
Automated Theorem Proving

Prof. Dr. Jasmin Blanchette, Lydia Kondylidou,

Yiming Xu, PhD, and Tanguy Bozec
based on exercises by Dr. Uwe Waldmann

Winter Term 2024/25

Exercises 3: Propositional Logic Continued

Exercise 3.1: A partial Π-valuation A under which all clauses of a clause set N are
true is called a partial Π-model of N .

Do the following clause sets over Π = {P,Q,R} have partial Π-models that are not total
Π-models (that is, models in the sense of Sect. 2.3)? If yes, give such a partial Π-model.

(1) P

¬P ∨ Q

¬P ∨ ¬Q ∨ ¬R

(2) P

¬P ∨ Q

¬Q ∨ R

¬P ∨ ¬Q ∨ ¬R

(3) P ∨ R

¬P ∨ Q ∨ ¬R
¬Q ∨ ¬R

(4) ¬P ∨ Q

¬Q ∨ R

P ∨ ¬R

Proposed solution. (1) No. The only model of the clauses is the total model A with
A(P) = A(Q) = 1 and A(R) = 0.

(2) No. The clause set is unsatisfiable.

(3) Yes. The partial valuation A with A(P) = 1 and A(R) = 0 is a partial model.

1

(4) No. The only models are total valuations A such that A(P) = A(Q) = A(R).

Exercise 3.2: For any propositional formula F , let negvar (F) be the formula obtained
from F by replacing every propositional variable by its negation. Formally:

negvar(P) = ¬P

negvar(¬G) = ¬negvar (G)

negvar(G1 ∧G2) = negvar (G1) ∧ negvar(G2)

and so on. For example, negvar (P ∨ (¬Q → (¬P ∧⊤))) = ¬P ∨ (¬¬Q → (¬¬P ∧⊤)).

Prove or refute: If a formula F is satisfiable, then negvar(F) is satisfiable. (It is sufficient
if you consider the boolean connectives ¬ and ∧; the others are treated analogously.)

Proposed solution. Assume F is satisfiable. Let the valuation A be a model of F . We
define a valuation A′ by A′(P) = 1−A(P) for every propositional variable P .

Now we can show by induction over the structure of formulas thatA′(negvar (G)) = A(G)
for every formula G:

Case 1: G is a propositional variable. If G = P , then A′(¬P) = 1 − A′(P) = 1 − (1 −
A(P)) = A(P).

Case 2: G is a negation ¬G1. We must show A′(negvar (¬G1)) = A(¬G1). We have
A′(negvar (¬G1)) = A′(¬negvar(G1)) = 1 − A′(negvar (G1)). By induction, this equals
1−A(G1), i.e., A(¬G1), as desired.

Case 3: G is a conjunctive formula G1∧G2. We must show A′(negvar (G1∧G2)) = A(G1∧
G2). We haveA′(negvar (G1∧G2)) = A′(negvar (G1)∧negvar (G2)) = min{A′(negvar (G1)),
A′(negvar (G2))}. By induction, this equals min{A(G1),A(G2)}, i.e., A(G1 ∧G2), as de-
sired.

The remaining cases are handled analogously.

Since A(F) = 1, we conclude that A′(negvar (F)) = 1, so A′ is a model of F .

Exercise 3.3: Let N be the following set of propositional clauses over Π = {P,Q,R}:

P ∨ ¬Q (1)

Q ∨ ¬R (2)

¬P ∨ R (3)

2

(a) Use the DPLL procedure to compute a (total) model of N .

(b) Use the DPLL procedure to prove that N |= R → P . Before you can invoke the
procedure, you will first need to transform the entailment into a suitable set of clauses.

Proposed solution. (a) We start with the literal set M := ∅ and the clause set N :=
{(1), (2), (3)}. We arbitrarily pick the undefined variable P and set M := {P}. Then
clause (3) contains the unit literal R, so we set M := {P,R}. Next, clause (2) contains
the unit literal Q, so we set M := {P,R,Q}. At this point, all clauses in N are true in
M , so we stop with M = {P,R,Q} as the model.

(b) We use the fact that N |= R → P if and only ifN ′ = N∪{¬(R → P)} is unsatisfiable.
To use the DPLL prodedure, we transform N ′ into a set of clauses and obtain the new
clauses R (4) and ¬P (5). Since (4) contains the unit literal R, we set M := {R}. Since
(5) contains the unit literal ¬P , we set M := {R,¬P}. Since (1) contains the unit literal
¬Q, we set M := {R,¬P,¬Q} At this point, (2) is false in M , and there is nowhere to
backtrack to, so the clause set N ′ is unsatisfiable.

Exercise 3.4 (∗): A friend asks you to proofread her bachelor thesis. On page 14 of the
thesis, she writes the following:

Definition 11. Let N be a set of propositional formulas. The set poscomb(N) of
positive combinations of formulas in N is defined inductively by
(1) N ⊆ poscomb(N);
(2) if F,F ′ ∈ poscomb(N), then F ∨ F ′ ∈ poscomb(N); and
(3) if F,F ′ ∈ poscomb(N), then F ∧ F ′ ∈ poscomb(N).

Lemma 12. If N is a satisfiable set of formulas, then every positive combination
of formulas in N is satisfiable.

Proof. The proof proceeds by induction over the formula structure. Let G ∈
poscomb(N). If G ∈ N , then it is obviously satisfiable, since N is satisfiable.
Otherwise, G must be a disjunction or a conjunction of formulas in poscomb(N).
If G is a disjunction F ∨ F ′ with F,F ′ ∈ poscomb(N), we know by the induction
hypothesis that F is satisfiable. So F has a model. Since this is also a model of
G = F ∨F ′, the formula G is satisfiable. Analogously, if G is a conjunction F ∧F ′,
with F,F ′ ∈ poscomb(N), then both F and F ′ are satisfiable by induction, so
G = F ∧ F ′ is satisfiable as well.

(1) Is the “proof” correct?

(2) If the “proof” is not correct:

(a) Which step is incorrect?

3

(b) Does the “lemma” hold? If yes, give a correct proof; otherwise, give a coun-
terexample.

Proposed solution. The “proof” is not correct. The flaw is in the passage “both F and
F ′ are satisfiable by induction, so G = F ∧ F ′ is satisfiable as well.” A counterexample
is F := P and F ′ := ¬P . Both F and F ′ are satisfiable, but their conjunction is not.

Nevertheless, the lemma does hold. Proof: Since N is satisfiable, it has a model A. We
claim that A is also a model of any formula in poscomb(N).

Our proof proceeds by induction over the formula structure. Let G ∈ poscomb(N). If
G ∈ N , then A is obviously a model of G. Otherwise, G must be a disjunction or
a conjunction of formulas in poscomb(N). If G is a disjunction F ∨ F ′ with F,F ′ ∈
poscomb(N), we know by the induction hypothesis that A is a model of F . This is also
a model of G = F ∨ F ′. If G is a conjunction F ∧ F ′, with F,F ′ ∈ poscomb(N), then A
is a model of both F and F ′ by induction, so A is a model of G = F ∧ F ′ as well.

Exercise 3.5: The sudoku puzzle presented in the first lecture has a unique solution.

1 2 3 4 5 6 7 8 9

1 1

2 4

3 2

4 5 4 7

5 8 3

6 1 9

7 3 4 2

8 5 1

9 8 6

If we replace the 4 in column 1, row 2 by some other digit, this need no longer hold. Use
a SAT solver to find out for which values in column 1, row 2 the puzzle has no solution.

Hint: The Perl script at

https://rg1-teaching.mpi-inf.mpg.de/autrea-ws23/gensud

produces an encoding of the sudoku above in DIMACS CNF format, which is accepted
by most SAT solvers.

4

Proposed solution. The only value in column 1, row 2 for which the puzzle has no
solution is 3.

Exercise 3.6 (∗): Given a sudoku puzzle, briefly describe a set of propositional clauses
that is satisfiable if and only if the puzzle has more than one solution.

Proposed solution. The trick is to encode two copies of the sudoku problem, each
working on their own sets of propositional variables, and to add constraints specifying
that the two copies are not identical. These constraints will need to be converted to
CNF.

Exercise 3.7: A finite graph is a pair (V,E), where V is a finite nonempty set and
E ⊆ V × V . The elements of V are called vertices or nodes; the elements of E are called
edges. A graph has a 3-coloring if there exists a function φ : V → {0, 1, 2} such that for
every edge (v, v′) ∈ E we have φ(v) 6= φ(v′).

Give a linear-time translation from finite graphs (V,E) to propositional clause sets N

such that (V,E) has a 3-coloring if and only if N is satisfiable and such that every model
of N corresponds to a 3-coloring φ and vice versa.

Proposed solution. Let (V,E) be given, let C = {0, 1, 2} be the set of “colors.” Let
Π = {P c

v | v ∈ V, c ∈ C}, where P c
v is supposed to be true in a model if and only if

φ(v) = c. Then N is the following set of clauses over Π:

•

∨
c∈C P c

v for every v ∈ V (that is, v is mapped to some c ∈ C by φ).

• ¬P c
v ∨ ¬P c′

v for every v ∈ V and all c, c′ ∈ C with c < c′ (that is, v is not mapped to
both c and c′).

• ¬P c
v ∨¬P c

v′ for every edge (v, v′) ∈ E and every c ∈ C (that is, v and v′ are not both
mapped to c).

Exercise 3.8 (∗): A finite graph is a pair (V,E), where V is a finite nonempty set and
E ⊆ V × V . The elements of V are called vertices or nodes; the elements of E are called
edges. A graph has a 3-coloring if there exists a function φ : V → {0, 1, 2} such that for
every edge (v, v′) ∈ E we have φ(v) 6= φ(v′). A 3-coloring is called complete if for every
pair (c, c′) ∈ {0, 1, 2} × {0, 1, 2} with c 6= c′ there exists an edge (v, v′) ∈ E such that
φ(v) = c and φ(v′) = c′ or φ(v) = c′ and φ(v′) = c.

5

Give a linear-time translation from finite graphs (V,E) to propositional clause sets N

such that (V,E) has a complete 3-coloring if and only if N is satisfiable and such that
every model of N corresponds to a complete 3-coloring φ and vice versa.

Proposed solution. There are several possible translations. We can for instance extend

Π and N from the answer to Ex. 3.7 in the following way: Let Π′ = Π∪{Qc,c′

v,v′
| (v, v′) ∈

E, c, c′ ∈ C, c < c′}, where the propositional variable Q
c,c′

v,v′
is supposed to be true in a

model only if φ(v) = c and φ(v′) = c′ or φ(v) = c′ and φ(v′) = c. Then N ′ adds the
following clauses to N :

•

∨
(v,v′)∈E Q

c,c′

v,v′
for all c, c′ ∈ C with c < c′ (that is, at least one edge connects two

vertices with colors c and c′).

• ¬Qc,c′

v,v′
∨ P c

v ∨ P c
v′ for every edge (v, v′) ∈ E and all c, c′ ∈ C with c < c′ (that is, one

of v and v′ is mapped to c).

• ¬Qc,c′

v,v′
∨P c′

v ∨ P c′

v′ for every edge (v, v′) ∈ E and all c, c′ ∈ C with c < c′ (that is, one
of v and v′ is mapped to c′).

Exercise 3.9: Give OBDDs for the following three formulas:

(a) ¬P

(b) P ↔ Q

(c) (P ∧Q) ∨ (Q ∧R) ∨ (R ∧ P)

Consider the ordering P < Q < R.

Proposed solution.

(a) ¬P

P

1 0

(b) P ↔ Q

P

Q Q

1 0

6

(c) (P ∧Q) ∨ (Q ∧R) ∨ (R ∧ P)

P

Q Q

R R

0 1

Exercise 3.10: Let F be the propositional formula P ∧ (Q ∨R) ∧ S.

(a) Give the reduced OBDD for F w.r.t. the ordering P < Q < R < S.

(b) Find a total ordering over {P,Q,R, S} such that the reduced OBDD for F has 6
nonleaf nodes. Give the resulting reduced OBDD.

(c) For how many total orderings over {P,Q,R, S} does the reduced OBDD for F have
6 nonleaf nodes?

Proposed solution. (a) With the ordering P < Q < R < S, we obtain the following
OBDD for F :

P

Q

R

S

1 0

(b) If the two variables that form the inner disjunction, namely Q and R, are the largest
and the smallest element of the ordering, the OBDD needs two P -nodes and two S-nodes.
E.g., for Q < P < S < R, we obtain

7

Q

P P

S S

R

1 0

(c) By symmetry, we get a similar OBDD as in part (b) if we swap Q and R in the
ordering and/or if we swap P and S in the ordering. This yields four different orderings
with a 6-node OBDD.

Exercise 3.11: (a) Give a propositional formula F that is represented by this reduced
OBDD:

P

Q

R

1 0

(b) How many different reduced OBDDs over the propositional variables {P,Q,R} have
exactly one interior (nonleaf) node?

(c) Find a propositional formula G over the propositional variables {P,Q,R}, such that
the reduced OBDD for G has three interior nodes and the reduced OBDD for F ∨G has
one interior node. Give the reduced OBDDs for G and F ∨G.

Proposed solution.

(a) The propositional formula F is F = ¬P ∧ (¬Q ∨ ¬R).

(b) A reduced OBDD with exactly one interior node means there is only one decision
node for one of the variables, and it directly connects to the terminal nodes. Given

8

variables {P,Q,R}, for each variable being the decision node, there are two possible
edges from this node, leading to the terminal nodes in two distinct ways. Therefore, for
each variable, there are two ways to construct such an OBDD. Since there are 3 variables,
and each can be the single interior node, the total number of reduced OBDDs is 6.

(c) We need to find a formula G such that the reduced OBDD for G has three interior
nodes and the reduced OBDD for F ∨ G has one interior node. To achieve F ∨ G with
one interior node, G should complement the structure of F . One possible G could be
¬P ∨Q ∨R. The OBDD for G is

P

Q

R

0 1

Now we need to construct F ∨G:

P

1 0

Exercise 3.12 (∗): Let Fn be a propositional formula over {P1, . . . , Pn} such that
A(Fn) = 1 if and only if A maps exactly one of the propositional variables P1, . . . , Pn to
1 and the others to 0. How many nodes does a reduced OBDD for Fn have (including
the leaf nodes 0 and 1)?

Proposed solution. To give a recursive definition for Fn, we need an auxiliary formula
Gn over {P1, . . . , Pn} such that A(Gn) = 1 if and only if A maps all propositional
variables P1, . . . , Pn to 0. Then we have

F0 |=| ⊥

G0 |=| ⊤

Fn |=| if Pn then Gn−1 else Fn−1

Gn |=| if Pn then ⊥ else Gn−1

9

for n ≥ 1. (The if–then–else construct can be encoded using the usual boolean connectives
as shown in the lecture notes.)

The recursive definition can be translated directly into a reduced OBDD: The OBDD
has 2n+1 nodes: one node labeled with Pn (corresponding to the formula Fn), two nodes
labeled with Pi for every i ∈ {1, . . . , n − 1} (corresponding to Fi and Gi), and two leaf
nodes:

Pn

Pn−1 Pn−1

Pn−2 Pn−2

...
...

P2 P2

P1 P1

0 1

10

