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Exercises 4: First-Order Logic

Exercise 4.1: Let Σ = ({b/0, c/0, d/0, f/1}, {P/1}). Does the formula

P (b) ∧ P (c) ∧ ¬P (d) ∧ ¬(∃xP (f(f(x))))

have a Σ-model whose universe has exactly two elements? Give an example of such a
model or show that such a model does not exist.

Proposed solution. The Σ-algebra A with UA = {2, 3}, bA = 2, cA = 2, dA = 3,
fA(u) = 3 for all u ∈ UA, and PA = {2} is a model of the given formula. Its universe
has two elements.

Exercise 4.2: Let the signature Σ = (Ω,Π) be given by Ω = {+/2, s/1, 0/0} and Π = ∅,
and let

F1 = ∀x (x+ 0 ≈ x)

F2 = ∀x∀y (x+ s(y) ≈ s(x+ y))

F3 = ∀x∀y (x+ y ≈ y + x)

F4 = ¬∀x∀y (x+ y ≈ y + x).

(a) Determine a Σ-algebra A with an universe of exactly two elements such that A is
a model of F1, F2, F3.

(b) Determine a Σ-algebra A with an universe of exactly two elements such that A is
a model of F1, F2, F4.
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Proposed solution. (a) The Σ-algebra A with UA = {0, 1}, u+A v = u+ v mod 2 for
all u, v ∈ UA, sA(u) = u+ 1 mod 2 for all u ∈ UA, and 0A = 0 is a model of F1, F2, F3.

(b) The Σ-algebra A with UA = {0, 1}, u+A 0 = u for all u ∈ UA, 0+A 1 = 0, 1+A 1 = 0,
sA(u) = u for all u ∈ UA, and 0A = 0 is a model of F1, F2, F4.

Exercise 4.3: Let Σ = (Ω, ∅) with Ω = {f/1, c/0}. Give a Σ-model A of

¬f(c) ≈ c ∧ ∀x (f(f(x)) ≈ x)

with UA = {1, 2, 3}.

Proposed solution. Define fA(1) = 2, fA(2) = 1, fA(3) = 3, and cA = 1.

Exercise 4.4: Let Σ = (Ω,Π) with Ω = {f/2, g/2} and Π = {P/2, Q/1}. Let

F = ∀x (P (x, y) ∨ ∃y P (x, f(y, z)))

and σ = {y 7→ g(x, z), z 7→ g(x, y)}. Compute Fσ.

Proposed solution. ∀u (P (u, g(x, z)) ∨ ∃v P (u, f(v, g(x, y)))).

Exercise 4.5: Let F be a formula. Prove that ∃xF is satisfiable if and only if F{x 7→ b}
is satisfiable, where b is a constant that does not occur in F .

Proposed solution. For the “if” part, we assume that F{x 7→ b} is satisfiable. Then
there exists an algebra A and an assignment β such that A(β)(F{x 7→ b}) = 1. By the
substitution lemma, we have A(β[x 7→ e])(F ) = 1 where e = A(β)(b). Consequently,
A(β)(∃xF ) = maxa∈UA

{A(β[x 7→ a])(F )} ≥ A(β[x 7→ e])(F ) = 1. We have that ∃xF is
satisfiable.

For the “only if” part, we assume that ∃xF is satisfiable. Thus there exists an algebra
A and an assignment β such that A(β)(∃xF ) = 1. We have

A(β)(∃xF ) = max
a∈UA

{A(β[x 7→ a])(F )} = 1.

Thus there exists a ∈ UA such that A(β[x 7→ a])(F ) = 1. Let b be a constant that does
not appear in F . We define an algebra A′, with UA′ = UA, PA′ = PA for every P/m ∈ Π,
fA′ = fA if f 6= b for every f/n ∈ Ω, and bA′ = a.
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A and A′ differ only in their interpretations of b, consequently, for all assignments β,
A(β)(F ) = A′(β)(F ), because b never appears in F . By the substitution lemma, we
have A′(β[x 7→ a])(F ) = A′(β)(F{x 7→ b}). We can conclude that A(β[x 7→ a])(F ) =
A′(β)(F{x 7→ b}) = 1, which shows that F{x 7→ b} is satisfiable.

Exercise 4.6: Let Σ = (Ω,Π) be a signature. For every Σ-formula F without equality,
let neg(F ) be the formula that one obtains from F by replacing every atom P (t1, . . . , tn)
in F by its negation ¬P (t1, . . . , tn) for every P/n ∈ Π. Prove: If F is valid, then neg(F )
is valid.

Hint: Somewhere in the proof you need an induction over the structure of formulas. It
is sufficient if you check the base cases and ∧, ¬, and ∃. The other boolean connectives
and quantifiers (∨, →, ↔, ∀) can be handled analogously; you may omit them.

Proposed solution. We first define for every Σ-algebra A an algebra A′ by UA′ = UA,
fA′ = fA for every f/n ∈ Ω, and PA′ = Um

A
\ PA for every P/m ∈ Π.

In the next step, we prove the lemma that A(β)(neg(F )) = A′(β)(F ) for every formula
F and every assignment β.

We use induction over the structure of formulas. Clearly A(β)(neg(⊥)) = A(β)(⊥) =
0 = A′(β)(⊥) and A(β)(neg(⊤)) = A(β)(⊤) = 1 = A′(β)(⊤).

Since all function symbols are interpreted in the same way in the algebras A and
A′, we get A(β)(t) = A′(β)(t) for every term t; therefore A(β)(neg(P (t1, . . . , tm))) =
A(β)(¬P (t1, . . . , tm)) = 1 iff (A(β)(t1), . . . , A(β)(tm)) /∈ PA iff (A′(β)(t1), . . . ,A

′(β)(tm))
∈ PA′ iff A′(β)(P (t1, . . . , tm)) = 1.

By structural induction, we now obtain A(β)(neg(F ∧G)) = A(β)(neg(F ) ∧ neg(G)) =
min{A(β)(neg(F )), A(β)(neg(G))} = min{A′(β)(F ), A′(β)(G)} = A′(β)(F ∧ G) and
A(β)(neg(¬F )) = A(β)(¬(neg(F ))) = 1 −A(β)(neg(F )) = 1 −A′(β)(F ) = A(β)(¬F )
and A(β)(neg(∃xF )) = A(β)(∃x (neg(F ))) = maxa∈UA

{A(β[x 7→ a])(neg(F ))} =
maxa∈UA′ {A

′(β[x 7→ a])(F )} = A′(β)(∃xF ).

Using the lemma, we now see that if F is valid, then for everyA and β we getA(β)(neg(F ))
= A′(β)(F ) = 1, which implies that neg(F ) is valid as well.

Exercise 4.7 (∗): Let Π be a set of propositional variables. Let N and N ′ be sets
of clauses over Π. Let S be a set of literals that does not contain any complementary
literals. Prove: If every clause in N contains at least one literal L with L ∈ S and if no
clause in N ′ contains a literal L with L ∈ S, then N ∪N ′ is satisfiable if and only if N ′

is satisfiable.
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Proposed solution. The “only if” part is trivial. For the “if” part, suppose that N ′ is
satisfiable, that is, there is a valuation B such that B(C) = 1 for every C ∈ N ′. Define a
valuation A by A(P ) = 1 if P ∈ S, A(P ) = 0 if ¬P ∈ S, and A(P ) = B(P ) otherwise.
Since every clause in N contains some literal of S, A(C) = 1 for every C ∈ N . For
a clause C ∈ N ′ we distinguish two cases: If C contains some literal of S, then again
A(C) = 1. Otherwise C contains neither a literal in S nor the complement of a literal
in S, so A(C) = B(C). Since B(C) = 1 for every C ∈ N ′, we get A(C) = 1 for every
C ∈ N ′.

Exercise 4.8: Let Σ = (Ω,Π) be a signature where Π contains two predicate symbols Q
and R with the same arity n and possibly further predicate symbols. For any Σ-formula
F let rep(F ) be the formula that one obtains by replacing every atom Q(s1, . . . , sn) in
F by the corresponding atom R(s1, . . . , sn).

(a) Prove: If F is valid, then rep(F ) is valid. It is sufficient if you consider nonequational
atoms, disjunctions G ∨G′, and negations ¬G; the other cases are handled analogously.

(b) Refute: If F is satisfiable, then rep(F ) is satisfiable.

Proposed solution. (a) Assume that the Σ-formula F is valid. Let A and β be an
arbitrary Σ-algebra and an assignment. We have to show that A(β)(rep(F )) = 1. Define
a Σ-algebra B such that UB = UA, fB = fA for every f ∈ Ω, QB = RA, and PB = PA for
every P ∈ Π \ {Q}. Obviously, B(γ)(t) = A(γ)(t) for every assignment γ and Σ-term t.
We show that B(γ)(G) = A(γ)(rep(G)) for every Σ-formula G and every γ by induction
over the formula structure:

If G = Q(s1, . . . , sn), then rep(G) = R(s1, . . . , sn). The tuple (A(γ)(s1), . . . ,A(γ)(sn)) =
(B(γ)(s1), . . . ,B(γ)(sn)) is contained in QB iff it is contained in RA by definition of QB,
therefore we get B(γ)(Q(s1, . . . , sn)) = A(γ)(R(s1, . . . , sn)) = A(γ)(rep(Q(s1, . . . , sn))).

If G = P (t1, . . . , tm) for some P 6= Q, then rep(G) = P (s1, . . . , sn). Then the tuple
(A(γ)(s1), . . . ,A(γ)(sn)) = (B(γ)(s1), . . . ,B(γ)(sn)) is contained in PB iff it is contained
in PA, therefore we get B(γ)(P (s1, . . . , sn)) = A(γ)(rep(P (s1, . . . , sn))).

IfG = G′∨G′′, then rep(G) = rep(G′)∨rep(G′′). By induction, B(γ)(G′) = A(γ)(rep(G′))
and B(γ)(G′′) = A(γ)(rep(G′′)), therefore B(γ)(G) = B(γ)(G′ ∨ G′′) = max{B(γ)(G′),
B(γ)(G′′)} = max{A(γ)(rep(G′)),A(γ)(rep(G′′))} = A(γ)(rep(G′) ∨ rep(G′′)) =
A(γ)(rep(G)).

If G = ¬G′, then rep(G) = ¬rep(G′). By induction, B(γ)(G′) = A(γ)(rep(G′)), there-
fore B(γ)(G) = B(γ)(¬G′) = 1 − B(γ)(G′) = 1 − A(γ)(rep(G′)) = A(γ)(¬rep(G′)) =
A(γ)(rep(G)).

The other cases are handled analogously.
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Since F is supposed to be valid, we have therefore A(β)(rep(F )) = B(β)(F ) = 1.

(b) Let F = Q(b) ∧ ¬R(b), then rep(F ) = R(b) ∧ ¬R(b). Clearly, F is satisfiable, but
rep(F ) is unsatisfiable.

Exercise 4.9 (∗): Let Σ = (Ω,Π) be a signature. Let P/1 and Q/0 be predicate symbols
in Π. Let N be a set of (universally quantified) clauses over Σ. Let N0 be the set of all
clauses in N that contain a literal ¬P (t) for some t ∈ TΣ(X). Let N1 be the set of all
clauses in N that contain a literal P (t′) for some t′ ∈ TΣ(X). Prove: If all clauses in
N0 \N1 contain also the literal ¬Q and if all clauses in N1 \N0 contain also the literal
Q, then N and (N \N0) \N1 are equisatisfiable.

Proposed solution. We have to show that N has a model whenever (N \N0) \N1 has
a model, and vice versa.

Since (N\N0)\N1 is a subset ofN , every model of N is obviously a model of (N\N0)\N1.

For the reverse direction assume that the Σ-algebra A is a model of (N \N0) \N1. We
define a Σ-algebra B that has the same universe as A and that agrees with A for all
function and predicate symbols except for P/1.

IfQA = 1, we define PB = ∅. Since the predicate symbol P does not occur in (N\N0)\N1,
B agrees with A for all the symbols that occur in these clauses, therefore B |= (N \N0)\
N1. Since all clauses in N0 contain at least one negated literal ¬P (t) and since PB is false
for every argument, B |= N0. Finally, all clauses in N1 \N0 contain the positive literal Q,
and since QB = QA = 1, we get B |= N1 \N0. Since N = ((N \N0)\N1)∪N0∪(N1 \N0),
we conclude that B |= N .

Otherwise QA = 0, then we define PB = UB. Again, for all the symbols that occur
in clauses in (N \ N0) \ N1, B agrees with A, therefore B |= (N \ N0) \ N1. Since all
clauses in N1 contain at least one positive literal P (t) and since PB is true for every
argument, B |= N1. Finally, all clauses in N0 \ N1 contain the negated literal ¬Q, and
since QB = QA = 0, we get B |= N1 \N0. Since N = ((N \N0) \N1) ∪N1 ∪ (N0 \N1),
we conclude again that B |= N .

Exercise 4.10 (∗): Let ≻ be a well-founded strict partial ordering on a set M . A
function φ : Mn → M with n ≥ 1 is called strictly monotonic in the jth argument if
aj ≻ a′j implies φ(a1, . . . , aj , . . . , an) ≻ φ(a1, . . . , a

′
j , . . . , an) for all arguments a1, . . . ,

an, a
′
j ∈ M .

(a) Prove: If the ordering ≻ on the set M is well-founded and total, and if φ : Mn → M
with n ≥ 1 is strictly monotonic in the jth argument, then φ(a1, . . . , aj , . . . , an) � aj for
all a1, . . . , an ∈ M .
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(b) In part (a), it was required that ≻ is a total ordering. Give an example that shows
that the property of part (a) does not hold if the ordering ≻ is well-founded but not
total.

(c) Use part (a) to prove the following property: Let Σ = (Ω,Π) be a signature, let A
be a Σ-algebra. Let ≻ be a well-founded total ordering on the universe UA of A, such
that fA : Un

A
→ UA is strictly monotonic in every argument for every f/n ∈ Ω with

n ≥ 1. Let β be an arbitrary A-assignment, let t ∈ TΣ(X). Then A(β)(t) � β(x) for
every variable x ∈ var(t).

Proposed solution. (a) Let ≻ be a well-founded and total ordering on a set M , let
φ : Mn → M be a function that is strictly monotonic in the jth argument, where 1 ≤ j ≤
n. Let a1, . . . , aj−1, aj+1, . . . , an be elements of M . We show φ(a1, . . . , aj , . . . , an) � aj
for all aj ∈ M by well-founded induction over aj and ≻.

Let b := φ(a1, . . . , aj , . . . , an). Assume that b 6� aj . Since≻ is total, we conclude that aj ≻
b. So by the induction hypothesis, we must have φ(a1, . . . , b, . . . , an) � b. But this implies
φ(a1, . . . , aj , . . . , an) = b � φ(a1, . . . , b, . . . , an), contradicting the strict monotonicity of
φ in the jth argument. So φ(a1, . . . , aj , . . . , an) = b � aj as required.

(b) Let M = {b, c}, let ≻ = ∅, that is, the ordering in which all elements are incompara-
ble. Now define φ(b) = c and φ(c) = b. Then φ is trivially strictly monotonic in the first
argument (since the condition a1 ≻ a′1 is never satisfied), but φ(b) � b does not hold.

(c) We use induction over the structure of terms. If t is a variable y, then x ∈ var(t)
implies x = y, so A(β)(y) = β(y) by definition of A(β). If t is a term f(t1, . . . , tn), then
x ∈ var(t) implies x ∈ var(ti) for some i. So A(β)(t) = fA(A(β)(t1), . . . ,A(β)(tn)) �
A(β)(ti) by strict monotonicity of fA and part (a), and A(β)(ti) � β(x) by induction
for ti.
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