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Exercises 5: Resolution

Exercise 5.1: Let Σ = (Ω,Π) be a first-order signature with Ω = {b/0, f/1} and
Π = {P/1}. Determine for each of the following statements whether they are true or
false:

(1) There is a Σ-model A of P (b) ∧ ¬P (f(b)) such that UA = {7, 8, 9}.

(2) There is a Σ-model A of P (b)∧¬P (f(f(b))) such that fA(a) = a for every a ∈ UA.

(3) P (b) ∧ ¬P (f(b)) has a Herbrand model.

(4) P (b) ∧ ∀x¬P (x) has a Herbrand model.

(5) ∀xP (f(x)) has a Herbrand model with a two-element universe.

(6) ∀xP (x) has exactly one Herbrand model.

(7) ∀xP (f(x)) entails ∀xP (f(f(x))).

Proposed solution. (1) True. Define bA = 7, fA(a) = 8 for a ∈ {7, 8, 9} and PA = {7}.

(2) False. If there existed a model A such that fA(a) = a for every a ∈ UA, then we
would have bA = fA(bA) = fA(fA(bA)), but bA ∈ PA and fA(fA(bA)) /∈ PA.

(3) True. Define PA = {b}.

(4) False. The formula is contradictory; it has no model and in particular no Herbrand
model.

(5) False. Every Herbrand interpretation (and therefore every Herbrand model) over the
signature Σ has the infinite universe TΣ = {b, f(b), f(f(b)), . . . }.

(6) True. The Herbrand interpretation in which PA = TΣ is the only Herbrand model.
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(7) True. If fA(a) ∈ PA for every a ∈ UA, since fA(a) ∈ UA we have fA(fA(a)) ∈ PA for
every a ∈ UA.

Exercise 5.2: Let Σ = (Ω,Π) be a first-order signature with Ω = {b/0, f/1} and
Π = {P/1}. Let F be the Σ-formula

¬P (b) ∧ P (f(f(b))) ∧ ∀x (¬P (x) ∨ P (f(x))).

Determine for each of the following statements whether they are true or false:

(1) There is a Σ-model A of F such that UA = {7, 8, 9}.

(2) There is a Σ-model A of F such that fA(a) = a for every a ∈ UA.

(3) F has exactly two Σ-models.

(4) Every Σ-model of F is a model of ∃xP (x).

(5) Every Σ-model of F is a model of ∀xP (f(f(x))).

(6) There are infinitely many Herbrand interpretations over Σ.

(7) There is a Herbrand model of F over Σ whose universe has exactly two elements.

(8) There is a Herbrand model of F over Σ with an infinite universe.

(9) F has exactly two Herbrand models over Σ.

Proposed solution. (1) True. E.g., UA = {7, 8, 9}, bA = 7, fA(7) = 8, fA(8) = 8,
fA(9) = 9, PA = {8}.

(2) False. If fA(a) = a for every a ∈ UA, then fA(fA(bA)) = fA(bA) = bA, but
fA(fA(bA)) ∈ PA and bA /∈ PA.

(3) False. F has infinitely many models.

(4) True. In every model of F , P (x) holds for the assignment that maps x to fA(fA(bA)).

(5) False. E.g., in the model given for (1), P (f(f(x))) does not hold for the assignment
that maps x to 9.

(6) True. The universe of a Herbrand interpretation over Σ is the set of ground Σ-terms,
i.e., TΣ(∅) = {b, f(b), f(f(b)), f(f(f(b))), . . . }. Since the universe is infinite, there are
infinitely many ways to interpret P .

(7) False. For every Herbrand model of F over Σ, the universe is infinite, see (6).

(8) True. In fact, every Herbrand model over Σ has an infinite universe, see (6).
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(9) True. In every Herbrand model for F , P (b) must be false and P (fn(b)) must be true
for every n ≥ 2. Since P (f(b)) can be either true or false, there are two Herbrand models
for F .

Exercise 5.3: Let Σ = (Ω,Π) be a first-order signature with Ω = {f/1, b/0, c/0} and
Π = {P/1}. Are the following statements correct?

(1) The formula ∀xP (x) has infinitely many Σ-models.

(2) Every model of ∀xP (x) is a model of ∀xP (f(x)).

(3) The formula ¬P (b) ∧ ∀xP (x) has a Σ-model with an infinite universe.

(4) The formula ¬P (b) ∧ ∀xP (f(x)) has a Σ-model with a two-element universe.

(5) Every Σ-model of P (b) ∧ P (c) ∧ ∀xP (f(x)) is a model of ∀xP (x).

(6) Every Herbrand model over Σ of P (b)∧P (c)∧∀xP (f(x)) has an infinite universe.

(7) The formula P (b) ∨ P (c) has exactly three Herbrand models over Σ.

(8) The formula ∀xP (f(x)) has exactly four Herbrand models over Σ.

Proposed solution. (1) True. In particular, it has models with arbitrarily large uni-
verses.

(2) True. ∀xP (x) |= ∀xP (f(x)).

(3) False. The formula is unsatisfiable, so it has no models at all.

(4) True. Take UA = {1, 2}, bA = 1, cA = 1, fA : x 7→ 2, PA = {2}.

(5) False. Take UA = {1, 2}, bA = 1, cA = 1, fA : x 7→ 1, PA = {1}.

(6) True. In fact all Herbrand interpretations over Σ have the same infinite universe
{b, c, f(b), f(c), f(f(b)), f(f(c)), . . . }.

(7) False. P (b) ∨ P (c) has infinitely many Herbrand models over Σ, which differ in the
interpretation of P on ground terms different from b and c.

(8) True. The interpretation of P on all ground terms with f at the root is fixed, but P
can be either true or false for b and either true or false for c; this leaves four combinations.
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Exercise 5.4: Let Σ = (Ω,Π) be a first-order signature with Ω = {b/0, f/1} and
Π = {P/1}. Let F be the Σ-formula

¬P (b) ∧ P (f(f(b))) ∧ ∀x (P (x) ∨ P (f(x))).

Determine for each of the following statements whether they are true or false:

(1) If A is a Σ-model of F , then PA 6= ∅ and PA 6= UA.

(2) There is a Σ-model A of F such that UA = {7, 8, 9}.

(3) There is a Σ-model A of F such that fA(a) = fA(a
′) for all a, a′ ∈ UA.

(4) F has exactly four Σ-models.

(5) There are infinitely many Herbrand interpretations over Σ.

(6) There is an Herbrand model of F over Σ with a finite universe.

(7) There is an Herbrand model A of F over Σ and an assignment β such that
A(β)(f(b)) = A(β)(f(f(b))).

Proposed solution. (1): True. PA cannot equal UA, since bA /∈ PA; PA cannot be
empty, since fA(fA(bA)) ∈ PA.

(2) True. Let UA = {7, 8, 9}, let bA = 7, let fA map every element of UA to 8, and let
PA = {8}.

(3) True. See (2).

(4) False. F has infinitely many Σ-models; in particular it has Σ-models with any universe
with at least 2 elements.

(5) True. Since TΣ(∅) is infinite, there are infinitely many different possibilities to choose
a subset PA ⊆ TΣ(∅).

(6) False. All Herbrand models of F over Σ have the same universe TΣ(∅) (which is
infinite).

(7) False. If A is an Herbrand model over Σ, then A(β)(t) = t for every ground term
t ∈ TΣ(∅), so A(β)(f(b)) and A(β)(f(f(b))) are different elements of the universe.

Exercise 5.5: Determine for each of the following statements whether it is true or false:

(1) If Σ = ({b/0, c/0}, {P/1}), then P (b)∨¬P (c) has exactly three Herbrand models
over Σ.

(2) If Σ = ({f/1, c/0}, {P/1}), then P (c) ∨ P (f(c)) has an Herbrand model over Σ
whose universe has exactly four elements.
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(3) If Σ = ({f/1, c/0}, {P/1}), then ¬P (c) ∧ ∀xP (f(x)) has a model whose universe
has exactly five elements

(4) If Σ = ({b/0, c/0, d/0}, {P/1}), then P (b) ∨¬P (b) and P (c)∨¬P (d) are equisat-
isfiable.

(5) If Σ = ({f/1, c/0}, {P/1}), N is a set of universally quantified Σ-clauses, and
every clause in N has at least one positive literal, then N has an Herbrand model.

(6) If Σ = ({f/1, c/0}, {P/1}), N is a set of universally quantified Σ-clauses, and
N |= ¬P (x) ∨ P (f(x)), then N has a model.

(7) If Σ = ({f/1, c/0}, {P/1}), then ∀xP (f(x)) |= ∀y P (c) ∨ P (f(f(y))).

Proposed solution. (1) True. There are exactly four Herbrand interpretations over Σ,
namely ∅, {P (b)}, {P (c)}, and {P (b), P (c)}, and three of them (the first, the second,
and the fourth) are models of P (b) ∨ ¬P (c).

(2) False. The universe of every Herbrand model is the set of ground terms. Since Σ
contains a unary function symbol, there are infinitely many ground terms.

(3) True. Take A with UA = {1, 2, 3, 4, 5}, cA = 1, fA : n 7→ 2, and PA = {2}.

(4) True. Both formulas are satisfiable, therefore the are equisatisfiable.

(5) True. Take an Herbrand interpretation in which all atoms are true; then every clause
that has at least one positive literal is true in that interpretation.

(6) False. Take N = {⊥}.

(7) True. By Lemma 3.3.8, every model of ∀xP (f(x)) is also a model of ∀y P (f(f(y)))
and thus a model of ∀y P (c) ∨ P (f(f(y))).

Exercise 5.6: Let N be the set consisting of the following ground clauses:

P ∨Q (1)

P ∨ ¬Q (2)

¬P ∨Q (3)

¬P ∨ ¬Q (4)

(a) Show that N ⊢Res ⊥, that is, derive ⊥ from N using the “Resolution” and “Fac-
torization” rules.

(b) Why is it impossible to derive the empty clause from N without using “Factoriza-
tion”?
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Proposed solution. (a) From (1) and (2), using “Resolution” we obtain

P ∨ P (5)

From (5), using “Factorization”’ we obtain

P (6)

From (3) and (4), using “Resolution” we obtain

¬P ∨ ¬P (7)

From (6) and (7), using “Resolution” we obtain

¬P (8)

From (6) and (8), using “Resolution” we obtain the empty clause.

(b) Given two clauses with m ≥ 1 and n ≥ 1 literals, respectively, the result of “Resolu-
tion” always has m+ n− 2 literals. Since the problem consists exclusively of two-literal
clauses, the result of all inferences from N also consist of 2 + 2 − 2 = 2 literals, which
in turn can only yield two-literal clauses, and so on. The empty clause, which has zero
literals, can never be generated.

Exercise 5.7 (∗): Find a finite set N of ground clauses such that no clause in N is a
tautology and such that Res∗(N) is infinite.

Proposed solution. We take N to be the set consisting of the following clauses:

P (1)

¬P ∨Q ∨Q (2)

¬Q ∨ P ∨ P (3)

Using the “Resolution” rule, from (1) and (2) we obtain

Q ∨Q (4)

Using the “Resolution” rule, from (4) and (3) we obtain

P ∨ P ∨Q (5)

Using the “Resolution” rule, from (5) and (2) we obtain

Q ∨Q ∨ P ∨Q (6)

Using the “Resolution” rule, from (6) and (3) we obtain

P ∨ P ∨Q ∨ P ∨Q (7)

And so on. At each step, we derive a clause with one more literal than we started with.
Thus Res∗(N) is infinite.
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Exercise 5.8: Let Σ = (Ω,Π) with Ω = {b/0, c/0} and Π = {P/1, Q/0, R/0}. Use the
ground resolution calculus Res to check whether the following clause set is satisfiable:

¬P (b) ∨Q (1)

¬P (b) ∨R (2)

¬P (c) ∨Q (3)

¬Q ∨ ¬R (4)

Q ∨R (5)

P (b) (6)

¬P (c) (7)

Proposed solution. From (6) and (1) we obtain via “Resolution” Q (8), from (6)
and (2) we obtain via “Resolution” R (9), from (8) and (4) we obtain via “Resolution”
¬R (10), and from (9) and (10) we obtain via “Resolution” ⊥. Since resolution is sound,
the clause set is unsatisfiable.

Exercise 5.9: Use the ground resolution calculus to show that

{

(P ↔ (Q ∧R)), (P ↔ Q)
}

|= Q → R

Hint: You will need some preprocessing.

Proposed solution.

1. Convert to CNF:

• P ↔ (Q ∧R):

P ↔ (Q ∧R)

⇒CNF (P → (Q ∧R)) ∧ ((Q ∧R) → P )

⇒+

CNF
(¬P ∨ (Q ∧R)) ∧ (¬(Q ∧R) ∨ P )

⇒+

CNF
(¬P ∨Q) ∧ (¬P ∨R) ∧ (¬Q ∨ ¬R ∨ P )

• P ↔ Q:

P ↔ Q

⇒CNF (P → Q) ∧ (Q → P )

⇒+

CNF
(¬P ∨Q) ∧ (¬Q ∨ P )
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• Negation of Q → R:

¬(Q → R)

⇒+

CNF
(Q ∧ ¬R)

2. Combine all the clauses: {¬P ∨Q,¬P ∨R,¬Q ∨ ¬R ∨ P,¬P ∨Q,¬Q ∨ P,Q,¬R}.

3. Use the resolution calculus to derive a contradiction:

1 ¬P ∨Q (given)
2 ¬P ∨R (given)
3 ¬Q ∨ ¬R ∨ P (given)
4 ¬P ∨Q (given)
5 ¬Q ∨ P (given)
6 Q (given)
7 ¬R (given)
8 P (Res. 6 into 5)
9 R (Res. 8 into 2)

10 ⊥ (Res. 9 into 7)

Exercise 5.10: Prove or refute: Res(N) is satisfiable if and only if N is satisfiable.

Proposed solution. The statement does not hold. For example, ifN = {P∨Q, ¬P, ¬Q},
then Res(N) = {Q, P}; if N = {¬P ∨ ¬P, P}, then Res(N) = {¬P}; and if N = {⊥},
then Res(N) = ∅. In all three cases, the set N is unsatisfiable, but Res(N) is satisfiable.

Exercise 5.11: Prove or refute: All clauses in Res
∗(N) are tautologies if and only if all

clauses in N are tautologies.

Proposed solution. The statement holds.

Ground resolution is sound. This means that for every algebra A, whenever the premises
of an inference hold in A, then the conclusion holds in A as well. In particular, if the
premises are tautological (i.e., hold in every algebra A), then the conclusion holds in
every algebra A, so it is also tautological. Thus, if all clauses in a set M are tautologies,
then all clauses in Res(M) are tautologies. By induction over n we can now show that,
if all clauses in N are tautologies, then all clauses in Res

n(N) are tautologies. So, all
clauses in Res

∗(N) =
⋃

n≥0
Res

n(N) are tautologies.

The reverse direction follows immediately from the fact that N ⊆ Res
∗(N).
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Exercise 5.12 (∗): Prove the following statement: If N is a set of propositional formulas
and C is a propositional formula such that N |= C, then there exists a finite subset
M ⊆ N such that M |= C.

Proposed solution. Let C = L1 ∨ · · · ∨ Ln. If N |= C, then by definition of |= we have
N∪{L1, . . . , Ln} |= ⊥, where Li denotes the complementary literal of Li. By refutational
completeness of ground resolution, we have ⊥ ∈ Res

∗(N∪{L1, . . . , Ln}). This means that
there exists a finite derivation tree with ⊥ at the root and clauses from N ∪{L1, . . . , Ln}
on its leaves. Take M to be the finite subset of clauses from N that appear on the
leaves. The existence of the derivation tree means that ⊥ ∈ Res

∗(M ∪{L1, . . . , Ln}). By
soundness of ground resolution, we have M ∪ {L1, . . . , Ln} |= ⊥. Equivalently, M |= C.
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