Automated Theorem Proving

Prof. Dr. Jasmin Blanchette, Lydia Kondylidou, Yiming Xu, PhD, and Tanguy Bozec based on exercises by Dr. Uwe Waldmann

Winter Term 2024/25

Exercises 4: First-Order Logic

Exercise 4.1: Let $\Sigma = (\{b/0, c/0, d/0, f/1\}, \{P/1\})$. Does the formula

 $P(b) \land P(c) \land \neg P(d) \land \neg (\exists x P(f(f(x))))$

have a Σ -model whose universe has exactly two elements? Give an example of such a model or show that such a model does not exist.

Exercise 4.2: Let the signature $\Sigma = (\Omega, \Pi)$ be given by $\Omega = \{+/2, s/1, 0/0\}$ and $\Pi = \emptyset$, and let $E_r = \forall x (x + 0 \sim x)$

$$F_{1} = \forall x (x + 0 \approx x)$$

$$F_{2} = \forall x \forall y (x + s(y) \approx s(x + y))$$

$$F_{3} = \forall x \forall y (x + y \approx y + x)$$

$$F_{4} = \neg \forall x \forall y (x + y \approx y + x).$$

- (a) Determine a Σ -algebra \mathcal{A} with an universe of exactly two elements such that \mathcal{A} is a model of F_1 , F_2 , F_3 .
- (b) Determine a Σ -algebra \mathcal{A} with an universe of exactly two elements such that \mathcal{A} is a model of F_1 , F_2 , F_4 .

Exercise 4.3: Let $\Sigma = (\Omega, \emptyset)$ with $\Omega = \{f/1, c/0\}$. Give a Σ -model \mathcal{A} of

$$\neg f(c) \approx c \quad \land \quad \forall x \left(f(f(x)) \approx x \right)$$

with $U_{\mathcal{A}} = \{1, 2, 3\}.$

Exercise 4.4: Let $\Sigma = (\Omega, \Pi)$ with $\Omega = \{f/2, g/2\}$ and $\Pi = \{P/2, Q/1\}$. Let $F = \forall x \left(P(x, y) \lor \exists y P(x, f(y, z))\right)$

and $\sigma = \{y \mapsto g(x, z), z \mapsto g(x, y)\}$. Compute $F\sigma$.

Exercise 4.5: Let F be a formula. Prove that $\exists x F$ is satisfiable if and only if $F\{x \mapsto b\}$ is satisfiable, where b is a constant that does not occur in F.

Exercise 4.6: Let $\Sigma = (\Omega, \Pi)$ be a signature. For every Σ -formula F without equality, let neg(F) be the formula that one obtains from F by replacing every atom $P(t_1, \ldots, t_n)$ in F by its negation $\neg P(t_1, \ldots, t_n)$ for every $P/n \in \Pi$. Prove: If F is valid, then neg(F) is valid.

Hint: Somewhere in the proof you need an induction over the structure of formulas. It is sufficient if you check the base cases and \land , \neg , and \exists . The other boolean connectives and quantifiers $(\lor, \rightarrow, \leftrightarrow, \forall)$ can be handled analogously; you may omit them.

Exercise 4.7 (*): Let Π be a set of propositional variables. Let N and N' be sets of clauses over Π . Let S be a set of literals that does not contain any complementary literals. Prove: If every clause in N contains at least one literal L with $L \in S$ and if no clause in N' contains a literal L with $\overline{L} \in S$, then $N \cup N'$ is satisfiable if and only if N' is satisfiable.

Exercise 4.8: Let $\Sigma = (\Omega, \Pi)$ be a signature where Π contains two predicate symbols Q and R with the same arity n and possibly further predicate symbols. For any Σ -formula F let rep(F) be the formula that one obtains by replacing every atom $Q(s_1, \ldots, s_n)$ in F by the corresponding atom $R(s_1, \ldots, s_n)$.

(a) Prove: If F is valid, then rep(F) is valid. It is sufficient if you consider nonequational atoms, disjunctions $G \vee G'$, and negations $\neg G$; the other cases are handled analogously.

(b) Refute: If F is satisfiable, then rep(F) is satisfiable.

Exercise 4.9 (*): Let $\Sigma = (\Omega, \Pi)$ be a signature. Let P/1 and Q/0 be predicate symbols in Π . Let N be a set of (universally quantified) clauses over Σ . Let N_0 be the set of all clauses in N that contain a literal $\neg P(t)$ for some $t \in T_{\Sigma}(X)$. Let N_1 be the set of all clauses in N that contain a literal P(t') for some $t' \in T_{\Sigma}(X)$. Prove: If all clauses in $N_0 \setminus N_1$ contain also the literal $\neg Q$ and if all clauses in $N_1 \setminus N_0$ contain also the literal Q, then N and $(N \setminus N_0) \setminus N_1$ are equisatisfiable. **Exercise 4.10** (*): Let \succ be a well-founded strict partial ordering on a set M. A function $\phi: M^n \to M$ with $n \ge 1$ is called strictly monotonic in the *j*th argument if $a_j \succ a'_j$ implies $\phi(a_1, \ldots, a_j, \ldots, a_n) \succ \phi(a_1, \ldots, a'_j, \ldots, a_n)$ for all arguments $a_1, \ldots, a_n, a'_j \in M$.

(a) Prove: If the ordering \succ on the set M is well-founded and total, and if $\phi: M^n \to M$ with $n \geq 1$ is strictly monotonic in the *j*th argument, then $\phi(a_1, \ldots, a_j, \ldots, a_n) \succeq a_j$ for all $a_1, \ldots, a_n \in M$.

(b) In part (a), it was required that \succ is a *total* ordering. Give an example that shows that the property of part (a) does not hold if the ordering \succ is well-founded but not total.

(c) Use part (a) to prove the following property: Let $\Sigma = (\Omega, \Pi)$ be a signature, let \mathcal{A} be a Σ -algebra. Let \succ be a well-founded total ordering on the universe $U_{\mathcal{A}}$ of \mathcal{A} , such that $f_{\mathcal{A}} : U_{\mathcal{A}}^n \to U_{\mathcal{A}}$ is strictly monotonic in every argument for every $f/n \in \Omega$ with $n \geq 1$. Let β be an arbitrary \mathcal{A} -assignment, let $t \in T_{\Sigma}(X)$. Then $\mathcal{A}(\beta)(t) \succeq \beta(x)$ for every variable $x \in \operatorname{var}(t)$.