Automated Theorem ProvingLecture 11: Completion

Prof. Dr. Jasmin Blanchette based on slides by Dr. Uwe Waldmann

Winter Term 2024/25

4.6 Knuth–Bendix Completion

Completion:

Goal: Given a set E of equations, transform E into an equivalent convergent set R of rewrite rules.

(If R is finite: decision procedure for E.)

Knuth-Bendix Completion: Idea

How to ensure termination?

Fix a reduction ordering \succ and construct R in such a way that $\rightarrow_R \subseteq \succ$ (i.e., $I \succ r$ for every $I \rightarrow r \in R$).

How to ensure confluence?

Check that all critical pairs are joinable.

Note: Every critical pair $\langle s, t \rangle$ can be *made* joinable by adding $s \to t$ or $t \to s$ to R.

(Actually, we first add $s \approx t$ to E and later try to turn it into a rule that is contained in \succ ; this gives us more freedom.)

The completion procedure is presented as a set of inference rules working on a set of equations E and a set of rules R:

$$E_0, R_0 \vdash E_1, R_1 \vdash E_2, R_2 \vdash \cdots$$

At the beginning, $E = E_0$ is the input set and $R = R_0$ is empty. At the end, E should be empty; then R is the result.

For each step $E, R \vdash E', R'$, the equational theories of $E \cup R$ and $E' \cup R'$ agree: $\approx_{E \cup R} = \approx_{E' \cup R'}$.

Notations:

The formula $s \stackrel{.}{\approx} t$ denotes either $s \approx t$ or $t \approx s$.

CP(R) denotes the set of all critical pairs between rules in R.

Orient:

$$\frac{E \cup \{s \stackrel{.}{\approx} t\}, R}{E, R \cup \{s \rightarrow t\}} \quad \text{if } s \succ t$$

Note: There are equations $s \approx t$ that cannot be oriented, i.e., neither $s \succ t$ nor $t \succ s$.

Trivial equations cannot be oriented—but we do not need them anyway:

Delete:

$$\frac{E \cup \{s \approx s\}, R}{E, R}$$

Critical pairs between rules in R are turned into additional equations:

Deduce:

$$\frac{E, R}{E \cup \{s \approx t\}, R}$$
 if $\langle s, t \rangle \in \mathsf{CP}(R)$.

Note: If $\langle s, t \rangle \in \mathsf{CP}(R)$, then $s \leftarrow_R u \rightarrow_R t$ and hence $R \models s \approx t$.

The following inference rules are not strictly necessary, but are very useful (e.g., to eliminate joinable critical pairs and to cope with equations that cannot be oriented):

Simplify-Eq:

$$\frac{E \cup \{s \stackrel{.}{\approx} t\}, R}{E \cup \{u \approx t\}, R} \quad \text{if } s \rightarrow_R u.$$

Simplification of the right-hand side of a rule is unproblematic:

R-Simplify-Rule:

$$\frac{E, R \cup \{s \to t\}}{E, R \cup \{s \to u\}} \quad \text{if } t \to_R u.$$

Simplification of the left-hand side may influence orientability and orientation. Therefore, it yields an *equation*:

L-Simplify-Rule:

$$\frac{E, R \cup \{s \to t\}}{E \cup \{u \approx t\}, R} \qquad \text{if } s \to_R u \text{ using a rule } I \to r \in R$$
 such that $s \sqsupset I$ (see next slide).

For technical reasons, the lhs of $s \to t$ may only be simplified using a rule $l \to r$ if $l \to r$ cannot be simplified using $s \to t$, that is, if $s \supset l$, where the encompassment quasi-ordering \supset is defined by

$$s \supseteq I$$
 if $s|_p = I\sigma$ for some p and σ

and $\Box = \overline{\Box} \setminus \overline{\Box}$ is the strict part of $\overline{\Box}$.

Lemma 4.6.1:

 \square is a well-founded strict partial ordering.

Lemma 4.6.2:

If
$$E, R \vdash E', R'$$
, then $\approx_{E \cup R} = \approx_{E' \cup R'}$.

Lemma 4.6.3:

If
$$E, R \vdash E', R'$$
 and $\rightarrow_R \subseteq \succ$, then $\rightarrow_{R'} \subseteq \succ$.

Note: Like in ordered resolution, simplification should be preferred to deduction:

- Simplify/delete whenever possible.
- Otherwise, orient an equation if possible.
- Last resort: compute critical pairs.

Knuth-Bendix Completion: Example

We apply the Knuth-Bendix procedure to the set of equations

$$add(zero, zero) \approx zero$$
 (1) $add(x, succ(y)) \approx succ(add(x, y))$ (2) $add(succ(x), y) \approx succ(add(x, y))$ (3)

using the lpo with the precedence add > succ > zero.

We first apply "Orient" to (1)–(3), resulting in the rewrite rules

$$add(zero, zero) \rightarrow zero$$
 (4) $add(x, succ(y)) \rightarrow succ(add(x, y))$ (5)

$$add(succ(x), y) \rightarrow succ(add(x, y))$$
 (6)

Knuth-Bendix Completion: Example

$$add(zero, zero) \rightarrow zero$$
 (4) $add(x, succ(y)) \rightarrow succ(add(x, y))$ (5) $add(succ(x), y) \rightarrow succ(add(x, y))$ (6)

Then we apply "Deduce" between (5) and a renamed copy of (6):

$$succ(add(succ(x), y)) \approx succ(add(x, succ(y)))$$
 (7)

We can now apply "Simplify-Eq" to both sides of (7) using (6) and (5):

$$succ(succ(add(x, y))) \approx succ(succ(add(x, y)))$$
 (8)

This last equation is trivial and can be deleted using "Delete."

All critical pairs have been checked.

The resulting term rewrite system is $\{(4), (5), (6)\}$.

What can happen if we run the completion procedure on a set E of equations?

- (1) We reach a state where no more inference rules are applicable and E is not empty.
 - ⇒ Failure (try again with another ordering?)
- (2) We reach a state where E is empty and all critical pairs between the rules in the current R have been checked.
- (3) The procedure runs forever.

To treat these cases simultaneously, we need some definitions.

A (finite or infinite sequence) E_0 , $R_0 \vdash E_1$, $R_1 \vdash E_2$, $R_2 \vdash \cdots$ with $R_0 = \emptyset$ is called a run of the completion procedure with input E_0 and \succ .

For a run,
$$E_{\cup} = \bigcup_{i>0} E_i$$
 and $R_{\cup} = \bigcup_{i>0} R_i$.

The sets of persistent equations or rules of the run are $E_{\infty} = \bigcup_{i \geq 0} \bigcap_{j \geq i} E_j$ and $R_{\infty} = \bigcup_{i \geq 0} \bigcap_{j \geq i} R_j$.

Note: If the run is finite and ends with E_n , R_n , then $E_{\infty} = E_n$ and $R_{\infty} = R_n$.

A run is called fair if $CP(R_{\infty}) \subseteq E_{\cup}$ (i.e., if every critical pair between persisting rules is computed at some step of the derivation).

Goal:

Show: If a run is fair and E_{∞} is empty, then R_{∞} is convergent and equivalent to E_0 .

In particular: If a run is fair and E_{∞} is empty, then $\approx_{E_0} = \approx_{E_{\cup} \cup R_{\cup}} = \leftrightarrow_{E_{\cup} \cup R_{\cup}}^* = \downarrow_{R_{\infty}}$.

General assumptions from now on:

$$E_0$$
, $R_0 \vdash E_1$, $R_1 \vdash E_2$, $R_2 \vdash \cdots$ is a fair run.

 R_0 and E_{∞} are empty.

A proof of $s \approx t$ in $E_{\cup} \cup R_{\cup}$ is a finite sequence (s_0, \ldots, s_n) such that $s = s_0, t = s_n$, and for all $i \in \{1, \ldots, n\}$:

- (1) $s_{i-1} \leftrightarrow_{E_{i-1}} s_i$, or
- (2) $s_{i-1} \rightarrow_{R_{i-1}} s_i$, or
- (3) $s_{i-1} \leftarrow_{R_{\cup}} s_i$.

The pairs (s_{i-1}, s_i) are called proof steps.

A proof is called a rewrite proof in R_{∞} if there is a $k \in \{0, \ldots, n\}$ such that $s_{i-1} \to_{R_{\infty}} s_i$ for $1 \le i \le k$ and $s_{i-1} \leftarrow_{R_{\infty}} s_i$ for $k+1 \le i \le n$

Idea (Bachmair, Dershowitz, Hsiang):

Define a well-founded ordering on proofs such that for every proof that is not a rewrite proof in R_{∞} there is an equivalent smaller proof.

Consequence: For every proof there is an equivalent rewrite proof in R_{∞} .

We associate a cost $c(s_{i-1}, s_i)$ with every proof step as follows:

- (1) If $s_{i-1} \leftrightarrow_{E_{\cup}} s_i$, then $c(s_{i-1}, s_i) = (\{s_{i-1}, s_i\}, -, -)$, where the first component is a multiset of terms and denotes an arbitrary (irrelevant) term.
- (2) If $s_{i-1} \to_{R_{\cup}} s_i$ using $I \to r$, then $c(s_{i-1}, s_i) = (\{s_{i-1}\}, I, s_i)$.
- (3) If $s_{i-1} \leftarrow_{R_{\cup}} s_i$ using $l \to r$, then $c(s_{i-1}, s_i) = (\{s_i\}, l, s_{i-1})$.

Proof steps are compared using the lexicographic combination of the multiset extension of the reduction ordering \succ , the encompassment ordering \sqsupset , and the reduction ordering \succ .

The cost c(P) of a proof P is the multiset of the costs of its proof steps.

The proof ordering \succ_c compares the costs of proofs using the multiset extension of the proof step ordering.

Lemma 4.6.4:

 \succ_{c} is a well-founded ordering.

Lemma 4.6.5:

Let P be a proof in $E_{\cup} \cup R_{\cup}$. If P is not a rewrite proof in R_{∞} , then there exists an equivalent proof P' in $E_{\cup} \cup R_{\cup}$ such that $P \succ_{c} P'$.

Proof:

If P is not a rewrite proof in R_{∞} , then it contains

- (a) a proof step that is in E_{\cup} , or
- (b) a proof step that is in $R_{\cup} \setminus R_{\infty}$, or
- (c) a subproof $s_{i-1} \leftarrow_{R_{\infty}} s_i \rightarrow_{R_{\infty}} s_{i+1}$ (peak).

We show that in all three cases the proof step or subproof can be replaced by a smaller subproof:

Case (a): A proof step using an equation $s \approx t$ is in E_{\cup} . This equation must be deleted during the run.

If $s \stackrel{.}{\approx} t$ is deleted using *Orient*:

$$\ldots s_{i-1} \leftrightarrow_{E_{\cup}} s_i \ldots \implies \ldots s_{i-1} \rightarrow_{R_{\cup}} s_i \ldots$$

If $s \stackrel{.}{\approx} t$ is deleted using *Delete*:

$$\ldots s_{i-1} \leftrightarrow_{E_{\cup}} s_{i-1} \ldots \Longrightarrow \ldots s_{i-1} \ldots$$

If $s \stackrel{.}{\approx} t$ is deleted using *Simplify-Eq*:

$$\ldots s_{i-1} \leftrightarrow_{E_{\cup}} s_i \ldots \implies \ldots s_{i-1} \rightarrow_{R_{\cup}} s' \leftrightarrow_{E_{\cup}} s_i \ldots$$

Case (b): A proof step using a rule $s \to t$ is in $R_{\cup} \setminus R_{\infty}$. This rule must be deleted during the run.

If $s \rightarrow t$ is deleted using *R-Simplify-Rule*:

$$\ldots s_{i-1} \rightarrow_{R_{\cup}} s_i \ldots \implies \ldots s_{i-1} \rightarrow_{R_{\cup}} s' \leftarrow_{R_{\cup}} s_i \ldots$$

If $s \rightarrow t$ is deleted using *L-Simplify-Rule*:

$$\ldots s_{i-1} \rightarrow_{R_{\cup}} s_i \ldots \implies \ldots s_{i-1} \rightarrow_{R_{\cup}} s' \leftrightarrow_{E_{\cup}} s_i \ldots$$

Case (c): A subproof has the form $s_{i-1} \leftarrow_{R_{\infty}} s_i \rightarrow_{R_{\infty}} s_{i+1}$.

If there is no overlap or a noncritical overlap:

$$\ldots s_{i-1} \leftarrow_{R_{\infty}} s_i \rightarrow_{R_{\infty}} s_{i+1} \ldots \Longrightarrow \ldots s_{i-1} \rightarrow_{R_{\infty}}^* s' \leftarrow_{R_{\infty}}^* s_{i+1} \ldots$$

If there is a critical pair that has been added using "Deduce":

$$\ldots s_{i-1} \leftarrow_{R_{\infty}} s_i \rightarrow_{R_{\infty}} s_{i+1} \ldots \Longrightarrow \ldots s_{i-1} \leftrightarrow_{E_{\cup}} s_{i+1} \ldots$$

In all cases, checking that the replacement subproof is smaller than the replaced subproof is routine.

Theorem 4.6.6:

Let E_0 , $R_0 \vdash E_1$, $R_1 \vdash E_2$, $R_2 \vdash \cdots$ be a fair run and let R_0 and E_{∞} be empty. Then

- (1) every proof in $E_{\cup} \cup R_{\cup}$ is equivalent to a rewrite proof in R_{∞} ,
- (2) R_{∞} is equivalent to E_0 , and
- (3) R_{∞} is convergent.

Proof:

- (1) By well-founded induction on \succ_c using the previous lemma.
- (2) Clearly $\approx_{E_{\cup} \cup R_{\cup}} = \approx_{E_0}$.

Since $R_{\infty} \subseteq R_{\cup}$, we get $\approx_{R_{\infty}} \subseteq \approx_{E_{\cup} \cup R_{\cup}}$.

On the other hand, by (1), $\approx_{E_{\cup} \cup R_{\cup}} \subseteq \approx_{R_{\infty}}$.

(3) Since $\rightarrow_{R_{\infty}} \subseteq \succ$, R_{∞} is terminating.

By (1), R_{∞} is confluent.

Classical completion:

Try to transform a set E of equations into an equivalent convergent TRS.

Fail if an equation can be neither oriented nor deleted.

Unfailing completion (Bachmair, Dershowitz, and Plaisted):

If an equation cannot be oriented, we can still use *orientable instances* for rewriting.

Note: If \succ is total on ground terms, then every *ground instance* of an equation is trivial or can be oriented.

Goal: Derive a ground convergent set of equations.

Let E be a set of equations, let \succ be a reduction ordering.

We define the relation $\rightarrow_{E^{\succ}}$ by

$$s \to_{E^{\succ}} t$$
 if there exist $(u \approx v) \in E$ or $(v \approx u) \in E$, $p \in pos(s)$, and $\sigma : X \to T_{\Sigma}(X)$, such that $s|_{p} = u\sigma$ and $t = s[v\sigma]_{p}$ and $u\sigma \succ v\sigma$.

Note: $\rightarrow_{E^{\succ}}$ is terminating by construction.

From now on let \succ be a reduction ordering that is total on ground terms.

E is called ground convergent w.r.t. \succ if for all ground terms s and t with $s \leftrightarrow_E^* t$ there exists a ground term v such that $s \to_{E^{\succ}}^* v \leftarrow_{E^{\succ}}^* t$. (Analogously for $E \cup R$.)

As for standard completion, we establish ground convergence by computing critical pairs.

However, the ordering \succ is not total on nonground terms.

Since $s\theta \succ t\theta$ implies $s \not \leq t$, we approximate \succ on ground terms by $\not \leq$ on arbitrary terms.

Let $u_i \approx v_i$ (i = 1, 2) be equations in E whose variables have been renamed such that $var(u_1 \approx v_1) \cap var(u_2 \approx v_2) = \emptyset$.

Let $p \in pos(u_1)$ be a position such that $u_1|_p$ is not a variable, σ is an mgu of $u_1|_p$ and u_2 , and $u_i\sigma \not\preceq v_i\sigma$ (i=1,2).

Then $\langle v_1 \sigma, (u_1 \sigma)[v_2 \sigma]_p \rangle$ is called a semicritical pair of E with respect to \succ .

The set of all semicritical pairs of E is denoted by $SP_{\succ}(E)$.

Semicritical pairs of $E \cup R$ are defined analogously.

Note: In contrast to critical pairs, it may be necessary to consider overlaps of an equation with itself at the top.

For instance, if $E = \{f(x) \approx g(y)\}$, then $\langle g(y), g(y') \rangle$ is a semicritical pair.

The "Deduce" rule now takes the following form:

Deduce:

$$\frac{E, R}{E \cup \{s \approx t\}, R}$$
 if $\langle s, t \rangle \in \mathsf{SP}_{\succ}(E \cup R)$.

Moreover, the fairness criterion for runs is replaced by

$$\mathsf{SP}_{\succ}(E_{\infty} \cup R_{\infty}) \subseteq E_{\cup}$$

(i.e., if every semicritical pair between persisting rules or equations is computed at some step of the derivation).

Unfailing completion is refutationally complete for equational theories:

Theorem 4.7.1:

Let E be a set of equations, let \succ be a reduction ordering that is total on ground terms.

For any two terms s and t, let \hat{s} and \hat{t} be the terms obtained from s and t by replacing all variables by Skolem constants.

Let eq/2, true/0 and false/0 be new operator symbols such that true and false are smaller than all other terms.

Let $E_0 = E \cup \{eq(\hat{s}, \hat{t}) \approx true, eq(x, x) \approx false\}$.

If E_0 , $\emptyset \vdash E_1$, $R_1 \vdash E_2$, $R_2 \vdash \cdots$ is a fair run of unfailing completion, then $s \approx_E t$ if and only if some $E_i \cup R_i$ contains $true \approx false$.

Outlook:

Combine ordered resolution and unfailing completion to get a calculus for equational clauses:

compute inferences between (strictly) maximal literals as in ordered resolution, compute overlaps between maximal sides of equations as in unfailing completion

⇒ Superposition calculus.