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6 questions, 90 points
Answers may be given in English or Dutch

Proof Guidelines

We expect detailed, rigorous, mathematical proofs, but we do not ask you to write Lean proofs.
You are welcome to use standard mathematical notation or Lean structured commands (e.g.,
assume, have, show, calc). You can also use tactical proofs (e.g., intro, apply), but then please
indicate some of the intermediate goals, so that we can follow the chain of reasoning.

Major proof steps, including applications of induction and invocation of the induction hypothesis,
must be stated explicitly. For each case of a proof by induction, you must list the inductive
hypotheses assumed (if any) and the goal to be proved. Unless otherwise specified, minor proof
steps corresponding to refl, simp, or linarith need not be justified if you think they are obvious,
but you should say which key lemmas they depend on.

You should be explicit whenever you use a function definition or an introduction rule for an
inductive predicate, especially for functions and predicates that are specific to an exam question.

Answer:

This version of the exam includes suggested answers, presented in blocks like this one.

In Case of Ambiguities or Errors in an Exam Question

The staff present at the exam has the lecturer’s phone number, in case of questions or issues
concerning a specific exam question. Nevertheless, we strongly recommend that you work things
out yourselves, stating explicitly any ambiguity or error and explaining how you interpret or repair
the question. The more explicit you are, the easier it will be for the lecturers to grade the question
afterwards.
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Question 1. Connectives and quantifiers (6+6 points)

The following two subquestions are about basic mastery of logic. Please provide highly detailed
proofs.

1a. Give a detailed proof of the following lemma about existential quantification and conjunction.
Make sure to emphasize and clearly label every step corresponding to the introduction or elimi-
nation of a connective or quantifier.

lemma about_exists_and_and {α : Type} (p q : α → Prop) :

(∃x, p x ∧ q x) → (∃x, p x)

Answer:

Assume hex : ∃x, p x ∧ q x.
By ∃-elimination, we obtain a witness x such that hand : p x ∧ q x.
From hand, we obtain hpx : p x by ∧-left-elimination.
From hpx, we obtain ∃x, p x by ∃-introduction with the witness x, as desired. QED

1b. Let p be a unary predicate over N. The set of propositions

{(∀x, p x), (∃y, ¬ p y)}

is inconsistent. Show this by proving the following implication. In your proof, identify clearly
which values are supplied for the universal quantifier.

lemma inconsistent_predicate {p : N → Prop} :

(∀x, p x) → (∃y, ¬ p y) → false

Answer:

Assume hall : ∀x, p x.
Assume hexn : ∃y, ¬ p y.
Performing ∃-elimination on hexn yields a witness y such that hnpy : ¬ p y.
From hall, we obtain hpy : p y by ∀-elimination (by instantiation of x with y).
From hnpy and hpy, we derive false, as desired. QED
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Question 2. Terms of the λ-calculus (6+6+8 points)

Consider the following inductive type representing terms of the untyped λ-calculus:

inductive term : Type

| var : string → term

| abs : string → term → term

| app : term → term → term

where

• term.var x represents the variable x;
• term.abs x t represents the λ-abstraction λx, t;
• term.app t t’ represents the application t t’.

2a. Implement the Lean function

def vars : term → set string

that returns the set of all variables that occur freely or bound within a term. For example:

vars (term.var x) = {x}

vars (term.abs x (term.var y)) = {x, y}

You may assume that the type constructor set supports the familiar set operations.

Answer:

| (term.var x) := {x}

| (term.abs x t) := {x} ∪ vars t

| (term.app t t’) := vars t ∪ vars t’

2b. Implement the Lean function

def bound_vars : term → set string

that returns the set of all bound variables within a term. A variable is bound if it is bound by a
λ-abstraction. For example:

bound_vars (term.var x) = {}

bound_vars (term.abs x (term.var y)) = {x}

bound_vars (term.abs y (term.app (term.var x) (term.var y))) = {y}

Answer:

| (term.var _) := {}

| (term.abs x t) := {x} ∪ bound_vars t

| (term.app t t’) := bound_vars t ∪ bound_vars t’
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2c. Prove that vars is never empty:

lemma vars_nonempty (t : term) :

vars t ̸= ∅

Answer:

The proof is by structural induction on t.

Case t = term.var x.
The goal is vars (term.var x) ̸= ∅.

By definition of vars, the left-hand side of the goal is vars (term.var x) = {x}, which is clearly
not empty.

Case t = term.abs x t.
The goal is vars (term.abs x t) ̸= ∅.
The induction hypothesis is vars t ̸= ∅.

By definition of vars, the left-hand side of the goal is vars (term.abs x t) = {x} ∪ vars t, which
is clearly not empty.

Case t = term.app t t’.
The goal is vars (term.app t t’) ̸= ∅.
The induction hypotheses are vars t ̸= ∅ and vars t’ ̸= ∅.

By definition of vars, the left-hand side of the goal is vars (term.app t t’) = vars t ∪ vars t’.
By the first induction hypothesis, vars t is nonempty; hence vars t ∪ vars t’ is nonempty. QED
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Question 3. A stringy language (8+8 points)

Consider the STRINGY programming language, which comprises five kinds of statements:

• skip does nothing;
• print s outputs the string s;
• seq S T executes S then T;
• choice S T nondeterministically executes either S or T;
• repeat S executes S a nondeterministic number of times, printing the concatenation (++)

of zero or more strings.

In Lean, we can model the language’s abstract syntax as follows:

inductive stmt : Type

| skip : stmt

| print : string → stmt

| seq : stmt → stmt → stmt

| choice : stmt → stmt → stmt

| repeat : stmt → stmt

3a. The small-step semantics for the STRINGY language relates an initial configuration (S : stmt,

s : string) to a possible next configuration (S’ : stmt, s’ : string). Notice that strings
capture the program’s state, in much the same way as state in the WHILE language.

Complete the following specification of a small-step semantics for the language by giving the
missing derivation rules for the choice and repeat statements. Notice that print appends the
new output to any earlier output (using ++).

Print
(print s’, s) ⇒ (skip, s ++ s’)

(S, s) ⇒ (S’, s’)
Seq-Step

(seq S T, s) ⇒ (seq S’ T, s’)
Seq-Skip

(seq skip T, s) ⇒ (T, s)

Answer:

Choice-Left
(choice S T, s) ⇒ (S, s)

Choice-Right
(choice S T, s) ⇒ (T, s)

Repeat-Base
(repeat S, s) ⇒ (skip, s)

Repeat-Step
(repeat S, s) ⇒ (seq S (repeat S), s)

3b. Specify the same small-step semantics as an inductive predicate by completing the following
Lean definition.
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inductive small_step : (stmt × string) → (stmt × string) → Prop

| print {s s’} :

small_step (stmt.print s’, s) (stmt.skip, s ++ s’)

| seq_step {s s’ S S’ T} :

small_step (S, s) (S’, s’) →
small_step (stmt.seq S T, s) (stmt.seq S’ T, s’)

| seq_skip {s T} :

small_step (stmt.seq stmt.skip T, s) (T, s)

...

Answer:

| choice_left {s S T} :

small_step (stmt.choice S T, s) (S, s)

| choice_right {s S T} :

small_step (stmt.choice S T, s) (T, s)

| repeat_base {s S} :

small_step (stmt.repeat S, s) (stmt.skip, s)

| repeat_step {s S} :

small_step (stmt.repeat S, s) (stmt.seq S (stmt.repeat S), s)
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Question 4. A monad for sticky errors (9+6 points)

Error handling can clutter programs. “Sticky errors” are an idiom that can be used to reduce
clutter. With sticky errors, a global error flag is initialized to false and is changed to true as soon
as an error has occurred. From then on, it remains true, even if some operations succeed—errors
are “sticky.” At the end of the program, we can check the flag to see if an error has occurred.
Using this idiom, we can concentrate the error handling at the end of the program and write the
rest of the program optimistically, without worrying about errors. Schematically:

do_something();

do_something_else();

if (error_flag)

print "There was an error";

In Lean, we model the state of such a program as a pair (α, bool), where α is the result of the
program and bool indicates whether an error has occurred so far. To increase readability, we
introduce aliases for pair constructs:

def sticky (α : Type) : Type := (α × bool)

def sticky.value {α : Type} : sticky α → α := prod.fst

def sticky.is_error {α : Type} : sticky α → bool := prod.snd

To make it convenient to write programs with sticky errors, we implement the monad operators
pure and bind as follows:

def sticky.pure {α : Type} : α → sticky α :=

λa, (a, ff)

def sticky.bind {α β : Type} : sticky α → (α → sticky β) → sticky β :=

λma f,

let mb := f (sticky.value ma) in

(sticky.value mb,

sticky.is_error ma || sticky.is_error mb)

For example, the command #reduce sticky.bind (3, tt) (λn, (7 * n, ff)) prints the sticky

value (21, tt).

Recall that tt and ff are the truth values of type bool, and || denotes “or.”

4a. Assume ma >>= f is syntactic sugar for sticky.bind ma f. Prove the first monad law, shown
below. Your proofs should be step by step, with at most one rewrite rule or definition expansion
per step, so that we can clearly see what happens.

You may assume reasonable lemmas about pairs and Booleans. In particular, you may use the
lemma stating that (prod.fst p, prod.snd p) = p for every pair p.

lemma sticky.pure_bind {α β : Type} (a : α) (f : α → sticky β) :

(sticky.pure a >>= f) = f a

Answer:
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sticky.pure a >>= f

= (a, ff) >>= f (by definition of sticky.pure)
= let mb := f a in (sticky.value mb, ff || sticky.is_error mb)

(by definition of sticky.bind)
= (sticky.value (f a), ff || sticky.is_error (f a)) (by inlining of let)
= (sticky.value (f a), sticky.is_error (f a)) (by basic property of Booleans)
= (prod.fst (f a), prod.snd (f a)) (by definition of sticky.value and sticky.is_error)
= f a (by lemma (prod.fst p, prod.snd p) = p)

4b. Commutative monads are monads for which we can reorder actions that do not depend on each
other. For sticky errors, the property can be stated as follows:

lemma sticky.bind_comm {α β γ δ : Type} (ma : sticky α) (f : α → sticky β)
(g : α → sticky γ) (h : α → β → γ → sticky δ) :

(ma >>= λa, f a >>= λb, g a >>= λc, h a b c) =

(ma >>= λa, g a >>= λc, f a >>= λb, h a b c)

Is sticky a commutative monad? If yes, provide a justification (as text or in the form of a brief
proof sketch). If no, provide a counterexample (i.e., concrete values for ma, f, g, and h above and
the result of evaluating both sides of the equality).

Answer:

Yes, sticky is a commutative monad. The “value” components of the two computations are the
same if we execute f or g first. It is only the “error” components that are a source of worry, but
for both computations, the error flag is set at the end if and only if one of f, g, or h has set it,
regardless of the order in which f and g are executed.
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Question 5. The stringy language revisited (6+6 points)

Recall the STRINGY language from Question 3. Based on the small-step semantics we specified
in Question 3, we can define a big-step semantics (and the usual syntactic sugar) as follows:

infixr ‘ ⇒ ‘ := small_step -- introduces the ⇒ syntax

infixr ‘ ⇒* ‘ : 100 := star small_step -- introduces the ⇒* syntax

def big_step : stmt × string → string → Prop :=

λSs t, Ss ⇒* (stmt.skip, t)

infixr ‘ =⇒ ‘ : 110 := big_step -- introduces the =⇒ syntax

Based on the big-step semantics, we can in turn define a Hoare logic (and the usual syntactic
sugar):

def partial_hoare (P : string → Prop) (S : stmt)

(Q : string → Prop) : Prop :=

∀s t, P s → (S, s) =⇒ t → Q t

-- introduces the {* P *} S {* Q *} syntax

notation ‘{* ‘ P : 1 ‘ *} ‘ S : 1 ‘ {* ‘ Q : 1 ‘ *}‘ := partial_hoare P S Q

Notice that string takes the place of state: Our notion of state consists of a single string, which
grows with each print statement.

5a. Extend the following specification of the Hoare logic rules for STRINGY by giving the Hoare rules
for the skip and seq statements. (We will return to the print statement in Subquestion 5b.)

{P} S {Q} {P} T {Q}
Choice

{P} choice S T {Q}
{I} S {I}

Repeat
{I} repeat S {I}

Answer:

Skip
{Q} skip {Q}

{P} S {Q} {Q} T {R}
Seq

{P} S; T {R}

5b. Which of the following Hoare rule, if any, is correct for the print statement? Justify your answer.

Print-1
{Q} print s’ {Q}

Print-2
{Q} print s’ {λs, Q (s ++ s’)}

Print-3
{λs, Q (s ++ s’)} print s’ {Q}

(Note that we mix Lean and informal notations above.)
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Answer:

Rule Print-3 is correct. If we start in a state s that satisfies Q (s ++ s’) and we extend s with
s’, we end up in a state s such that Q s. This is analogous to the assignment rule of the WHILE
language, with the assignment s := s ++ s’.

10



Question 6. Types and type classes (5+5+5 points)

6a. What are the types of the following expressions?

(3 : N) N N → N list Type 3

Answer:

N
Type

Type

Type → Type (or Type u → Type u)

Type 4

6b. The type class monoid of monoids is defined as follows in Lean:

@[class] structure monoid (α : Type) :=

(mul : α → α → α)
(one : α)
(mul_assoc : ∀a b c : α, mul (mul a b) c = mul a (mul b c))

(one_mul : ∀a : α, mul one a = a)

(mul_one : ∀a : α, mul a one = a)

Natural numbers can be viewed as a monoid, with 0 as one and addition + as mul. (The names
one and mul are admittedly confusing in this setting.) Complete the following instantiation of N
as a monoid by providing a suitable definition of the five fields of the monoid. For each of the
three properties, state the property to prove and very briefly explain why it holds.

@[instance] def nat.monoid : monoid nat :=

{ · · · }

Answer:

mul := (+),

one := 0,

mul_assoc := ∀a b c : α, (a + b) + c = a + (b + c),

-- by associativity of + on natural numbers

one_mul := ∀a : α, 0 + a = a,

-- because 0 is neutral element for + on natural numbers

mul_one := ∀a : α, a + 0 = a

-- because 0 is neutral element for + on natural numbers

6c. The type class group of groups is defined as follows in Lean:

@[class] structure group (α : Type) :=

(mul : α → α → α)
(one : α)

11



(mul_assoc : ∀a b c : α, mul (mul a b) c = mul a (mul b c))

(one_mul : ∀a : α, mul one a = a)

(mul_one : ∀a : α, mul a one = a)

(inv : α → α)
(mul_left_inv : ∀a : α, mul (inv a) a = one)

Can the type nat be instantiated as a group, using the same definition for mul and one as in
Subquestion 6b? Briefly explain your answer.

Answer:

No, because natural numbers other than 0 admit no inverse. For example, there is no natural
number inv 7 such that (inv 7) + 7 = 0.

The grade for the exam is the total amount of points divided by 10, plus 1.

12


