Automated Theorem Proving

Prof. Dr. Jasmin Blanchette, Yiming Xu, PhD, Lydia Kondylidou, and Tanguy Bozec based on exercises by Dr. Uwe Waldmann

Winter Term 2025/26

Exercises 9: Rewrite Systems

Exercise 9.1: Let $\Sigma = (\Omega, \emptyset)$ with $\Omega = \{b/0, f/1, g/1\}$. Let *E* be the set of (implicitly universally quantified) equations $\{f(g(f(x))) \approx b\}$.

Give one possible derivation for the statement $E \vdash f(g(b)) \approx b$.

Exercise 9.2: Let $\Sigma = (\Omega, \emptyset)$, let $\Omega = \{f/1, b/0, c/0, d/0\}$. Let *E* be the set of equations $\{f(b) \approx d, f(c) \approx d, f(f(x)) \approx f(x)\}$. Let *X* be a countably infinite set of variables.

(a) Show that $f(d) \leftrightarrow_E^* d$.

(b) Sketch what the universe of $T_{\Sigma}(\emptyset)/E$ looks like. How many elements does it have?

(c) Determine for each of the following equations whether it holds in $T_{\Sigma}(X)/E$ and whether it holds in $T_{\Sigma}(\emptyset)/E$. Give a very brief explanation.

$$\begin{aligned} f(b) &\approx b & (1) \\ \forall y \ f(f(f(y))) &\approx f(f(y)) & (2) \\ \forall x \,\forall y \ f(x) &\approx f(y) & (3) \end{aligned}$$

Exercise 9.3: Let $\Sigma = (\Omega, \emptyset)$ with $\Omega = \{f/1, b/0, c/0, d/0\}$. Let *E* be the set of (implicitly universally quantified) equations $\{f(f(x)) \approx b\}$.

(a) Show that $b \leftrightarrow_E^* f(b)$. How does the rewrite proof look?

(b) Is the universe of the initial *E*-algebra $T_{\Sigma}(\emptyset)/E$ finite or infinite? If it is finite, how many elements does it have?

Exercise 9.4: Let $\Sigma = (\Omega, \emptyset)$ be a first-order signature with $\Omega = \{f/1, b/0, c/0, d/0\}$. Let *E* be the set of Σ -equations

$$\{\forall x \, (f(x) \approx b), \ c \approx d\},\$$

let $X = \{x, y, z\}$ be a set of variables. For any $t \in T_{\Sigma}(X)$, let [t] denote the congruence class of t w.r.t. E. Let $\mathcal{T} = T_{\Sigma}(X)/E$, let $U_{\mathcal{T}}$ be the universe of \mathcal{T} , and let $\beta : X \to U_{\mathcal{T}}$ be the assignment that maps every variable to [c]. Determine for each of the following statements whether they are true or false:

(1) $[z]$ is a finite set of Σ -terms.	(5) $U_{\mathcal{T}}$ is finite.
(2) $[f(z)]$ is a finite set of Σ -terms.	(6) $[b] \in U_{\mathcal{T}}.$
(3) $[c]$ is a set of ground Σ -terms.	(7) $\{x, y\} \in U_{\mathcal{T}}.$
(4) $[f(c)]$ is a set of ground Σ -terms.	(8) $\mathcal{T}(\beta)(\forall z (z \approx f(x))) = 1.$

Exercise 9.5: Let $\Sigma = (\Omega, \emptyset)$ be a first-order signature with $\Omega = \{f/2, b/0, c/0, d/0\}$. Let *E* be the set of Σ -equations

$$\{ \forall x \, (f(x,c) \approx b), \ c \approx d \},\$$

let $X = \{x, y, z\}$ be a set of variables. For any $t \in T_{\Sigma}(X)$, let [t] denote the congruence class of t w.r.t. E. Let $\mathcal{T} = T_{\Sigma}(X)/E$ let $U_{\mathcal{T}}$ be the universe of \mathcal{T} , and let $\beta : X \to U_{\mathcal{T}}$ be the assignment that maps every variable to [c]. Determine for each of the following statements whether they are true or false:

(1)	$[c]$ is a finite set of Σ -terms.	(5) $f(c,b) \in [f(d,b)].$
(2)	$[f(c,c)]$ is a set of ground Σ -terms.	(6) $f_{\mathcal{T}}([y], [d]) = [f(z, c)]$
(3)	$[x]$ is an element of the universe of \mathcal{T} .	(7) $\mathcal{T}(\beta)(y \approx d) = 1.$
(4)	$\{b, f(x, c)\}$ is a congruence class w.r.t. E .	(8) $\mathcal{T}(\beta)(\forall z \ (z \approx c)) = 1.$

Exercise 9.6 (*): Find a signature Σ containing at least one constant symbol, a set E of Σ -equations, and two terms $s, t \in T_{\Sigma}(X)$ such that

$$T_{\Sigma}(\{x_1\})/E \models \forall \vec{x} \ (s \approx t),$$

but

$$T_{\Sigma}(\{x_1, x_2\})/E \not\models \forall \vec{x} \ (s \approx t),$$

where \vec{x} consists of all the variables occurring in s and t. (The variables in \vec{x} need not be contained in $\{x_1, x_2\}$.)

Exercise 9.7: Let R be the following term rewrite system over $\Sigma = (\{f/1, g/2, h/1, c/0\}, \emptyset)$.

$$f(f(x)) \to h(h(x)) \qquad (1)$$
$$g(f(y), x) \to g(y, x) \qquad (2)$$
$$h(g(z, f(c))) \to f(z) \qquad (3)$$

Give all critical pairs between the three rules.

Exercise 9.8: Let

$$\{f(b) \to f(c), f(c) \to f(d), f(d) \to f(b), f(x) \to x\}$$

be a rewrite system over $\Sigma = (\{f/1, b/0c/0, d/0\}, \emptyset)$. Is it (a) terminating? (b) normalizing? (c) locally confluent? (d) confluent? Justify your answers.

Exercise 9.9 (*): Let $\Sigma = (\Omega, \emptyset)$ with $\Omega = \{f/1, g/1, h/1, b/0, c/0\}$. Let R be the following term rewrite system over Σ :

$$\{g(f(x)) \to h(x), \ h(f(x)) \to g(x), \ g(b) \to c, \ h(c) \to b\}$$

Prove: If $s, t \in T_{\Sigma}(X)$ and $R \models \forall \vec{x} (s \approx t)$, then there exists a rewrite derivation $s \leftrightarrow_R^* t$ with at most |s| + |t| - 2 rewrite steps.

Exercise 9.10 (*): Let $\Sigma = (\Omega, \emptyset)$ be a signature. Let R be a term rewrite system.

(a) Prove: If $s \to_R t$, then $var(s) \supseteq var(t)$.

(b) Prove: If $x \in X$ is a variable, $s \in T_{\Sigma}(X)$ is a term such that $x \notin var(s)$, and $R \models x \approx s$, then R is not confluent.

Exercise 9.11 (*): Let $\Sigma = (\Omega, \emptyset)$ be a first-order signature, let E be a set of Σ -equations such that for every equation $s \approx s'$ in E neither s nor s' is a variable. For any term $t \in T_{\Sigma}(X)$, let [t] denote the congruence class of t w.r.t. E.

Prove or refute: For every variable $x \in X$ we have $[x] = \{x\}$.

Exercise 9.12 (*): A friend asks you to proofread her master thesis. On page 15 of the thesis, your friend writes the following:

Lemma 5. Let \succ be a well-founded ordering over a set A, let \rightarrow be a binary relation such that $\rightarrow \subseteq \succ$. Let r be an element of A that is irreducible with respect to \rightarrow , and define $A_r = \{t \in A \mid t \rightarrow^* r\}$. If for every $u_0, u_1, u_2 \in A$ such that $u_1 \leftarrow u_0 \rightarrow u_2 \rightarrow^* r$ there exists a $u_3 \in A$ such that $u_1 \rightarrow^* u_3 \leftarrow^* u_2$, then for every $t_0 \in A_r$ and $t_1 \in A, t_0 \rightarrow^* t_1$ implies $t_1 \in A_r$.

Proof. We use well-founded induction over t_0 with respect to \succ . Let $t_0 \in A_r$ and $t_1 \in A$ such that $t_0 \to^* t_1$. If this derivation is empty, the result is trivial, so suppose that $t_0 \to t'_1 \to^* t_1$. Since $t_0 \in A_r$ is reducible, it is different from r, hence there is a nonempty derivation $t_0 \to t_2 \to^* r$. By assumption, there exists a $t_3 \in A$ such that $t'_1 \to^* t_3 \leftarrow^* t_2$. Now $t_0 \succ t_2$ and $t_2 \in A_r$, hence $t_3 \in A_r$ by the induction hypothesis, and thus $t'_1 \in A_r$. Since $t_0 \succ t'_1$, we can use the induction hypothesis once more and obtain $t_1 \in A_r$ as required.

- (1) Is the "proof" correct?
- (2) If the "proof" is not correct:
 - (a) Which step is incorrect?
 - (b) Does the "theorem" hold? If yes, give a correct proof; otherwise, give a counterexample.