
Institute for Informatics of the Ludwig-Maximilians-Universität München Summer semester 2025
Prof. Dr. Jasmin Blanchette 29.07.2025
Xavier Généreux
Yiming Xu

Solution to the Regular Examination in the Course

Interactive Theorem Proving

You have 120 minutes at your disposal. Written or electronic aids are not permitted except for
normal watches. Carrying forbidden devices, even turned off, will be considered a cheating attempt.

Write your full name and matriculation number legibly on this cover sheet, as well as your name in the
header on each sheet. Hand in all sheets. Leave them stapled together. Use only pens and neither
the color red nor green.

Check that you have received all the sheets. Guidelines for writing pen-and-paper proofs are given on
page 2. Questions can be found on pages 3–16. There are 6 questions for a total of 100 points. You
may use the back of the sheets for secondary calculations. If you use the back of a sheet to answer,
clearly mark what belongs to which question and indicate in the corresponding question where all
parts of your answer can be found. Cross out everything that should not be graded.

With your signature, you confirm that you are sufficiently healthy at the beginning of the examination
and that you accept the examination bindingly.

Last name (in CAPITAL LETTERS):

First name (in CAPITAL LETTERS):

Matriculation number:

Program of study:

Hierby I confirm the correctness of the above information:

Signature

Please leave the following table blank:

Question 1 2 3 4 5 6
∑

Points 23 25 17 8 17 10 100

Score



Name: 2

Guidelines for Paper Proofs

We expect detailed, rigorous, mathematical proofs, but we do not ask you to write Lean proofs. You
are welcome to use standard mathematical notation or Lean structured commands (e.g., assume,
have, show, calc). You can also use tactical proofs (e.g., intro, apply), but then please indicate
some of the intermediate goals, so that we can follow the chain of reasoning.

Major proof steps, including applications of induction and invocation of the induction hypothesis,
must be stated explicitly. For each case of a proof by induction, you must list the induction
hypotheses assumed (if any) and the goal to be proved. Minor proof steps corresponding to refl,
simp, or linarith need not be justified if you think they are obvious, but you should mention
which key theorems they depend on. You should be explicit whenever you use a function definition
or an introduction rule for an inductive predicate.



Name: 3

Solution to Question 1 (Types and Terms): (23 points)

a) Recall the following simplified typing rules for Lean’s dependent type theory:

Cst if c is globally declared with type σ
C ⊢ c : σ

Var if x : σ is the rightmost occurrence of x in C
C ⊢ x : σ

C ⊢ t : (x : σ)→ τ[x] C ⊢ u : σ
App′

C ⊢ t u : τ[u]

C, x : σ ⊢ t : τ[x]
Fun′

C ⊢ (fun x : σ 7→ t) : (x : σ)→ τ[x]

Let Fin : N → Type. Let a : N, b : N, f : N → (N → N)→ N, and g : (x : N)→ N → Fin x
be globally declared constants. What is the type of the following two Lean terms? Give in each
case a typing derivation as justification for the type.

(i) g a b (7 points)

PROPOSED SOLUTION: The type is Fin a. The typing derivation is

Cst
⊢ g : (x : N)→ N → Fin x

Cst
⊢ a : N

App′
⊢ g a : N → Fin a

Cst
⊢ b : N

App′
⊢ g a b : Fin a

• 2 points for type

• 6 points for derivation tree

(ii) f a (fun x 7→ x) (7 points)

PROPOSED SOLUTION: The type is N. The typing derivation is

Cst
⊢ f : N → (N → N)→ N

Cst
⊢ a : N

App′
⊢ f a : (N → N)→ N

Var
x : N ⊢ x : N

Fun′
⊢ fun x 7→ x : N → N

App′
⊢ f a (fun x 7→ x) : N

• 2 points for type

• 5 points for derivation tree



Name: 4

b) Let α, β, and γ be Lean types. Give an inhabitant for each of the following types:

(i) α → α → α (3 points)

PROPOSED SOLUTION: fun a _ 7→ a

• 1 point for fun a _

• 2 points for a

(ii) (α → β)→ (β → γ)→ α → γ (3 points)

PROPOSED SOLUTION: fun f g a 7→ g (f a)

• 1 point for fun f g a

• 2 points for g (f a)

(iii) ((β → β)→ α → γ)→ β → α → γ (3 points)

PROPOSED SOLUTION: fun f b 7→ f (fun _ 7→ b)
(or fun f b a 7→ f (fun _ 7→ b) a)

• 1 point for fun f b (or fun f b a)

• 2 points for f (fun _ 7→ b) (or f (fun _ 7→ b) a)



Name: 5

Solution to Question 2 (Functional Programming): (25 points)

a) Consider the following Lean function definition:

def filter {α : Type} (p : α → Bool) : List α → List α
| [] => []

| a :: as =>

match p a with

| true => a :: filter p as

| false => filter p as

(i) Prove the following Lean theorem. Make sure to follow the proof guidelines given on page 2.
(8 points)

theorem filter_true {α : Type} (xs : List α) :
filter (fun _ 7→ true) xs = xs

PROPOSED SOLUTION: The proof is by structural induction on xs.

The base case is

filter (fun _ 7→ true) [] = []

Both sides simplify to [] and are hence equal.

The induction step is

filter (fun _ 7→ true) (x :: xs’) = x :: xs’

The induction hypothesis is

filter (fun _ 7→ true) xs’ = xs’

The induction step simplifies to

x :: filter (fun _ 7→ true) xs’ = x :: xs’

By the induction hypothesis, the two sides are equal.

• 1 point for “by (structural) induction”

• 1 point for “on xs”

• 1 point for statement of base case

• 1 point for proof of base case

• 1 point for statement of induction step

• 1 point for statement of induction hypothesis

• 2 points for proof of induction step (simp and IH)



Name: 6

(ii) Prove the following Lean theorem. Make sure to follow the proof guidelines given on page 2.
(9 points)

theorem filter_append {α : Type} (p : α → Bool) (xs ys : List α) :
filter p (xs ++ ys) = filter p xs ++ filter p ys

PROPOSED SOLUTION: The proof is by structural induction on xs.

The base case is

filter p ([] ++ ys) = filter p [] ++ filter p ys

Both sides simplify to filter p ys and are hence equal.

The induction step is

filter p ((x :: xs’) ++ ys) = filter p (x :: xs’) ++ filter p ys

which can be rewritten to filter p (x :: (xs’ ++ ys)) = filter p (x :: xs’) ++ filter
p ys The induction hypothesis is

filter p (xs’ ++ ys) = filter p xs’ ++ filter p ys

If p x is true, then the rewritten induction step simplifies to x :: filter p (xs’ ++ ys) = x
:: (filter p xs’ ++ filter p ys) By the induction hypothesis, the two sides are equal. If
p x is false, then the rewritten induction step simplifies to filter p (xs’ ++ ys) = filter
p xs’ ++ filter p ys By the induction hypothesis, the two sides are equal.

• 1 point for “by (structural) induction”

• 1 point for “on xs”

• 1 point for statement of base case

• 1 point for proof of base case

• 1 point for statement of induction step

• 1 point for statement of induction hypothesis

• 3 points for proof of induction step (cases, IH, IH)



Name: 7

b) Define a polymorphic Lean function join that concatenates a list of lists. For example, join
[[10], [27, 4]] should evaluate to [10, 27, 4]. (8 points)

PROPOSED SOLUTION:

def join {α : Type} : List (List α) → List α
| [] => []

| xs :: xss => xs ++ join xss

• 1 point for “def join {α : Type}”

• 1 point for type

• 1 point for LHS of first equation

• 1 point for RHS of first equation

• 1 point for LHS of second equation

• 3 points for RHS of second equation



Name: 8

Solution to Question 3 (Inductive Predicates): (17 points)

a) Consider the following Lean inductive predicate, which determines whether a list consists of
elements that repeat themselves in groups of two:

inductive IsStuttering {α : Type} : List α → Prop where

| nil :

IsStuttering []

| cons_cons (x : α) {xs : List α} :
IsStuttering xs → IsStuttering (x :: x :: xs)

For example, IsStuttering [3, 3, 1, 1] should hold, whereas IsStuttering [1, 4, 1] should
not hold.

Prove the following Lean theorem about IsStuttering. Make sure to follow the proof guidelines
given on page 2. (9 points)

theorem IsStuttering_map {α β : Type} (f : α → β) {xs : List α}
(hxs : IsStuttering xs) :

IsStuttering (List.map f xs)

PROPOSED SOLUTION: The proof is by rule induction on hxs.

In the nil case, the goal is

IsStuttering (List.map f [])

This simplifies to IsStuttering [], which is provable using IsStuttering.nil.

In the cons_cons case, the goal is

IsStuttering xs’→ IsStuttering (List.map f (x :: x :: xs’))

The induction hypothesis is

IsStuttering (List.map f xs’)

The goal simplifies to

IsStuttering xs’→ IsStuttering (f x :: f x :: List.map f xs’))

We prove it using IsStuttering.cons_cons with the induction hypothesis.

• 1 point for “by (rule) induction”

• 1 point for “on hxs”

• 1 point for statement of nil case

• 1 point for proof of nil case

• 1 point for statement of cons_cons case

• 1 point for statement of induction hypothesis

• 3 points for proof of cons_cons case (simp, cons_cons, and IH)



Name: 9

b) Define an inductive predicate IsReverse in Lean that takes two values xs, ys of the polymorphic
type List α as arguments and that holds if and only if xs is the reverse of ys. Your answer
should not use List.reverse or define a helper function. (8 points)

PROPOSED SOLUTION:

inductive IsReverse {α : Type} : List α → List α → Prop where

| nil :

IsReverse [] []

| cons (x : α) {xs ys : List α} :
IsReverse xs ys → IsReverse (x :: xs) (ys ++ [x])

• 1 point for “inductive IsReverse {α : Type}”

• 1 point for type

• 1 point for LHS of first introduction rule

• 1 point for RHS of first introduction rule

• 1 point for LHS of second introduction rule

• 3 points for RHS of second introduction rule



Name: 10

Solution to Question 4 (Effectful Programming): (8 points)

The random monad is a monad that threads through a random seed in addition to encapsulating a
value of type α. It is reminiscent of the state monad, if we take the random seed as the state. In
Lean, the random monad can be defined as follows:

def Random (α : Type) : Type :=
N → α × N

def Random.pure {α : Type} (a : α) : Random α
| n => (a, n)

def Random.bind {α β : Type} (ma : Random α)
(f : α → Random β) :

Random β
| n =>

match ma n with

| (a, n’) => f a n’

instance Random.Pure : Pure Random :=

{ pure := Random.pure }

instance Random.Bind : Bind Random :=

{ bind := Random.bind }

def Random.nextRandom : Random N
| n =>

let n’ := (32212254719 * n + 2833419889721787128217599) % (2 ˆ 32 - 1)

(n’, n’)

a) In addition to pure, bind, and nextRandom, the random monad should allow its user to set the
random seed. Implement the following Lean function accordingly: (2 points)

def Random.setSeed (n : N): Random Unit

PROPOSED SOLUTION:

def Random.setSeed (n : N): Random Unit
| _ => ((), n)

• 1 point for | _ =>

• 1 point for ((), n)



Name: 11

b) Prove the following law about random monads. Make sure to follow the proof guidelines given
on page 2. In addition, show all the steps when unfolding the definition of monad operators.

(6 points)

theorem Random.pure_bind_ext {α β : Type} (a : α) (n : N)
(f : α → Random β) :

(pure a >>= f) n = f a n

PROPOSED SOLUTION: The following sequence of equalities proves the theorem:

calc (pure a >>= f) n

= match Random.pure a n with

| (a’, n’) => f a’ n’ :=

by rfl

_ = match (a, n) with

| (a’, n’) => f a’ n’ :=

by rfl

_ = f a n :=

by rfl

• 2 points for unfolding of pure

• 2 points for unfolding of bind

• 2 points for simplification of match



Name: 12

Solution to Question 5 (Operational Semantics): (17 points)

The FOR programming language is similar to the familiar WHILE language, with two differences. The
first difference is that the while–do statement is replaced by a for–do statement, with the concrete
syntax

for x := lower .. upper do body

The loop body is executed for x = lower , x = lower + 1, . . . , x = upper . In a well-formed program,
the loop body may refer to the iteration variable x but is not allowed to modify it.

The second difference with WHILE is that the if–then–else statement is replaced by if–then, with
no else branch.

For example, the FOR program

for i := 5 .. 10 do

if i < 8 then

j := j + 1

is equivalent to the WHILE program

i := 5

while i ≤ 10 do
if i < 8 then

j := j + 1

i := i + 1

In Lean, the FOR syntax is modeled abstractly by the following datatype:

inductive Stmt : Type where

| skip : Stmt

| assign : String → (State → N) → Stmt

| seq : Stmt → Stmt → Stmt

| ifThen : (State → Prop) → Stmt → Stmt

| forDo : String → N → N → Stmt → Stmt

infixr:90 "; " => Stmt.seq



Name: 13

a) Complete the following specification of a small-step semantics for FOR in Lean by giving the
missing derivation rules for assignment (:=) and for–do. For the semantics of the latter, you
may assume that the index variable is not modified inside the loop body; in other words, you
may give an arbitrary semantics to ill-formed programs. (10 points)

(S, s)⇒ (S’, s’)
Seq-Step

(S; T, s)⇒ (S’; T, s’)
Seq-Skip

(skip; T, s)⇒ (T, s)

If-True if s(B) is true
(ifThen B S, s)⇒ (S, s)

If-False if s(B) is false
(ifThen B S, s)⇒ (skip, s)

PROPOSED SOLUTION:

Assign
(x := a, s)⇒ (skip, s[x 7→ s(a)])

For
(for x := low .. high do S, s)⇒

(if low ≤ high then (x := low; S; for x := low + 1 .. high do S), s)

• 4 points for Assign

– 2 points for LHS

– 2 points for RHS

• 6 points for For

– 2 points for LHS

– 4 points for RHS



Name: 14

b) Encode the rules Seq-Step, Seq-Skip, If-True, and If-False of subquestion a) above in the
Lean definition of an inductive predicate. You are not asked to provide any rules for assignment
(:=) or for–do. (7 points)

inductive SmallStep : Stmt × State → Stmt × State → Prop where

PROPOSED SOLUTION:

| seq_step (S S’ T s s’) (hS : SmallStep (S, s) (S’, s’)) :

SmallStep (S; T, s) (S’; T, s’)

| seq_skip (T s) :

SmallStep (Stmt.skip; T, s) (T, s)

| if_true (B S s) (hcond : B s) :

SmallStep (Stmt.ifThen B S, s) (S, s)

| if_false (B S s) (hcond : ¬ B s) :
SmallStep (Stmt.ifThen B S, s) (Stmt.skip, s)

• 2 points for seq_step

– 1 point for rule name, variables, and premise

– 1 point for conclusion

• 1 point for seq_skip

• 2 points for if_true

– 1 point for rule name, variables, and condition

– 1 point for conclusion

• 2 points for if_false

– 1 point for rule name, variables, and condition

– 1 point for conclusion



Name: 15

Solution to Question 6 (Foundations): (10 points)

a) Let σ : Type 11 and τ : Type 22 be Lean types. Give the type of each of the following Lean
terms.

(5 points)

[(0 : N)]
fun (_ : σ) 7→ (5 : N)
fun (x : τ) 7→ x

Sort 5

fun α : Type 7→ List α

PROPOSED SOLUTION:
List N
σ → N
τ → τ
Sort 6 (or Type 5)
Type→ Type (or Sort 1→ Sort 1)

• 1 point per type



Name: 16

b) Vectors of size n over a type α can be defined as the subtype of all lists of length n over α:

def Vector (α : Type) (n : N) : Type :=
{xs : List α // List.length xs = n}

Appending two vectors of respective sizes m and n yields a vector of size m + n:

def Vector.append {α : Type} {m n : N} (v : Vector α m) (w : Vector α n) :
Vector α (m + n) :=

Subtype.mk (Subtype.val v ++ Subtype.val w)

(by simp [Subtype.property v, Subtype.property w])

Inspired by the definition of Vector.append, define the reverse operation on vectors. You may
use List.reverse in your implementation. (5 points)

PROPOSED SOLUTION:

def Vector.reverse {α : Type} {n : N} (v : Vector α n) : Vector α n :=
Subtype.mk (List.reverse (Subtype.val v))

(by simp [Subtype.property v])

• 1 point for Subtype.mk

• 2 points for List.reverse (Subtype.val v)

• 1 point for by simp [Subtype.property v]


	A1 (23): Types and Terms
	A2 (25): Functional Programming
	A3 (17): Inductive Predicates
	A4 (8): Effectful Programming
	A5 (17): Operational Semantics
	A6 (10): Foundations

