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Exercises 4: First-Order Logic

Exercise 4.1: Let ¥ = ({b/0, ¢/0, d/0, f/1},{P/1}). Does the formula
P(b) A P(e) N=P(d) N =3z P(f(f())))

have a »-model whose universe has exactly two elements? Give an example of such a
model or show that such a model does not exist.

Proposed solution. The Y-algebra A with Ugq = {2,3}, ba = 2, c4 = 2, dg = 3,
fa(u) = 3 for all u € Uy, and P4 = {2} is a model of the given formula. Its universe
has two elements.

Exercise 4.2: Let the signature ¥ = (2, 1II) be given by Q = {+/2,s/1,0/0} and II = 0,
and let
Fy =V (z+0~2)

Fy = VaVy (z + s(y) = s(x + y))
Fs =VaVy(z+y~y+ax)
Fy = “VaVy(z+y~y+x).

(a) Determine a X-algebra A with an universe of exactly two elements such that A is
a model of I, Fy, F3.

(b) Determine a ¥-algebra A with an universe of exactly two elements such that A is
a model of Fy, Iy, Fy.



Proposed solution. (a) The ¥-algebra A with Uq = {0,1}, u 44 v = u + v mod 2 for
all u,v € Uy, sa(u) = u+1mod 2 for all u € Uy, and Q4 = 0 is a model of Fy, Fy, F3.

(b) The ¥-algebra A with Ug = {0,1}, u+40 =wuforallu € Uy, 04+41=0,14+41=0,
sa(u) = wu for all uw € Uy, and 04 = 0 is a model of Fy, Fy, Fj.

Exercise 4.3: Let ¥ = (Q,0) with Q = {f/1, ¢/0}. Give a ¥-model A of

—fle)me A Ve (f(f(z)) =)

with Ug = {1,2,3}.

Proposed solution. Define f4(1) =2, f4(2) =1, fa(3) =3, and cq = 1.

Exercise 4.4: Let ¥ = (Q,1I) with Q = {f/2, g/2} and IT = {P/2, Q/1}. Let
F = Vo (P(z,y) V3y Pz, f(y,2)))

and o = {y — g(z,2), z — g(x,y)}. Compute Fo.

Proposed solution. Yu (P(u, g(z,2)) V Jv P(u, f(v, g(z,v))))-

Exercise 4.5: Let F' be a formula. Prove that 3z F is satisfiable if and only if F'{z — b}
is satisfiable, where b is a constant that does not occur in F.

Proposed solution. For the “if” part, we assume that F'{x — b} is satisfiable. Then
there exists an algebra A and an assignment [ such that A(S8)(F{x — b}) = 1. By the
substitution lemma, we have A(S[x — €])(F) = 1 where e = A(S)(b). Consequently,
A(B)(Fz F) = maxqeer {A(B[z — a])(F)} > A(B[z — €])(F) = 1. We have that 3z F is
satisfiable.

For the “only if” part, we assume that dx F' is satisfiable. Thus there exists an algebra

A and an assignment [ such that A(5)(3z F') = 1. We have

A(B) @ F) = maxfAle - a)(F)} = 1.
Thus there exists a € Uy such that A(B[x — a])(F) = 1. Let b be a constant that does

not appear in F. We define an algebra A’, with Uy = Uy, Py = Py for every P/m € 11,
fa = faif f#Dbforevery f/n €, and by = a.



A and A’ differ only in their interpretations of b, consequently, for all assignments f3,
A(B)(F) = A'(B)(F), because b never appears in F. By the substitution lemma, we
have A'(Blz — a])(F) = A(B)(F{x — b}). We can conclude that A(SB[z — a])(F) =
A'(B)(F{x — b}) = 1, which shows that F{x — b} is satisfiable.

Exercise 4.6: Let ¥ = (,1II) be a signature. For every ¥-formula F' without equality,
let neg(F') be the formula that one obtains from F' by replacing every atom P(t1,...,ty)
in F by its negation = P(ty,...,t,) for every P/n € II. Prove: If F is valid, then neg(F)
is valid.

Hint: Somewhere in the proof you need an induction over the structure of formulas. It
is sufficient if you check the base cases and A, -, and 3. The other boolean connectives
and quantifiers (V, —, <>, V) can be handled analogously; you may omit them.

Proposed solution. We first define for every ¥-algebra A an algebra A’ by Uy = Uy,
Jfar = faforevery f/n e Q,and Py = U} \ Py for every P/m € IL

In the next step, we prove the lemma that A(8)(neg(F)) = A'(8)(F) for every formula
F and every assignment (3.

We use induction over the structure of formulas. Clearly A(S)(neg(L)) = A(B)(L) =
0= A'(B)(L) and A(B)(neg(T)) = A(B)(T) = 1 = A'(B)(T).

Since all function symbols are interpreted in the same way in the algebras A and
A we get A(B)(t) = A(B)(t) for every term ¢; therefore A(S5)(neg(P(t1,...,tm))) =
AB) Pt - b)) = LI (AB)(11), - A(B) (b)) & PaiE (A(B)(t1), - ., A'(B) (b))
€ Py iff A(B)(P(t1,...,tm)) = 1.

By structural induction, we now obtain A(S)(neg(F A G)) = A(B)(neg(F) A neg(G))
min{A(3)(neg(F)), A(B)(neg(G))} = min{A(B)(F), A(B)(G)} = A(B)(F A G) an
A(B)(neg(~F)) = A(B)(=(neg(F))) = 1 — A(B)(neg(F)) = 1 — A'(B)(F) = A(B)(~F
and  A(B)(neg(3x F)) = A(B)(Bz (neg(F))) = maxeev, {A(Blz — a])(neg(F))}
maxaey , {A' (Blr — a])(F)} = A'(8)(3x F).

Using the lemma, we now see that if F'is valid, then for every A and § we get A(3)(neg(F'))
= A'(B)(F) = 1, which implies that neg(F) is valid as well.

~ O

Exercise 4.7 (x): Let II be a set of propositional variables. Let N and N’ be sets
of clauses over II. Let S be a set of literals that does not contain any complementary
literals. Prove: If every clause in N contains at least one literal L with L € S and if no
clause in N’ contains a literal L with L € S, then N U N’ is satisfiable if and only if N’
is satisfiable.



Proposed solution. The “only if” part is trivial. For the “if” part, suppose that N’ is
satisfiable, that is, there is a valuation B such that B(C') =1 for every C' € N'. Define a
valuation A by A(P) =1if P € S, A(P) =0if =P € S, and A(P) = B(P) otherwise.
Since every clause in N contains some literal of S, A(C) = 1 for every C' € N. For
a clause C' € N’ we distinguish two cases: If C' contains some literal of S, then again
A(C) = 1. Otherwise C' contains neither a literal in .S nor the complement of a literal
in S, so A(C) = B(C). Since B(C) = 1 for every C € N', we get A(C) = 1 for every
CeN.

Exercise 4.8: Let ¥ = (2, II) be a signature where II contains two predicate symbols @
and R with the same arity n and possibly further predicate symbols. For any ¥-formula
F let rep(F) be the formula that one obtains by replacing every atom Q(si,...,s,) in
F by the corresponding atom R(sy,. .., Sp).

(a) Prove: If F' is valid, then rep(F) is valid. It is sufficient if you consider nonequational
atoms, disjunctions G V G’, and negations —G}; the other cases are handled analogously.

(b) Refute: If F' is satisfiable, then rep(F') is satisfiable.

Proposed solution. (a) Assume that the Y-formula F' is valid. Let A and § be an
arbitrary Y-algebra and an assignment. We have to show that A(S3)(rep(F')) = 1. Define
a Y-algebra B such that Ug = Uy, fg = fa for every f € Q, Qg = R4, and Pg = P4 for
every P € IT\ {Q}. Obviously, B(vy)(t) = A(y)(t) for every assignment v and X-term ¢.
We show that B(7)(G) = A(7)(rep(Q)) for every X-formula G and every v by induction
over the formula structure:

If G =Q(s1,-..,5n), then rep(G) = R(s1, ..., sp). The tuple (A(y)(s1), ..., A(y)(sn)) =
(B(7)(s1),--.,B(7)(syn)) is contained in Qg iff it is contained in R 4 by definition of Qz,
therefore we get B(7)(Q(s1,.-.,5n)) = A(Y)(R(s1,...,50)) = A(Y)(rep(Q(s1, - - ., 5n)))-

If G = P(ty,...,tn) for some P # @Q, then rep(G) = P(s1,...,S,). Then the tuple
(AMY)(51)s- - A(Y)(80)) = (B()(81), -, B(7)(sn)) is contained in Pg iff it is contained
in Py, therefore we get B(7)(P(s1,...,84)) = A(Y)(rep(P(s1,...,55))).

If G = G'VG”, then rep(G) = rep(G')Vrep(G”). By induction, B(y)(G") = A(vy)(rep(G"))
and B(7)(G") = A(7)(rep(G")), therefore B(y)(G) = B(y)(G"V G") = max{B(y)(¢"),
B(y)(G")} = max{A(7)(rep(G")), A(y)(rep(G"))} = A()(rep(G') V rep(G”)) =
A(y)(rep(G)).

If G = =G, then rep(G) = —rep(G’). By induction, B(y)(G') = A(y)(rep(G’)), there-
fore B(7)(G) = B(y)(=G") = 1 = B()(G') = 1 = A(7)(rep(G')) = A(y)(-rep(G')) =
A(y)(rep(G)).

The other cases are handled analogously.



Since F is supposed to be valid, we have therefore A(3)(rep(F)) = B(5)(F) = 1.

(b) Let F = Q(b) A =R(b), then rep(F) = R(b) A =R(b). Clearly, F is satisfiable, but
rep(F') is unsatisfiable.

Exercise 4.9 (x): Let ¥ = (£2,1I) be a signature. Let P/1 and @)/0 be predicate symbols
in IT. Let N be a set of (universally quantified) clauses over X. Let Ny be the set of all
clauses in N that contain a literal =P (t) for some ¢t € Tx(X). Let Ny be the set of all
clauses in N that contain a literal P(t’) for some ¢’ € Tx(X). Prove: If all clauses in

No \ N1 contain also the literal =@ and if all clauses in Ny \ Ny contain also the literal
@, then N and (N \ Ny) \ N; are equisatisfiable.

Proposed solution. We have to show that N has a model whenever (N '\ Ny) \ N; has
a model, and vice versa.

Since (N\ Ny)\ Vi is a subset of N, every model of N is obviously a model of (N'\ Ny)\ Ny .

For the reverse direction assume that the ¥-algebra A is a model of (N \ Np) \ N;. We
define a Y-algebra B that has the same universe as A and that agrees with A for all
function and predicate symbols except for P/1.

If Q4 = 1, we define Pg = (). Since the predicate symbol P does not occur in (N\ Ny)\ Ny,
B agrees with A for all the symbols that occur in these clauses, therefore B = (N \ Np) \
Nj. Since all clauses in Ny contain at least one negated literal —=P(t) and since Pg is false
for every argument, B |= Ny. Finally, all clauses in N7 \ Ny contain the positive literal @,
and since Qg = Q4 = 1, we get B = Ny \ Ny. Since N = ((IV\ No) \ N1) UNoU (N7 \ No),
we conclude that B = N.

Otherwise Q4 = 0, then we define Pg = Up. Again, for all the symbols that occur
in clauses in (N \ Np) \ N1, B agrees with A, therefore B = (N \ Ny) \ N;. Since all
clauses in Nj contain at least one positive literal P(¢) and since P is true for every
argument, B = Ni. Finally, all clauses in Ny \ V7 contain the negated literal =@, and
since Q@ = Q4 =0, we get B = Ny \ Ny. Since N = ((IV \ No) \ N1) UN; U (Np \ N1),
we conclude again that B = N.

Exercise 4.10 (x): Let > be a well-founded strict partial ordering on a set M. A
function ¢ : M"™ — M with n > 1 is called strictly monotonic in the jth argument if
aj = a; implies ¢(a1,...,a;,...,an) = ¢(a1,...,a},...,a,) for all arguments ay, ...,
an,a; € M.

(a) Prove: If the ordering > on the set M is well-founded and total, and if ¢ : M™ — M
with n > 1 is strictly monotonic in the jth argument, then ¢(a1,...,a;,...,a,) = a; for
all ay,...,a, € M.



(b) In part (a), it was required that > is a total ordering. Give an example that shows
that the property of part (a) does not hold if the ordering > is well-founded but not
total.

(c) Use part (a) to prove the following property: Let ¥ = (€2,1II) be a signature, let A
be a Y-algebra. Let = be a well-founded total ordering on the universe U4 of A, such
that f4 : U} — Uy is strictly monotonic in every argument for every f/n € Q with
n > 1. Let 8 be an arbitrary A-assignment, let ¢ € Tx(X). Then A(5)(¢t) = S(x) for
every variable x € var(t).

Proposed solution. (a) Let > be a well-founded and total ordering on a set M, let
¢ : M™ — M be a function that is strictly monotonic in the jth argument, where 1 < j <
n. Let ay,...,a;-1,aj41,...,a, be elements of M. We show ¢(ai,...,aj,...,a,) = a;
for all a; € M by well-founded induction over a; and >.

Let b := ¢(ai,...,aj,...,a,). Assume that b  a;. Since > is total, we conclude that a; >
b. So by the induction hypothesis, we must have ¢(aq,...,b,...,a,) = b. But this implies
olar,...,a5,...,an) =b =< ¢(ar,...,b,... a,), contradicting the strict monotonicity of
¢ in the jth argument. So ¢(a1,...,a;,...,a,) = b= a; as required.

(b) Let M = {b, c}, let = = (), that is, the ordering in which all elements are incompara-
ble. Now define ¢(b) = ¢ and ¢(c) = b. Then ¢ is trivially strictly monotonic in the first
argument (since the condition a; > a} is never satisfied), but ¢(b) = b does not hold.

(¢c) We use induction over the structure of terms. If ¢ is a variable y, then = € var(t)
implies = y, so A(5)(y) = B(y) by definition of A(f). If t is a term f(¢y,...,ty), then
x € var(t) implies x € var(t;) for some i. So A(B)(t) = fa(A(B)(t1),..., AB)(tn)) =
A(B)(t;) by strict monotonicity of f4 and part (a), and A(8)(t;) = B(x) by induction
for ¢;.



