Automated Theorem Proving

Prof. Dr. Jasmin Blanchette, Yiming Xu, PhD, Lydia Kondylidou, and Tanguy Bozec based on exercises by Dr. Uwe Waldmann

Winter Term 2025/26

Exercises 13: Superposition Continued

Exercise 13.1: Using the kbo with $f \succ b \succ c \succ d \succ e$ and weight 1 for all symbols and variables as the term ordering, compute the rewrite systems R_C and R_{∞} for the set of ground clauses N:

$f(b) \approx e \ \lor \ f(b) \not\approx f(b)$	(1)
$b \not\approx e \lor f(c) \approx f(e)$	(2)
$f(d) \approx f(e)$	(3)
$f(e) \approx e \ \lor \ f(e) \approx c$	(4)
$b \approx c$	(5)
$d \approx e$	(6)

Which is the smallest clause $C \in N$ such that C is neither productive nor true in R_C ? Use it to show that N is not saturated up to redundancy.

Exercise 13.2: Compute R_{∞} for the clause set $\{f(x) \approx b\}$ and the signature $\Sigma = (\{f/1, g/1, b/0\}, \emptyset)$. Use the kbo with $g \succ f \succ b$ and weights 1 for all symbols and variables.

Exercise 13.3: Compute R_{∞} for the clause set $\{f(x) \approx b\}$ and the signature $\Sigma = (\{f/1, g/1, b/0\}, \emptyset)$. This time, use the lpo with the precedence $g \succ f \succ b$.

Exercise 13.4: Let N be a set of equational clauses such that $\perp \notin N$. In Thm. 5.4.8, we have shown that whenever N is saturated up to redundancy, then every ground instance $C\theta \in G_{\Sigma}(N)$ is either productive or true in $R_{C\theta}$. The converse does not hold, not even

for ground unit clauses: Give a small set of ground unit clauses N such that $\perp \notin N$ and every $C \in N$ is either productive or true in R_C , but N is not saturated up to redundancy.

Exercise 13.5: A clause is called *Horn* if it contains at most one positive literal. Prove that every inference of the superposition calculus from Horn premises generates a Horn conclusion.

Exercise 13.6: We call an equational clause *happy* if it contains at least one positive literal.

(a) Prove that every inference of the superposition calculus from happy premises generates a happy conclusion.

(b) Using part (a) and the refutational completeness of superposition, prove that all sets N of happy clauses are satisfiable.

(c) Re-prove the result of part (b) using basic model theory.

Exercise 13.7 (*): Find an unsatisfiable clause set N consisting of two unit clauses $s \approx t$ and $u \not\approx v$ and a term ordering \succ such that the only nonredundant inference that does not violate the ordering restrictions of the superposition calculus is a "Positive Superposition" inference in which the left-hand side of $s \approx t$ is unified with the left-hand side of a renamed copy of $s \approx t$.

Exercise 13.8 (*): Prove the lifting lemma (Lemma 5.4.6) for the "Equality Resolution" inference rule.