N∞ =
⋃

i≥0

⋂

j≥iNj . The set N∞ of all persistent clauses is called the limit
of the run.

Lemma 5.4.11 If N ⊆ N ′, then Red(N) ⊆ Red(N ′).

Proof. Obvious. ✷

Lemma 5.4.12 If N ′ ⊆ Red(N), then Red(N) ⊆ Red(N \N ′).

Proof. Omitted. ✷

Lemma 5.4.13 Let N0 ⊢ N1 ⊢ N2 ⊢ · · · be a run. Then Red(Ni) ⊆ Red(
⋃

j≥0Nj) and
Red(Ni) ⊆ Red(N∞) for every i.

Proof. Omitted. ✷

Corollary 5.4.14 Ni ⊆ N∞ ∪ Red(N∞) for every i.

Proof. If C ∈ Ni \ N∞, then there is a k ≥ i such that C ∈ Nk \ Nk+1. Therefore C
must be redundant w.r.t. Nk+1. Consequently, C is redundant w.r.t. N∞. ✷
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A run is called fair if the conclusion of every inference from clauses in N∞ \ Red(N∞)
is contained in some Ni ∪Red(Ni).

Lemma 5.4.15 If a run is fair, then its limit is saturated up to redundancy.

Proof. If the run is fair, then the conclusion of every inference from nonredundant
clauses in N∞ is contained in some Ni ∪ Red(Ni), and therefore contained in N∞ ∪
Red(N∞). Hence N∞ is saturated up to redundancy. ✷

Theorem 5.4.16 (Refutational Completeness: Dynamic View) Let N0 ⊢ N1 ⊢
N2 ⊢ · · · be a fair run, let N∞ be its limit. Then N0 has a model if and only if ⊥ /∈ N∞.

Proof. (⇐): By fairness, N∞ is saturated up to redundancy. If ⊥ /∈ N∞, then it has
a term-generated model. Since every clause in N0 is contained in N∞ or redundant
w.r.t. N∞, this model is also a model of GΣ(N0) and therefore a model of N0.

(⇒): Obvious, since N0 |= N∞. ✷

5.5 Improvements and Refinements

The superposition calculus as described so far can be improved and refined in several
ways.

Concrete Redundancy and Simplification Criteria

Redundancy is undecidable.

Even decidable approximations are often expensive (experimental evaluations are needed
to see what pays off in practice).

Often a clause can be made redundant by adding another clause that is entailed by the
existing ones.

This process is called simplification.

Examples:

Subsumption:
If N contains clauses D and C = C ′ ∨Dσ, where C ′ is nonempty, then D subsumes
C and C is redundant.
Example: f(x) ≈ g(x) subsumes f(y) ≈ a ∨ f(h(y)) ≈ g(h(y)).
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Trivial literal elimination:
Duplicated literals and trivially false literals can be deleted: A clause C ′ ∨ L ∨ L can
be simplified to C ′ ∨ L; a clause C ′ ∨ s 6≈ s can be simplified to C ′.

Condensation:
If we obtain a clause D from C by applying a substitution, followed by deletion of
duplicated literals, and if D subsumes C, then C can be simplified to D.
Example: By applying {y → g(x)} to C = f(g(x)) ≈ a ∨ f(y) ≈ a and deleting the
duplicated literal, we obtain f(g(x)) ≈ a, which subsumes C.

Semantic tautology deletion:
Every clause that is a tautology is redundant. Note that in the nonequational case,
a clause is a tautology if and only if it contains two complementary literals, whereas
in the equational case we need a congruence closure algorithm to detect that a clause
like x 6≈ y ∨ f(x) ≈ f(y) is tautological.

Rewriting:
If N contains a unit clause D = s ≈ t and a clause C[sσ], such that sσ ≻ tσ and
C ≻C Dσ, then C can be simplified to C[tσ].
Example: If D = f(x, x) ≈ g(x) and C = h(f(g(y), g(y))) ≈ h(y), and ≻ is an lpo
with the precedence h ≻ f ≻ g, then C can be simplified to h(g(g(y))) ≈ h(y).

Selection Functions

Like the ordered resolution calculus, superposition can be used with a selection function
that overrides the ordering restrictions for negative literals.

A selection function is a mapping

S : C 7→ set of occurrences of negative literals in C

We indicate selected literals by a box:

¬f(x) ≈ a ∨ g(x, y) ≈ g(x, z)

The second ordering condition for inferences is replaced by

– Either the last literal in each premise is selected or there is no selected literal in
the premise and the literal is maximal in the premise (strictly maximal for positive
literals in superposition inferences).

In particular, clauses with selected literals can only be used in equality resolution infer-
ences and as the second premise in negative superposition inferences.

Refutational completeness is proved essentially as before:

131



We assume that each ground clause in GΣ(N) inherits the selection of one of the
clauses in N of which it is a ground instance (there may be several ones).

In the proof of the model construction theorem, we replace case 3 by “Cθ contains a
selected or maximal negative literal” and case 4 by “Cθ contains neither a selected
nor a maximal negative literal.”

In addition, for the induction proof of this theorem we need one more property, namely:
(iv) If Cθ has selected literals then ECθ = ∅.

Redundant Inferences

So far, we have defined saturation in terms of redundant clauses:

N is saturated up to redundancy if the conclusion of every inference from clauses in
N \Red(N) is contained in N ∪ Red(N).

This definition ensures that in the proof of the model construction theorem, the conclu-
sion C0θ of a ground inference follows from clauses in GΣ(N) that are smaller than or
equal to itself, hence they are smaller than the premise Cθ of the inference, hence they
are true in RCθ by induction.

However, a closer inspection of the proof shows that it is actually sufficient that the
clauses from which C0θ follows are smaller than Cθ—it is not necessary that they are
smaller than C0θ itself. This motivates the following definition of redundant inferences:

A ground inference with conclusion C0 and right (or only) premise C is called redundant
w.r.t. a set of ground clauses N if one of its premises is redundant w.r.t. N , or if C0

follows from clauses in N that are smaller than C.

An inference is redundant w.r.t. a set of clauses N if all its ground instances are redun-
dant w.r.t. GΣ(N).

Recall that a clause can be redundant w.r.t. N without being contained in N . Analo-
gously, an inference can be redundant w.r.t. N without being an inference from clauses
in N .

The set of all inferences that are redundant w.r.t. N is denoted by RedInf (N).

Saturation is then redefined in the following way:

N is saturated up to redundancy if every inference from clauses in N is redundant
w.r.t. N .

Using this definition, the model construction theorem can be proved essentially as be-
fore.
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The connection between redundant inferences and clauses is given by the following lem-
mas. They are proved in the same way as the corresponding lemmas for redundant
clauses:

Lemma 5.5.1 If N ⊆ N ′, then RedInf (N) ⊆ RedInf (N ′).

Lemma 5.5.2 If N ′ ⊆ Red(N), then RedInf (N) ⊆ RedInf (N \N ′).
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6 Efficient Saturation Procedures

Problem:

Refutational completeness is nice in theory, but . . .

. . . it guarantees only that proofs will be found eventually, not that they will be found
quickly.

Even though orderings and selection functions reduce the number of possible infer-
ences, the search space problem is enormous.

First-order provers look for a needle in a haystack: It may be necessary to make some
millions of inferences to find a proof that is only a few dozens of steps long.
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Coping with Large Sets of Formulas

Consequently:

• We must deal with large sets of formulas.

• We must use efficient techniques to find formulas that can be used as partners in
an inference.

• We must simplify/eliminate as many formulas as possible.

• Wemust use efficient techniques to check whether a formula can be simplified/elim-
inated.

Note:

Often there are several competing implementation techniques.

Design decisions depend on each other.

Design decisions depend on the particular class of problems we want to solve (first-
order logic without or with equality/unit equations, size of the signature, special
algebraic properties like associativity and commutativity, etc.).

6.1 Term Representations

The obvious data structure for terms: Trees

f(g(x1), f(g(x1), x2))

f

g f

x1 g x2

x1

optionally: (full) sharing

An alternative: Flatterms

f(g(x1), f(g(x1), x2))

f g x1 f g x1 x2
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need more memory;
but: better suited for preorder term traversal and easier memory management.

6.2 Index Data Structures

Problem:

For a term t, we want to find all terms s such that

• s is an instance of t,

• s is a generalization of t (i.e., t is an instance of s),

• s and t are unifiable,

• s is a generalization of some subterm of t,

• . . .

Requirements:

fast insertion,

fast deletion,

fast retrieval,

small memory consumption.

Many different approaches:

• Path indexing

• Discrimination trees

• Substitution trees

• Context trees

• Feature vector indexing

• . . .

Perfect filtering:

The indexing technique returns exactly those terms satisfying the query.

Imperfect filtering:

The indexing technique returns some superset of the set of all terms satisfying the
query.
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Retrieval operations must be followed by an additional check, but the index can often
be implemented more efficiently.

Frequently: All occurrences of variables are treated as different variables.

Path Indexing

Path indexing:

Paths of terms are encoded in a trie (“retrieval tree”).

A star ∗ represents arbitrary variables.

Example: Paths of f(g(∗, b), ∗): f.1.g.1.∗
f.1.g.2.b
f.2.∗

Each leaf of the trie contains the set of (pointers to) all terms that contain the respec-
tive path.

Example: Path index for {f(g(d, ∗), c), g(b, h(c)), f(g(∗, c), c), f(b, g(c, b)), f(b, g(∗, b)),
f(∗, c), f(∗, g(c, b))}

f

1 2

g c

{1, 3, 6}1 2

d

{1}

∗

{1}

g

1 2

b

{2}

h

1

c

{2}

∗

{3}

c

{3}

b

{4, 5}

g

1 2

c

{4, 7}

b

{4, 5, 7}

∗

{5}

∗

{6, 7}

Advantages:

Uses little space.

No backtracking for retrieval.

Efficient insertion and deletion.

Good for finding instances, also usable for finding generalizations.

Disadvantages:

Retrieval requires combining intermediate results for all paths.
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Discrimination Trees

Discrimination trees:

Preorder traversals of terms are encoded in a trie.

A star ∗ represents arbitrary variables.

Example: String of f(g(∗, b), ∗): f.g.∗.b.∗

Each leaf of the trie contains (a pointer to) the term that is represented by the path.

Example: Discrimination tree for {f(g(d, ∗), c), g(b, h(c)), f(g(∗, c), c), f(b, g(c, b)),
f(b, g(∗, b)), f(∗, c), f(∗, g(c, b))}

f

g

d

∗

c

{1}

g

b

h

c

{2}

∗

c

c

{3}

b

g

c

b

{4}

∗

b

{5}

∗

c

{6}

g

c

b

{7}

Advantages:

Each leaf yields one term, hence retrieval does not require intersections of intermediate
results for all paths.

Good for finding generalizations, not so good for finding instances.

Disadvantage:

Uses more storage than path indexing (due to less sharing).

Feature Vector Indexing

Goal:

C ′ is subsumed by C if C ′ = Cσ ∨D.

Find all clauses C ′ for a given C or vice versa.

If C ′ is subsumed by C, then

• C ′ contains at least as many literals as C.

• C ′ contains at least as many positive literals as C.

• C ′ contains at least as many negative literals as C.
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• C ′ contains at least as many function symbols as C.

• C ′ contains at least as many occurrences of f as C.

• C ′ contains at least as many occurrences of f in negative literals as C.

• the deepest occurrence of f in C ′ is at least as deep as in C.

• . . .

Idea:

Select a list of these “features.”

Compute the “feature vector” (a list of natural numbers) for each clause and store it
in a trie.

When searching for a subsuming clause: Traverse the trie, check all clauses for which
all features are smaller or equal. (Stop if a subsuming clause is found.)

When searching for subsumed clauses: Traverse the trie, check all clauses for which
all features are larger or equal.

Advantages:

Works on the clause level, rather than on the term level.

Specialized for subsumption testing.

Disadvantages:

Needs to be complemented by other index structure for other operations.
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7 Outlook

7.1 Satisfiability Modulo Theories (SMT)

DPLL and CDCL check satisfiability of propositional formulas.

DPLL and CDCL can also be used for ground first-order formulas without equality:

Ground first-order atoms are treated like propositional variables.

Truth values of P (b), Q(b), Q(f(b)) are independent.

For ground formulas with equality, independence does not hold:

If b ≈ c is true, then f(b) ≈ f(c) must also be true.

Similarly for other theories, e.g. linear arithmetic: b > 5 implies b > 3.

We can still use CDCL, but we must combine it with a decision procedure for the theory
part T :

M |=T C if and only if M and the theory axioms T entail C.

7.2 Sorted Logics

So far, we have considered only unsorted first-order logic.

In practice, one often considers many-sorted logics:

read/2 becomes read : array × nat→ data.

write/3 becomes write : array × nat× data→ array.

Variables: x : data

Only one declaration per function/predicate/variable symbol.

All terms, atoms, substitutions must be well-sorted.

Algebras:

Instead of universe UA, one set per sort: arrayA, natA.

Interpretations of function and predicate symbols correspond to their declarations:

readA : arrayA × natA → dataA

Proof theory, calculi, etc.:

Essentially as in the unsorted case.

139



More difficult:

Subsorts

Overloading

7.3 Splitting

Tableau-like rule within resolution to eliminate variable-disjoint (positive) disjunctions:

N ∪ {C1 ∨ C2}

N ∪ {C1} | N ∪ {C2}

if var(C1) ∩ var(C2) = ∅.

Split clauses are smaller and more likely to be usable for simplification.

The splitting tree is explored using intelligent backtracking.

Improvement:

Use a SAT solver to manage the selection of split clauses.

⇒ AVATAR.

7.4 Higher-Order Logics

What changes if we switch to higher-order logics?

Applied variables: x b.

Partially applied functions: times z.

Lambda-expressions with αβη-conversion: (λx. f (x b) c) (λy. d) = f d c.

Embedded booleans: (λx. if x then f else g) (p ∨ q)

Problems:

Orderings cannot have all desired compatibility properties.
⇒ additional inferences

Most general unifiers need not exist anymore.
⇒ interleave enumeration of unifiers and computation of inferences

CNF transformation by preprocessing is no longer sufficient.
⇒ need calculus with embedded clausification
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